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Abstract. Convolutional Neural Networks (CNNs) have made out-
standing achievements in computer vision, e.g., image classification and
object detection, by modelling the receptive field of visual cortex with
convolution and pooling operations. However, CNNs have ignored to
model the long-range spatial contextual information in images. It has
long been believed that recurrent neural networks (RNNs) can model
temporal sequences well by virtue of horizontal connections, and have
been successfully applied in speech recognition and language modelling.
In this paper, we propose a hierarchical parallel recurrent neural net-
work (PreNet) to model spatial context for image classification. In this
network, when transforming the whole image into sequences in four
directions, we adopt the way of row-by-row/column-by-column scanning
instead of traditional pixel-by-pixel scanning, for the convenience of fast
convolution implementation. Following the recurrent network, a max-
pooling operation is used to reduce the dimensionality of the obtained
feature maps. The resulting PreNet can be easily paralleled on GPUs.
We evaluate the proposed PreNet on two public benchmark datasets:
MNIST and CIFAR-10. The proposed model can achieve the state-of-
the-art classification performance, which demonstrates the advantage of
PreNet over many comparative CNN structures.
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1 Introduction

CNNs have become very popular in the field of deep learning, and have been
successfully applied in computer vision, e.g., image classification [22], object
detection [6], and semantic segmentation [26]. These successes are generally con-
sidered to be attributed to modelling the receptive field of visual cortex with local
convolution operation and achieving translation invariance with max-pooling
operation. However, several researchers argue that variant poolings may lose
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important location information [33], and local convolution can not capture the
global spatial context in an image.

Different from the feedforward connections of convolutional neural networks,
RNNs have horizontal feedback connections, which can model the long-range
dependency in sequential data. With the capability of sequence modelling, RNNs
with long short-term memory [12] have achieved great success in machine trans-
lation [3], question and answering [19], video super-resolution [16,17] and speech
recognition [10]. Recently, more studies have been devoted to improving the
memory capacity of RNNs for modelling longer-range contextual information,
e.g., neural turing machine [14] and associative long short-term memory [5].

In this paper, we propose a hierarchical parallel recurrent neural network
to model spatial context for image classification. Instead of using traditional
recurrent neural networks in a pixel-by-pixel scanning order which leads to very
long sequences (e.g., 10,000-length sequence for 100 x 100 pixel image), we
adopt parallel recurrent neural networks to scan images in the way of row-by-
row/column-by-column. Parallel recurrent neural networks not only shorten the
sequence length to 100 for a 100 x 100 pixel image, but also use fast convo-
lution operation to propagate information. Following parallel recurrent neural
networks, a max-pooling operation is used to reduce the dimensionality of the
obtained features maps. Through stacking parallel recurrent neural network layer
and max-pooing layer, a hierarchical parallel recurrent neural network (PreNet)
is proposed for image classification.

The most similar work to our PreNet is ReNet [35] which also replaces the
convolution+pooling layer with four recurrent neural networks. However, our
PreNet is much different from ReNet in many aspects. First, ReNet vertically
sweeps the obtained feature maps based on the result of horizontal sweep, while
PreNet recurrently handles the image sequences in four directions simultane-
ously. Second, ReNet sweeps the input from patch to patch in a pixel-by-pixel
way, while PreNet sweeps the input in the way of row-by-row /column-by-column.
Third, ReNet utilizes a fully connected operation at each recurrent time, while
PreNet employs a efficient convolutional operation for fast parallel execution.

Finally, we evaluate the proposed PreNet on two widely-used benchmark
datasets: MNIST and CIFAR-10. The experimental results demonstrate that
the proposed model can achieve the state-of-the art classification performance
on these datasets.

2 Model Description

In this part, we will first introduce traditional recurrent neural networks [11]
and parallel recurrent neural networks, and then describe our proposed PreNet.
Finally, we will compare the model structure between PreNet and the other two
(ReNet and ConvNet).
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2.1 Traditional Recurrent Neural Network

Different from common multilayer perception, RNN propagates information via
horizontal feedback connections which can model the long-range dependency in
sequential data, while multilayer perception passes on the activations of the neu-
rons to the other neurons via feedforward connection. The input of the hidden
layer in RNN includes both the input at current timestep and the hidden activa-
tions at previous timestep. Given a T length input sequence {xt}t:L_“ T where
T4 is an input vector at timestep ¢, the hidden activations h; and the output

activations o; at time ¢(t = 1,--- ,T) are computed as follows:
ht = o (xywgep + hi—1wppy + b) (1)
O = htwho (2)

where wgp, Wiy, and wp, denote the network weights, b denotes the bias term,

and o denotes the activation function o () = =

2.2 Parallel Recurrent Neural Network

Stollenga et al. [32] proposed a PyraMiD-LSTM model for biomedical volumetric
image segmentation, which employs an elegant scanning way to considering each
pixels entire spatio-temporal context. Besides, since the PyraMiD-LSTM uses a
rather different scanning way, which is different from the traditional cuboid order
of computations in MD-LSTM [13], it becomes very easy to parallelize.
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(a)row-by-row scanning (b) column-by-column scanning

Fig. 1. The pyramidal connection topology of parallel recurrent neural network.

As we can see from Fig. 1, all inputs to all units are from four directions: left,
right, up, or down. In Fig. 1, we adopt the way of row-by-row/column-by-column
scanning instead of traditional pixel-by-pixel scanning, for the convenience of fast
convolution implementation. For example, when the convolutional kernel size is
3, the stride is 1, and the elements in the second row (column) are the results
of convolution of the first row (column) elements with the learned linear filter
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at the stride. Figure 1 just shows the scanning ways of from left to right (from
up to down), and the computation from other two directions can be operated
in the same way. Since all the elements in a whole grid row (or column) can be
computed independently, the proposed model can be easy to parallelize.

Assuming that X = {z; ;} denotes the input image or the feature map from
a previous layer, where X € R and ¢ denotes the number of channels
or the feature dimensionality, h denotes the height, and w denotes the width.
Specifically, we split X into h rows, where z; € R (¢t =1,2,...,h) is the t-
th row of the input image. The input sequence length is h or w, the input vector
at time ¢ is x¢, the weights are w,j, and wyy,, the activations of the hidden layer
are h' (i € {lr,rl,ud,du}), where i denotes the sweep direction, i.e., left-to-right,
right-to-left, up-to-down, down-to-up, respectively. When the recurrent model
computes the hidden output of the direction of up-to-down, the hidden output
of other three directions can be gained simultaneously in the same way. After
the results of four directions are gained, the final output can be obtained by
summing them. As we use the padding operation in the convolution operation,
the output feature maps can keep the same size as the input. Now, each vector
in final output feature maps can represent corresponding features in the context
of the whole image.

(mt s wll + b7 wwll, + 07 (3)

hyt =0 (2}« wll + kit xwph + ™) (4)
h = o (i ;:;i i s+ 5 (5)
= o (a4 57 ©
h = hlr 4 th + hud + hdu (7)

2.3 Our PreNet

Based on the fact that parallel recurrent neural network employs an elegant
scanning way to consider each pixels entire spatio-temporal context and it is
easy to parallelize, we propose a hierarchical parallel recurrent neural network
(PreNet) to model spatial context for image classification. As we can see from
the above section, the PreNet architecture can map an input image to an output
feature map. Therefore, we can stack multiple PreNet layers to make our network
deeper, which can extract more complex and useful features of the input image.
In our experiment, we first directly stack multiple PreNet layers followed by fully
connected layers to form a deep network for image classification. However, the
computational cost is high because the size of the feature map in all PreNet
layers is constant. To reduce the dimensionality of the obtained features maps, a
max-pooling operation is added after the PreNet layers. The proposed hierarchy
PreNet architecture is shown in Fig. 2, and the main process is as follows.
Given input image, it first enters one PreNet layer which comprises of four
recurrent neural networks from four directions respectively, and every recurrent
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Fig. 2. The proposed Parallel Recurrent Neural Network (PreNet).
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neural network handles the input image by the way of row-by-row/column-by-
column scanning. Then it enters a pooling layer which maps the input feature
map to a smaller size than the input. Let us denote function ¢ by the combination
of the PreNet layer and the pooling layer, so we can stack multiple ¢ to form
a hierarchy PreNet network. Finally, it is followed by two fully connected layers
whose activation functions are rectify and softmax, respectively.

2.4 Model Compariation

In this section, we will compare the proposed PreNet with conventional convo-
lutional neural networks (ConvNet) and ReNet. Since the comparison between
ReNet and ConvNet is described in [35], we just explain the similarities and
differences between PreNet and the other two here.

The comparison between PreNet and ReNet

— Both networks sweep the input image or feature map from four same direc-
tions. ReNet handles the sequences in the horizontal two directions and
vertical two directions sequentially, while PreNet handles the sequences in
four directions simultaneously. PreNet is obviously easier to parallelize than
ReNet.

— ReNet sweeps the input from patch to patch in a pixel-by-pixel way, while
PreNet handles the input in the way of row-by-row/column-by-column scan-
ning. Both the way of scanning can ensure that each feature activation gains
contextual information with respect to the whole image.

— Both networks can reduce the dimensionality of the feature map, which results
in lower computational cost. However, ReNet reduces the dimension of the
input feature map by dividing it into many non-overlapping patches and the
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existence of learned lateral connections, but PreNet reduces the dimension of
the input feature map by a max-pooling operation.

The comparison between PreNet and ConvNet

— Both architectures employ a set of filters in the input image or the feature
map from the layer below. Nevertheless, the information of PreNet is trans-
mitted via lateral connections which propagate across the whole image, while
ConvNet only captures local information in a fixed input size. The lateral
connections make the model extract more contextual information at each
layer.

— They both have the max-pooling layer. For ConvNet, pooling operations are
responsible for the translation invariant property. But for PreNet, pooling
operations are mainly responsible for reducing dimensionality.

3 Experiments

To demonstrate the effectiveness of the proposed PreNet, we apply it to image
classification on two publicly available datasets.

3.1 Datasets

The two evaluation datasets and corresponding experimental protocols are
described as follows.

MNIST. The dataset [23] is composed of binary images of handwritten digits,
and has been widely used for training various image processing systems. The
images are all gray with a size of 28 x 28, each of which represents a handwritten
digit from 0 to 9. In this experiment, we follow the standard split and use 50,000,
10,000 and 10,000 images for training, validation and test, respectively.

CIFAR-10. The dataset [21] consists of 60000 color images. These images have
a size of 32 x 32, each of which belongs to one of 10 classes including airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck, totally 6000 images
per class. Following the standard procedure, we split the dataset into 40,000
training, 10,000 validation and 10,000 test images. We normalize each pixel to
have zero-mean and unit-variance across all training samples.

3.2 Pre-processing and Data Augmentation

It is believed that data preprocessing can usually have a significant impact on
the final performance of a model [20]. To make fair comparisons, we exploit
different pre-processing strategies for different datasets. For the MNIST dataset,
we normalize each pixel of an image to the range of [0,1]. For the CIFAR-10
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dataset, we perform z-score standardization to make image pixels have zero-
mean and unit-variance.

According to [22], data augmentation can always reduce overfitting and
improve final performance. To extensively compare our model with others, we
conduct our experiment using non-augmentation and augmentation, respectively.
In the context of data augmentation, we mainly exploit three kinds of transfor-
mations [24,35] including flipping, shifting, random cropping.

3.3 Model Parameter Setup

In Tablel, we illustrate parameter settings of the proposed PreNet on the
MNIST and CIFAR-10 datasets. The main parameters include the number of
PreNet layers Np,., their corresponding feature dimensionality d,.. and kernel
size kpre, the number of pooling layers Npoo and their corresponding kernel size
Epoot, the number of fully connected layers Ny, and their corresponding feature
dimensionality d., and the activation function fy.. All our experiments are
performed on a ubuntu computer with an NVIDIA Tesla K40 GPU.

Table 1. Model parameters used in the experiments.

Parameters MNIST | CIFAR-10
Npre 2 2

dpre 32 48

kpre

Npool

kpoot

Ny¢c

dyec 128 256

fre maxz(0,z) | maz (0, x)
Flipping No Yes
Shifting Yes Yes
RandomCropping | Yes Yes

3.4 Training

We apply stochastic gradient descent (SGD) with nesterov momentum [34] to
train the networks. At the same time, to release the exploding gradient problem
[2], we employ the gradient norm clipping strategy [28]. To avoid overfitting dur-
ing training, in addition to the data augmentation, we perform dropout after all
PreNet layers and fully connected layers. In addition, we use batch normaliza-
tion [18] to accelerate the convergence of the proposed model. During training,
we choose the best model which minimizes the classification loss function on the
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validation set. We set the learning rate 0.01 at start and drop it by a factor of
10 after every 500 epoches. The momentum term is 0.9, the batch size is 100,
and all weights are initialized according to a uniform distribution.

3.5 Results and Analysis

We compare the proposed PreNet with several state-of-the-art models on the
MNIST and CIFAR-10 datasets in Tables 2 and 3, respectively. All results to be
compared in Tables2 and 3 are from [35]. On the MNIST dataset, our proposed
PreNet model can outperform most state-of-the-art models. On the CIFAR-10
dataset, the PreNet model performs comparably to most state-of-the-art models.
It is worth mentioning that PreNet performs 0.16% and 1.35% better than ReNet
on MNIST and CIFAR-10, respectively. Although the performance of our model
doesn’t outperform some state-of-the-art models on CIFAR-10, there are some
reasons behind it. As we all know, the digital structure on MNIST is simple,
while the intra-class spatial context variation on CIFAR-10 is complicated.

To verify the advantage of PreNet further, we compare PreNet with ConvNet
on the parameters of the same order of magnitude on the CIFAR-10 dataset.
Specifically, we use the same number of layers for PreNet and ConvNet, and
compare their results in Table4, where the ConvNet-one means one layer con-
volution, and PreNet-one means one layer PreNet, and the meanings of “-two”
are similar. In this experiment, we set the number of fully connected layers as 1,
and the number of neurons as 128. All the results in Table 4 are computed in the
same computing environment, and data augmentation is not used in these exper-
iments. From the experimental results, we can find that PreNets can achieve

Table 2. Comparison with existing Table 3. Comparison with existing

models on MNIST. models on CIFAR-10.
Method Test error Method Test error
DropCNN [36] | 0.28% FMP [8] 4.5%
PreNet 0.29% S-SCNN [9] 6.28%
S-SCNN [9] 0.31% NIN [25] 8.8%
DBSN [4] 0.35% Maxout [7] 9.35%
CKN [27] 0.39% PV-Maxout [31]9.39%
DSN [24] 0.39% BO [30] 9.5%
SCNN [29] 0.40% PreNet 11%
FMP [§] 0.44% DCNN [22] 11%
Maxout [7] 0.45% DropCNN [36] [11.10%
ReNet [35] 0.45% ReNet 12.35%
NIN [25] 0.47% SP-CNN [37] 15.13%
COSFIRE [1] |0.52% PCFD [15] 15.6%
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Table 4. Comparison with ConvNet Table 5. The experimental results of
models on CIFAR-10 (without data PreNet on the CIFAR-10 by setting dif-

augmentation). ferent parameters.
Method Test accuracy Parameter|Test accuracy
ConvNet-one | 74.66% Npre =1 71.39%
PreNet-one | 77.5% Npre =2 [78.15%
ConvNet-two | 80.92% dpre = 16 69.23%
PreNet-two | 83.57% dpre = 32 71.39%

dpre = 48 |72.73%
dpre = 64 72.80%
kpre =3 70.76%
kpre =5 |71.39%
kpre =7 |71.41%
dje =32 |70.12%
dpe =64 |71.39%
dse = 128 |72.98%
de =256 73.79%
dpe =512 74.28%

about 3% better than ConvNets. These results demonstrate the advantage of
PreNet compared with convolutional neural networks further.

In the following, we testify how the parameters of the proposed PreNet affect
the final performance. In a nutshell, we study a parameter by changing its value
while fixing other parameters. In Table 5, we present the experimental results of
different parameter setups on the CIFAR-10 dataset. Similarly, all the results in
Table 5 are gained in the same computing environment, and data augmentation is
not used in these experiments. The meaning of these parameters are explained in
the previous section. The first column in table indicates four kinds of parameters
respectively: the number of PreNet layers, the feature dimensionality of each
PreNet layer, the kernel size of each PreNet layer, the feature dimensionality of
each fully connected layer. The second column is their corresponding results.

In our experiments, we set different values for these parameters respectively.
By increasing the values of Npye, dpre, kpre and d ., the performance of the model
gradually gets better. The situation is obviously consistent with our thought. As
we do not fine tuning the learning rate, the model performance does not increase
obviously when changing the values of some parameters such as k... What calls
for special attention is that the model performance cannot increase too much
when the value of the parameter becomes too large because of overfitting.

Finally, we show the feature maps of the convolutional layers in PreNet and
ConvNet, respectively. In Figs. 3 and 4, there are some feature maps of PreNet
and ConvNet corresponding to a bird and a horse. The layer]l means the first
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Fig. 3. The feature maps of PreNet and ConvNet on a bird image.
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Fig. 4. The feature maps of PreNet and ConvNet on a horse image.
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layer (PreNet or ConvNet) map, and the layer2 means the second layer (PreNet
or ConvNet) map. As we can see from the Figs. 3 and 4, PreNet can capture richer
context information compared to the little contour information of ConvNet. This
is also consistent with our original motivation.

4 Conclusion

In this paper, we have proposed a hierarchical parallel recurrent neural network
(PreNet) to model spatial context for image classification. The main idea is to
handle the input image in the way of row-by-row/column-by-column scanning
from four different directions by recurrent convolution operation. On the one
hand, this structure makes the model easily capture global context information
of the object in the image. On the other hand, it naturally facilitates parallel
computing of the model. Our experimental results have shown the advantage of
PreNet compared to common convolution neural networks and ReNet.

To further extend our work, there are several things worth exploring: First,
the recurrent unit of PreNet is just conventional RNN instead of LSTM. It is
a fact that LSTM has a powerful ability of modeling a long sequence, which
can capture long-range memory about contextual information. It can be used
in more complicated datasets if LSTM is applied to the PreNet model. Second,
given that ReNet sweeps the input from patch to patch in a pixel-by-pixel way,
a variant of PreNet can be explored in this respect. That is to say, a variant of
PreNet can scan the input from patch to patch (e.g., slice row to slice row) in
the same way as the original work principle.
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