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Abstract. Faces are of particular concerns in video surveillance sys-
tems. It is challenging to reconstruct clear faces from low-resolution
(LR) videos. In this paper, we propose a new method for face video
super-resolution (SR) based on identity guided generative adversarial
networks (GANs). We establish a two-stage convolutional neural net-
work (CNN) for face video SR, and employ identity guided GANs to
recover high-resolution (HR) facial details. Extensive experiments vali-
date the effectiveness of our proposed method from the following aspects:
fidelity, visual quality and robustness to pose, expression and illuminance
variations.
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1 Introduction

Video surveillance systems grow rapidly in recent years. They appear in many
streets and buildings and play an important role in safety. However, their lim-
ited resolutions and scopes prevent them from providing more important infor-
mation especially on human faces. Face super-resolution (SR), also called face
hallucination [17], aims at reconstructing sharp face images from low-resolution
(LR) observations. The study of face SR starts from the seminal work of Baker
and Kanade [1]. They introduced an example-based SR method for face image
SR. Example-based methods are very suitable for face SR since face images are
of relatively fixed features. Traditional face SR methods use nearest neighbor
[1], principal component analysis (PCA) [18], PCA and Markov network [12],
sparse representation [23]. The powerful convolutional neural network, has also
been introduced into face SR [28]. Perceptual loss [6,9] and generative adver-
sarial networks (GANs) have been employed in face SR for visually pleasant SR
results [3,16,24,25]. Although plenty of algorithms have been proposed, most of
these algorithms conduct experiments on aligned frontal faces under restricted
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illuminance. However, in real video surveillance systems, there might be pose,
expression and illuminance variations. Plain learning based approaches may gen-
erate over-smoothed results when the scale factors are very large. Perceptual loss
and GAN based methods produce sharp images but are difficult to guarantee
high restoration fidelity.

In this paper, we introduce identity guidance to GANs. A new two-stage
CNN for face video SR is proposed. Different from plain perceptual loss based
methods which compute the Mean Square Error (MSE) loss between the per-
ceptual feature maps, we employ discriminator net on the identity feature maps.
Different from plain GAN based methods using raw SR and ground truth (GT)
high-resolution (HR) images as the inputs of the discriminator net, we feed the
identity feature maps into the discriminator net for better restoration of face
elements. We compare our method with state-of-the-art SR methods and show
the superiority of our method in terms of both restoration fidelity and visual
quality.

We summarize our contributions as follows:

1. We propose a two-stage CNN as our generator net to facilitate visually appeal-
ing face video SR in our GAN framework.

2. We establish an identity guided GAN framework for face video SR for better
fidelity and visual quality.

3. Our method is robust to pose, expression and illuminance variations in chal-
lenging videos. Our face SR results are superior compared with state-of-the-
art SR methods.

The rest of the paper is organized as follows. In Sect. 2 we review related work.
In Sect. 3, we illustrate the proposed method. In Sect. 4, we provide detailed
experimental results and analysis. The paper is concluded in Sect. 5.

2 Related Work

Face SR has attracted much attention from researchers and companies. Baker
and Kanade [1] introduced nearest neighbor in face SR. Liu et al. [12] employed
a global linear model and a local Markov network to obtain good SR results.
Ma et al. [13] used position patch to reconstruct faces. Jiang et al. [5] applied
locality and sparsity constraint for least square inversion problem, leading to
noise robust face SR. These methods perform well on aligned faces. When faces
are not aligned, their performance drop dramatically. Yang et al. [22] extracted
facial components in LR images and utilized component examples for learning.
However, it is hard to detect facial components in extremely LR images. Deep
CNNs were firstly applied in face SR by Zhou et al. [28]. Different from CNN
based general image SR methods [6–10,14,26,27], face SR CNNs utilize the
facial information. Zhu et al. [29] cascaded gated deep bi-network and dense
face correspondence field for face SR.

GANs are also introduced in image processing tasks including face image
SR to improve the visual quality of the super-resolved faces. Tuzel et al. [16]
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proposed a deep global-local face SR net and introduced adversarial training to
improve visual quality. Yu and Porikli [24] designed a discriminative generative
net for face SR. Yu and Porikli [25] also presented a transformative discriminative
neural network to super-resolve unaligned and very LR faces. Gulrajani et al. [3]
compared plain GANs with Wasserstein GANs for face SR.

Although GANs have been employed in face SR, the inputs of discriminator
net are simply the SR and HR images in previous methods. These methods
utilize no person identity priors to distinguish one person from another, only
aiming at obtaining sharper face images. In this paper, we utilize face identity
features as the inputs of the discriminator net for improving the fidelity of the
SR images and providing better results on facial components.

3 Our Video SR Approach

3.1 Overview of the Proposed Method

We illustrate our face video SR framework in Fig. 1(a). In our method, three
networks are employed. They are the generator net, the identity net and the dis-
criminator net. The generator net regards multiple LR images as the inputs and
generates a SR image. The identity net is utilized to extract the identity feature
maps of SR images and the original HR images. Our identity net applies the
bottom layers of a face recognition CNN [20]. We employ the discriminator net
to determine whether the SR identity feature maps look similar to the HR iden-
tity feature maps. Our method is different from plain MSE loss and perceptual
loss [6,9] based SR methods as shown in Fig. 1(b) which simply employ the MSE
between the SR feature maps and the HR feature maps of a pretrained VGG
network [15]. Li et al. [11] uses identity loss to preserve identity and perceptual
loss to enhance visual quality. However, these two losses are also MSE based.
Apart from previous GAN based methods in Fig. 1(c) determining whether the
SR images look similar to the HR images, our identity guided GAN determines
whether the SR identity feature maps are similar to HR identity feature maps.
Our method aims at obtaining more accurate identity features on super-resolved
faces.

3.2 The Generator Net

We design a two-stage CNN as the generator net in our GAN framework for
enhancing visual quality, as shown in Fig. 2. The proposed CNN is based on
the state-of-the-art general video SR method named motion compensation and
residual net (MCResNet) [10]. We interpolates LR inputs frames using the bicu-
bic interpolation (Bicubic) and employs an optical flow method [2,7] for motion
estimation and compensation. Then the motion compensation frames are fed
into our residual video SR network. We employ two-stage deep residual learn-
ing by adding two skip-layer connections. The two stages both include a new
convolutional path and an element-wise sum of the outputs of the convolutional
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Fig. 1. Overview of our method and previous methods.

path and the interpolated centering input frame. The first stage restores high-
frequency details. The blue components in Fig. 2 are the second stage of our
network for denoising and illuminance adjustment. We find that although the
proposed net obtains lower objective evaluation values than MCResNet using
MSE loss, the new net provides better results than MCResNet in our GAN
framework. Our proposed generator net adds the input centering frame twice so
that the low-frequency details are better preserved in GAN training. However,
the two-stage structure is a little bit worse than MCResNet with the MSE loss
since the two-stage structure uses less filters.

Let Y = {IL−T , IL−T+1, · · · , IL0 , · · · , ILT−1, I
L
T } to be all the bicubically interpo-

lated input frames where ILt is the t-th frame. Suppose we have N convolutional
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Fig. 2. The proposed generator net for face video SR. (Color figure online)

layers in the first stage and M convolutional layers in total. For the first stage
we have

FI(Y) = FN (Y) + IL0 (1)

where FI(Y) is the output of the first stage and FN (Y) is the output of the N -th
convolutional layer. IL0 is the centering frame. For the second stage we have

F (Y) = FM (Y) + IL0 (2)

where F (Y) is the output of the whole network and FM (Y) is the output of the
M -th convolutional layer. The interpolated input centering frame is added to
the SR results twice for more accurate SR and easier optimization. The loss for
the generator net in our GAN is

LG = LM + λALA (3)

where LM is the MSE loss and LA is the adversarial loss. λA is the weight of
the adversarial loss. We also have the MSE loss as

LM =
1
2
||F (Y, Θ) −X||22 (4)

where F (Y, Θ) are the outputs of the generator net. Θ are the parameters of
the generator net. X are the ground truth (GT) HR images. We will describe
the definition of LA in the following subsection.
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3.3 The Identity Net and the Discriminator Net

For the identity net, we utilize the bottom 7 convolutional layers of one of the
state-of-the-art face recognition CNN designed by Wen et al. [20]. The convolu-
tional layer we use is the mid-level information extracted by the face recognition
CNN. We find that high-level information at the top layers and low-level infor-
mation at the bottom layers are not suitable for reconstructing facial details.
Fully connected layers are not used so that the generator net is scalable to input
image sizes. We use the pretrained model of [20]. The parameters of the identity
net are not changed during training. The outputs of the identity net, which are
the extracted identity feature maps, are directly fed into the discriminator net.
For the discriminator net, we employ 4 convolutional layers with a stride of 2
and a fully connected layer. The loss of the discriminator net is

LD = −log(D(I(X))) − log(1 − D(I(F (Y)))) (5)

where LD is the discriminative loss. I(X) and D(I(X)) are the outputs of the
identity net and the discriminator net respectively when the inputs are the orig-
inal HR images. F(Y) are the outputs of generator net when the inputs are the
SR images. I(F(Y)) and D(I(F(Y))) are the outputs of the identity net and the
discriminator net respectively. The adversarial loss, which is back-propagated
through the discriminator net and the identity net to the generator net, is
defined as

LA = −log(D(I(F (Y)))) (6)

4 Experiments

4.1 Implementation Details

We conduct experiments on the challenging YouTube Faces Database [21]. The
YouTube Faces Database contains 3,425 videos of 1,595 subjects. The videos are
captured in different scenes with different illuminance. The faces are of various
poses and expressions. We utilize the extracted face region videos of the first 1000
people for training, and the 3rd frame (the centering frame of the first 5 frames)
of the first video of the last 95 people for testing. 181760 face images are used for
training. We use Bicubic to resize all faces to a size of 80×80. Then we also apply
Bicubic to downsample these 80× 80 images with a scale factor of 4 to generate
LR images. We conduct experiments on the Y channel in the YCbCr color space.
The visual quality of the super-resolved images, which we mainly focus on, are
inspected. Peak pixel-to-noise ratio (PSNR) and structural similarity (SSIM) [19]
are utilized as the objective evaluations. 8 pixels on each border are eliminated
when conducting the objective evaluations. We compare our method with the
bicubic interpolation (Bicubic) and state-of-the-art general single image based
SR methods very deep SR (VDSR) [8], denoising convolutional neural networks
(DnCNN) [26] and very deep Residual Encoder-Decoder Network (RED-Net)
[14], and general multi-frame based method MCResNet [10]. For VDSR, RED-
Net and MCResNet, we stack 20, 30 and 20 layers respectively to achieve their
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best performance. All CNN based methods except for DnCNN [26] are trained
on the same training dataset as ours for fair comparison using the Caffe platform
[4] on a Linux workstation with an Intel i7-6700K CPU of 4.0 GHz, a Nvidia
Titan X GPU and 64 GB memory. We also compare our method with face
SR methods Ma’s [13], structured face hallucination (SFH) [22] and Locality-
constrained Representation (LcR) [5]. Since SFH is unable to detect faces on
20 × 20 low-resolution images, it provides no SR results.

In our generator net, T is 2, N is 10, M is 15. The first convolutional layer is
of 64 feature maps for each frame. For layer 10 and layer 15, only 1 feature map
is employed. The feature map size of the intermediate layers are 32. We also test
our method with different configurations including MSE loss based (M), MSE
loss and plain perceptual loss based (MP), MSE loss and plain adversarial loss
based (MA), MCResNet with MSE loss and identity adversarial loss (MCRN-
MI) and MSE and identity adversarial loss based (Ours-MI). For M, we employ
the generator net in Fig. 2 with MSE loss. For MP, MSE loss between the SR
and the HR images, and MSE loss between the SR and HR identity feature maps
are computed in the structure of Fig. 1(b). For MA, we employ the framework in
Fig. 1(c) as in plain GAN based SR methods. For Ous-MI we employ our identity
guided GANs shown in Fig. 1(a). We use the MCResNet as the generator net for
MCRN-MI. The other settings of MCRN-MI are the same as Ours-MI.

4.2 Results and Analysis

In Table 1, we show that MCResNet obtains the highest PSNR and SSIM values
when trained with MSE loss only, better than our two-stage generator net which
uses less filters. We also find that although our method trained with MSE loss
gets slightly lower PSNR and SSIM values than MCResNet, it is more powerful
to restore fine facial details when trained with both MSE loss and adversarial
loss. In Table 2 we evaluate our method with different configurations objectively.
MP, MA, MCRN-MI and Ours-MI get lower PSNR and SSIM values than M,
but they achieve better visual quality. We find that for visual quality, Ours-
MI outperforms Ma’s, LcR, MP, MA and MCRN-MI. In Figs. 3, 4, 5, 6, 7, 8
and 9, we provide some of the face SR results. The results of MSE loss based
methods VDSR, DnCNN, RED-Net, MCResNet, and M are over-smoothed.

Table 1. Objective evaluations of our generator net with MSE loss and other methods

Metric Bicubic VDSR [8] DnCNN [26] RED-Net [14]

PSNR 30.97 33.28 32.73 32.65

SSIM 0.8444 0.8989 0.8873 0.8868

Running time 0.001 s 0.101 s 0.004 s 0.161 s

Metric MCResNet [10] Ma [13] LcR [5] M

PSNR 34.67 23.08 27.86 34.50

SSIM 0.9241 0.5386 0.7425 0.9217

Running time 1.030 s 0.043 s 0.147 s 1.005 s
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Table 2. Objective evaluations of our method with different configurations

Metric M MP MA MCRN-MI Ours-MI

PSNR 34.50 33.14 33.18 32.90 32.81

SSIM 0.9217 0.9088 0.9083 0.8966 0.8968

Running time 1.005 s 1.007 s 1.000 s 1.017 s 0.997 s

(a) Original (b) Bicubic (c) VDSR (d) DnCNN (e) RED-Net

(f) Ma’s (g) LcR (h) MCResNet (i) M (j) MP

(k) MA (l) MCRN-MI (m) Ours-MI

Fig. 3. SR results for person 1.

The results of Ma’s [13] and LcR [5] are of plenty of visual artifacts since they rely
on careful face alignment. The results of MP is slightly sharper than M, but looks
brighter than the original image. MA can super-resolve sharp edges but is still
unable to restore fine facial details especially on eyes and noses. MCRN-MI may
generate fine details, but is of lower quality than Ours-MI. Meanwhile, results
of MCRN-MI may contain too much noise. It is hard for MCResNet to restore
fine details in our framework since it employs only one stage and loses important
facial information in the deep convolutional layers. Our two-stage generator net
uses two skip-layer connections to better preserve low-frequency details. We can
see that our MI super-resolves fine facial components such as eyes, noses and
mouths. Our identity guided GAN based method is robust to pose, expression
and illuminance changes. The computational cost of each methods are shown in
Tables 1 and 2. For Bicubic, Ma’s and LcR, only an Intel i7-6700K CPU is used.
Other methods are tested with an Intel i7-6700K CPU and a Nvidia Titan X
GPU. The running time of our method is about 1 s for super-resolving one facial
image, which is acceptable in real applications.
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(a) Original (b) Bicubic (c) VDSR (d) DnCNN (e) RED-Net

(f) MCResNet (g) Ma’s (h) LcR (i) M (j) MP

(k) MA (l) MCRN-MI (m) Ours-MI

Fig. 4. SR results for person 3.

(a) Original (b) Bicubic (c) VDSR (d) DnCNN (e) RED-Net

(f) MCResNet (g) Ma’s (h) LcR (i) M (j) MP

(k) MA (l) MCRN-MI (m) Ours-MI

Fig. 5. SR results for person 10.
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(a) Original (b) Bicubic (c) VDSR (d) DnCNN (e) RED-Net

(f) MCResNet (g) Ma’s (h) LcR (i) M (j) MP

(k) MA (l) MCRN-MI (m) Ours-MI

Fig. 6. SR results for person 13.

(a) Original (b) Bicubic (c) VDSR (d) DnCNN (e) RED-Net

(f) MCResNet (g) Ma’s (h) LcR (i) M (j) MP

(k) MA (l) MCRN-MI (m) Ours-MI

Fig. 7. SR results for person 36.
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(a) Original (b) Bicubic (c) VDSR (d) DnCNN (e) RED-Net

(f) MCResNet (g) Ma’s (h) LcR (i) M (j) MP

(k) MA (l) MCRN-MI (m) Ours-MI

Fig. 8. SR results for person 65.

(a) Original (b) Bicubic (c) VDSR (d) DnCNN (e) RED-Net

(f) MCResNet (g) Ma’s (h) LcR (i) M (j) MP

(k) MA (l) MCRN-MI (m) Ours-MI

Fig. 9. SR results for person 90.
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5 Conclusion

In this paper, we have proposed an identity guided GAN framework for face
video SR. The proposed two-stage CNN generator net and the employment of
the identity guidance for GANs facilitate the restoration of fine facial compo-
nents. Extensive experiments have demonstrated the high fidelity and superior
visual quality of our SR results. Our method is robust to pose, expression and
illuminance variations. Our future work is combining face video SR with face
video recognition in a joint manner.
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