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Abstract. Convolutional neural networks (CNN) have been excellent
for scene classification in nature scene. However, directly using the pre-
trained deep models on the aerial image is not proper, because of the
spatial scale variability and rotation variability of the HSR remote sens-
ing images. In this paper, a bidirectional adaptive feature fusion strat-
egy is investigated to deal with the remote sensing scene classification.
The deep learning feature and the SIFT feature are fused together to
get a discriminative image presentation. The fused feature can not only
describe the scenes effectively by employing deep learning feature but
also overcome the scale and rotation variability with the usage of the
SIFT feature. By fusing both SIFT feature and global CNN feature, our
method achieves state-of-the-art scene classification performance on the
UCM and the AID datasets.
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1 Introduction

High Spatial Resolution (HSR) remote sensing image scene classification aims
to automatically label an aerial image with the specific category. It is the basis
of land-use object detection and image understanding which are widely used
in the field of military and civilian. Remote sensing image scene classification
is a fundamental problem which has attracted much attention. The most vital
and challenging task of the scene classification is to develop an effective holistic
representation of the aerial image to directly model an image scene.

To develop the effective holistic representation, many methods have been
proposed in recent years. Primitively, a bottom-up scheme was proposed to model
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Fig. 1. The flowchart of the proposed method. Part 1 shows as the process of extracting
features. Part 2 shows as the process of feature normalizing. Part 3 shows as the process
of the bidirectional feature fusion.

a HSR remote sensing image scene by three “pixel-region-scene” steps. To further
express the scene, many researchers tried to represent the scene directly without
classifying pixels and regions. For example, Bag-of-the-Visual-Words (BoVW)
[20] and some extensions of BoVW were proposed to improve the classification
accuracy. Besides, the family of latent generative topic models [1] have also been
applied in HSR image scene classification.

All these methods have better performance, they cannot satisfy the demand
of higher accuracy. One main reason is that these methods may lack the flexi-
bility and adaptivity to different scenes [19]. Recently, it has been proven that
deep learning methods can adaptively learn image features which are suitable
for specific scene classification tasks and achieve far better classification perfor-
mances. However, there are two major issues that seriously influence the use
of the deep learning method. (1) The deep learning method needs large train-
ing data to train the model and is time consuming. (2) The pre-trained models
take little consideration of the HSR remote sensing image characteristics [13].
The spatial scale variability and rotation variability of the HSR remote sensing
images cannot be expressed precisely by pre-trained models.

In order to relieve the above issues, a feature fusion strategy is proposed in
the paper. Many works have proved that SIFT feature has better performance
on overcoming the scale variability and rotation variability [16,17]. The pro-
posed method can be divided into three steps. First, the deep features and the
SIFT features are extracted by CNN and SIFT filter respectively. Second, the
two features are normalized by normalization layer to get the same dimension.
Finally, the normalized features are adaptively assigned with optimal weights to
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get the fused feature. Specially, the fusion strategy is to assign average weights
to confidence scores from the deep feature and the SIFT feature. The optimal
weight of a feature is trained by the model and is optimized by Back Propa-
gation Through Time (BPTT). With the help of above adaptive feature fusion
strategy, the proposed method can get a discriminative representation for scene
classification. The flowchart of the proposed method is shown as Fig. 1.

In general, the major contributions of this paper are as follows:

1. For HSR image scene classification, deep learning features are sensitive to
scale and rotation variant. To address the aforementioned problem, deep
learning features and SIFT features are together exploited remote sensing
scene classification.

2. A new fusion architecture is investigated to take full advantage of the infor-
mation of features.

The rest of the paper is organized as follows: In Sect. 2, the related works
on HSR scene classification are reviewed. Section 3 gives the detailed description
of our proposed method. The experiments of our method on two data sets are
shown in Sect. 4. In the last Section, we conclude this paper.

2 Related Work

In this section we provide previous work on remote sensing scene classification
and feature fusion.

Recently, several methods have been proposed for remote sensing scene classi-
fication. Many of these methods are based on deep learning [3,10,13–15,26]. The
deep learning method becomes the mainstream approach, because it uses a multi-
stage global feature learning strategy to adaptively learn image features and cast
the aerial scene classification as an end-to-end problem. To further improve the
classification accuracy, many researchers have proposed different methods to
overcome the issues which pre-trained models taking little consideration of the
HSR remote sensing image characteristics. Some of them have addressed the
problem from datasets, they have enlarged the datasets to increase the scale
and rotation invariant information. Y. Liu et al. [11] added random structure
noise i.e. random-scale stretching to capture the essential feature robust to scale
change. G. Cheng et al. [4,5] rotated the original data to enlarge the dataset and
increased the rotation information. Others focused on the deep learning archi-
tecture. G. Cheng et al. [4] added two fully connected layers and changed the
loss function to ensure all the rotation data has the same representation. More-
over, some researchers cared about the classifier. F. Zhang et al. [23] adapted
the boosting method to merge some weak networks to get more accurate results.

There has been a long line of previous work incorporating the idea of fusion
for scene classification. For example, [18] designed sparse coding based multiple
feature fusion (SCMF) for HSR image scene classification. SCMF sets the fused
result as the connection of the probability images obtained by the sparse codes
of SIFT, the local ternary pattern histogram Fourier, and the color histogram
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features. [24] also used four features and concatenated the quantized vector by
k-means clustering for each feature to form a vocabulary. All these fusion meth-
ods proposed for HSR image scene classification obtained good results to some
degree. Nevertheless, all of these methods were limited because the fused fea-
tures were not effective enough to represent the scene. In this paper, the strategy
fuses deep learning features and SIFT features together to achieve comparable
performance.

3 Proposed Method

The proposed method involves three parts: (1) feature extraction. (2) feature
normalizing. (3) feature fusion. The proposed method fuses the two features to
get the final classification result.

3.1 Feature Extraction

This Section of feature extraction is divided into two parts, the first part is the
deep feature extraction and the second part is the SIFT feature extraction. Deep
features are extremely effective features for scene classification, and they are the
guarantee of classification accuracy. Considering the limitation of the training
data in the satellite image and the high computation complexity of tuning convo-
lutional neural networks, we use the pre-trained convolutional neural networks.
[19] compares three representative high-level deep learned scene classification
methods. The comparison shows that VGG-VD-16 gets the best result.

VGG gives a thorough evaluation of networks by increasing depth using an
architecture with very small (33) convolution filters, which shows a significant
improvement on the accuracies, and can be generalised well to wide range of tasks
and datasets. In our work, we use one of its best-performance models named
VGG-VD-16, because of its simpler architecture and slightly better results. It
is composed of 13 convolutional layers and followed by 3 fully connected layers,
thus results in 16 layers. The parameters of the model are pre-trained on approx-
imately 1.2 million RGB images in the ImageNet ILSVRC 2012. We carry on
the experiment to verify that the first fully connected layer perform best in the
experiment. So the first fully connected layer is chosn as the feature vectors of
the images [19].

The SIFT feature [12] describes a patch by the histograms of gradients com-
puted over a (4 × 4) spatial grid. The gradients are then quantized into eight
bins, so the dimension of the final feature vector is 128 (4 × 4 × 8).

The SIFT feature searches over all scales and image locations. It is imple-
mented effectively by using a difference-of Gaussian function to identify potential
interest points that are invariant to scale and orientation. The initial image is
incrementally convolved with Gaussians to produce images separated by a con-
stant factor k in scale space. Adjacent images scales are subtracted to produce
the difference-of Gaussian images. This step detect the scale invariance feature
from different scale space. And the date will experience key point localization,
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orientation assignment and key point descriptor. The features with scale invari-
ant and rotation invariant are extracted.

3.2 Feature Normalizing

After feature extraction, the dimension of the deep feature is 4096 and the dimen-
sion of the SIFT feature is 128×N (where N indicates the number of the points of
the interest). The dimensions of the two features are different so we need to utilize
the normalizing method to reshape the two features in the same dimension.

We firstly use the FV [16] to encode the SIFT feature. In essence, the SIFT
features generated from FV encoding method is a gradient vector of the log-
likelihood. By computing and concatenating the partial derivatives, the mean
and variance of Gaussian functions, the dimension of the final feature vector
is 2 × K × F (where F indicates the dimension of the local feature descriptors
and K denotes the size of the dictionary). And then, we resize the size of the
dictionary to control the dimension of the output feature. Finally, we use the
encoding method to express SIFT feature more effectively.

Then the deep feature and the SIFT feature are together to get the same
dimension by a normalizing layer. The normalizing layer is composed of two
fully connected layers. The dimensions of the fully connected layers and the
number of the connection layers are verified by the experiments. The number of
the fully connection layer is set to 2 and the dimensions of the fully connection
layers are 4096 dimensions and 2048 dimensions. The parameters of the fully
connection layer are trained together with the below proposed fusion strategy.

3.3 Feature Fusion

We propose a novel bidirectional adaptive feature fusion method inspired by
recurrent neural networks [7,8]. The process of the feature fusion can be divided
into three procedures. The input features pass through the primary fusion node
to get a primary fusion feature. Then the primary feature and the first input node
feature are fused with different weights to get the intermediate feature. After
getting the two intermediate features from two directions, the two intermediate
features are summed together with different weights and with the bias to get the
final fusion feature. The reset ratio and the update ratio should be calculated
firstly before the feature fusion. The details of the feature fusion is described as
below.

In forward direction, the framework of the feature fusion is shown as Fig. 2.
There are two input nodes in the framework, the first input feature is the deep
learning feature marked as hd

f and the second input feature is the SIFT feature
marked as hs

f . The reset ratio and the update ratio are calculated respectively
by Eqs. 1 and 2. The primary fusion feature marked as hp

f is calculated by Eq. 3.
The primary fusion feature and the deep learning feature are as the two input
features to calculate the intermediate fusion feature (marked as hi

f ) Eq. 4.

zf = sigmoid(Wzh
s
f + Uzh

d
f ) (1)
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Fig. 2. The details of the feature fusion strategy, the input features are the embedded
deep feature and embedded SIFT feature. The output is the label of the image. The
two nodes are described as the bidirectional feature fusion strategy.

rf = sigmoid(Wrh
s
f + Urh

d
f ) (2)

hp
f = tanh(Whs

f + rf ◦ Uhd
f ) (3)

hi
f = zf ∗ hd

f + (1 − zf ) ∗ hp
f (4)

In backward direction, the first input feature is the SIFT feature marked as
hs
b and the second input feature is the deep learning feature marked as hd

b . The
reset ratio and the update ratio are also calculated respectively by Eqs. 5 and 6.
The primary fusion feature marked as hp

b is calculated by Eq. 7. The primary
fusion feature and the SIFT feature are as the two input features to calculate
the intermediate fusion feature (marked as hi

b) by Eq. 8.

zb = sigmoid(Wzh
d
b + Uzh

s
b) (5)

rb = sigmoid(Wrh
d
b + Urh

s
b) (6)

hp
b = tanh(Whd

b + rb ◦ Uhs
b) (7)

hi
b = zb ∗ hs

b + (1 − zb) ∗ hp
b (8)

In bidirectional feature fusion, hi
b and hi

f are calculated together to get the
final fusion feature yt. The formula is show as (9).

y = Wfh
i
f + Wbh

i
b + by (9)
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In all these formula Eqs. 1 to 9. Wz,Wr, Uz, Ur,W,U,Wf ,Wb, by are all the
weight parameters needed to be learned during the training the model. After
getting the final fusion feature, the fusion feature passes through the softmax
layer to classify the HSR images into different categories. The model is trained
by BPTT method. The proposed fusion method takes full advantage of the deep
learning feature and the SIFT feature to achieve comparable performance in the
HSR image scene classification.

4 Experimental Results and Analysis

To evaluate the effectiveness of the proposed method for scene classification,
we perform experiments on two datasets: the UC Merced Land Use dataset
[20] and the AID dataset [19]. At the same time, in order to evaluate the fusion
strategy, we perform experiments on both single features (deep feature and SIFT
feature) and the fused feature. The details of the experiments and the results
are described in the following sections.

4.1 Dataset and Experiment Set Up

UC Merced Land Use dataset: It contains 21 scene categories. Each category
contains 100 images. Each scene image consists of 256 × 256 pixels, with a
spatial resolution of one foot per pixel. The example images are shown as Fig. 3.
In the experiment, we randomly choose 80 images from each category as the
training set, the rest images are chosen as the testing set. Some of the scenes are
similar to each other causing the scene classification to be challenging.

Fig. 3. Example images associated with 21 land-use categories in the UC-Merced
data set: (1) agricultural, (2) airplane, (3) baseball diamond, (4) beach, (5) build-
ings, (6) chaparral, (7) dense residential, (8) forest, (9) freeway, (10) golf course, (11)
harbor, (12) intersection, (13) medium residential, (14) mobile home park, (15) over-
pass, (16) parking lot, (17) river, (18) runway, (19) sparse residential, (20) storage
tanks and (21) tennis court
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AID: It is a new dataset containing 10000 images which make it the biggest
dataset of high spatial resolution remote sensing images. Thirty scene categories
are included in this dataset. The number of different scenes is different from
each other changing from 220 to 420. The shape of the scene image consists of
600 × 600 pixels. We follow the parameters setting in the [19]. Fifty images of
each category are chosen as the training set and the rest of the images are set as
the testing set. The dataset is famous for its images with high intra-class diversity
and low inter-class dissimilarity. The example images are shown as Fig. 4.

Table 1. Comparison with the previous reported accuracies with the UC merced data
set

Method OA(%) Method OA(%)

BOVW 72.05 S-UFL 82.30

pLSA 80.71 SAL-PTM 88.33

SPCK++ 76.05 GBRCN 94.53

LDA 81.92 SRSCNN 95.10

SPM+SIFT 82.30 CNN 93.10

SIFT+FC 81.67 PROPOSED 95.48

4.2 Experiment on UC Merced Dataset

To evaluate the proposed method, we compare our method with the state-of-the-
art methods in scene classification. The comparative scene classification methods
include BOVW [20], pLSA [2], LDA [1], SPM [9], SPCK [21], SIFT+SC [6],
S-UFL [22], GBRCN [23], SAL-PTM [25] and SRSCNN [11]. The results are
showed in Table 1. From Table 1, it can be concluded that the proposed method
performs better than other methods. Compared with GBRCN which combines
many CNN for scene classification, our method is 0.91% better than it. Our
method is 0.38% better than SRSCNN which randomly selects patches from
image and stretch to the specific scale as input to train CNN. The experiment
results indicate the effectiveness of the proposed method.

4.3 Experiment on AID Dataset

To evaluate the proposed method on AID, the compared methods are chosen
to code SIFT feature with models such as BOVW, pLSA, LDA, SPM, VLAD,
FV and LLC. The deep models are chosen as VGG-VD-16 and the proposed
method. Table 2 gives the comparison, which also shows the effectiveness of the
proposed method.
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Fig. 4. Example images associated with 30 land-use categories in the UC-Merced data
set: (1) airport, (2) bare land, (3) baseball field, (4) beach, (5) bridge, (6) center,
(7) church, (8) commercial, (9) dense residential, (10) desert, (11) farmland, (12) for-
est, (13) industrial, (14) meadow, (15) medium residential, (16) mountain, (17) park,
(18) parking, (19) play ground, (20) pond, (21) port, (22) railway station, (23) resort,
(24) river, (25) school, (26) sparse residential, (27) square, (28) stadium, (28) storage
tanks, (29) viaduct and (30) viaduct

Table 2. Comparison with the feature fusion with the aid data set

Method BOVW FV LLC pLSA

OA(%) 68.37 78.99 63.24 63.07

Method SPM VGG-VD-16 VLAD PROPOSED

OA(%) 45.52 89.64 68.96 93.56
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4.4 Experiment on Feature Fusion

To evaluate the proposed fusion strategy, we compare the classification accuracy
in experiments with single deep feature and experiments with single SIFT fea-
ture encoded with fisher vector. Moreover, we compare the fusion strategy with
sum of the features and the average of the features. The result shows that the
single SIFT feature encoded with fisher vector performs worst in the experiment.
At the same time, the deep feature and the fusion feature all get the classifi-
cation accuracy exceeding 90%. The proposed fusion strategy obtains the best
performance. The sum of feature gets the accuracy of 94.01% and the average
of the features gets the accuracy of 93.05%. The classification accuracy of the
proposed fusion strategy is shown as the best result compared with other fusion
strategys. The final result is shown in Table 3. Our experiment is conducted on
the UC Merced data set.

Table 3. Comparison with the feature fusion with the UC merced data set

Method FV VGG-VD-16 SUM AVG Proposed

OA(%) 85.11 93.09 94.01 93.05 95.48

5 Conclusion

The proposed method aims to solve the scale variance in high spatial resolution
remote sensing images scene classification. Fusion of deep feature and SIFT
feature is evaluated to get the state-of-the-art performance. The experiments on
UCM and AID demonstrate the effectiveness of the proposed method.
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