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Abstract. Haze removal is important for the normal work of computer
vision system. However, most of the existing image dehazing methods
are aimed at daytime haze images. These methods cannot always work
well for night haze images since the spatially non-uniform environmen-
tal illumination are present at nighttime scenes that can generate glow.
This makes nighttime haze removal from single image is an ill-posed
problem with challenges. In this paper, we propose a novel algorithm for
single nighttime image haze removal. We first remove the glow effects
by decomposing the glow image from the nighttime haze image based
on a nighttime haze imaging model which can account for spatially non-
uniform environmental illumination and the glow effects in the image.
Then, we estimate the atmospheric light by combining multiple patch
sizes local atmospheric light using multiscale fusion algorithm. Transmis-
sion is estimated by maximizing the objective function which is designed
by considering the image contrast and color distortion. Finally, haze is
removed using the two estimated parameters. Experimental results show
that the proposed algorithm can achieve haze-free results while removing
the glow effects.
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1 Introduction

The quality of images of outdoor scenes are usually degraded by adverse weather
conditions like fog and haze. The degraded images often have low contrast and
glow effects, which affect the normal performance of many computer vision sys-
tems since most of them assume that the input image is the haze-free scene
radiance. Therefore, the effective haze removal of image is a work with great
significance.

Many existing image dehazing algorithms are designed for daytime haze
removal [1–4]. Almost all of these methods rely on the atmospheric scatter-
ing model [5] and the estimation of the parameters in the model. Based on this
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model, Tan [1] proposed an image dehazing method by maximizing local image
contrast. Fattal [2] estimated medium transmission using statistical indepen-
dence between shading and albedo. He [3] restored a hazy image using the Dark
Channel Prior which was derived from statistics of daytime haze-free images.
Even though these methods are effective for daytime haze images, they show
great defects under the nighttime hazy scenes. This is mainly due to the spa-
tially non-uniform environmental illumination are present at nighttime scenes
that can generate glow.

Recently, there have been some methods for nighttime haze removal [6–9]. Pei
et al. [6] propose a color transfer method as a preprocessing step to transform the
brightness and color of a nighttime haze image into a daytime haze image. Then
the Dark Channel Prior method is used to estimate the transmission as well as
bilateral filtering is applied as a post-processing step. Zhang et al. [7] proposed
a new model to account for various non-uniform environmental illumination and
removed the haze after light compensation and color correction. Ancuti et al.
[8] proposed a nighttime haze removal algorithm based on image fusion. They
estimated the atmospheric light component on image patch rather on the entire
image by generating two inputs using multiple patch sizes and the Laplacian of
the original image is defined to be the third input to reduce the glowing effect.

The above methods are effective for haze removal and reduce the effects of
glow, but they do not really remove the glow since the models they adopted do
not account for glow effects. Li et al. [9] modelled the glow effects by adding
the atmospheric point spread function into the daytime haze imaging model.
He decomposed the glow image from the original input image and restored the
scene radiance using Dark Channel Prior. Although Li’s method removed haze
and glow effects, the resultant images may contain noise and blocking artifacts. In
our work, we propose a novel method to solve these problems. First, we adopt Li’s
method to decompose the glow image. Then we estimate the atmospheric light
using image fusion approach. Finally, transmission is estimated by maximizing
the improved entropy.

The rest of paper is organized as follows. Section 2 introduces the nighttime
imaging model. Section 3 describes the proposed approach. Section 4 provides
the experimental results and comparisons with conventional works and the work
is concluded in Sect. 5.

2 Nighttime Haze Imaging Model

In computer vision and computer graphics, the daytime haze imaging model
which widely used in many image de-haze approaches is called the atmospheric
scattering model [5]. Figure 1(a) shows a diagram of the daytime haze imaging
model. The pixel intensity in the captured image is a linear combination of two
parts: the direct transmission part and the airlight part. Mathematically, it can
be expressed as:

I (x) = J (x) t (x) + A(1 − t(x)), (1)
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where I (x ) is the observed intensity at pixel x, J (x ) is the scene radiance when
there is no haze or fog particles. A is the global atmospheric light, and t(x ) is
the medium transmission describing the portion of the light that is not scattered
and reaches the camera. J (x )t(x ) is called direct transmission, and A(1 − t(x ))
is called atmospheric light. For a haze image I (x ), the goal of haze removal is to
recover J (x ) from I (x ).

Fig. 1. Nighttime haze imaging model.

In the daytime imaging model, it assumes that the atmospheric light intensity
is global constant. Nevertheless, nighttime scenes generally have active light
sources that can generate glow when the presence of particles in the atmosphere
is substantial. To express the active light sources and glow under the nighttime
scenes, Li et al. [9] proposed a novel model for nighttime haze imaging by adding
a glow model with an atmospheric point spread function (APSF ) [10] into the
daytime haze imaging model as follows [11]:

I (x) = J (x) t (x) + A (x) (1 − t (x)) + Aa (x) ∗ APSF, (2)

where A(x ) is the atmospheric light which is no longer globally uniform, but
space varying. Aa is the active light sources, that the intensity is convolved with
APSF. J (x )t(x ) +A(x )(1 − t(x )) is called the nighttime haze image, Aa ∗APSF
is the glow image. Figure 1(b) shows diagram of the nighttime haze model. The
active light sources is scattered as it travels through the suspended particles
(haze and fog), resulting the glowing effects in the captured image. Given a
nighttime haze image I (x ), the goal is to restore the scene radiance J (x ) by
decomposing glow from I (x ) and estimating both the transmission t(x ) and the
varying atmospheric light A(x ).

3 Nighttime Haze Removal

Our basic pipeline is illustrated in Fig. 2. It starts by decomposing the original
input image into two images: nighttime haze image and glow image, as shown
in Fig. 2(b), (c). Then, we estimate the atmospheric light by combining mul-
tiple patch sizes local atmospheric light using multiscale fusion algorithm as
shown in Fig. 2(j). Transmission is estimated using the nighttime haze image
and atmospheric light that has been estimated as shown in Fig. 2(k). Finally,
the two estimated parameters are used to restore the scene radiance as shown
in Fig. 2(l). In the following, the details of each step are discussed.
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Fig. 2. The framework of the proposed method. (a) Original input image. (b) Night-
time haze image. (c) Glow image. (d) Local atmospheric light with size 10 × 10. (e)
Local atmospheric light with size 30 × 30. (f), (g) Refined results of (d), (e). (h),
(i) Normalized weight maps of (f), (g). (j) Fusion atmospheric light. (k) Estimated
transmission. (l) Output image.

3.1 Glow Decomposition

In the nighttime scenes, the brightness of the glow decreases gradually and
smoothly away from the light sources due to the multiple scattering, it causes
that the glow image has a “short tail” distribution in the gradient histogram [11].
Based on this fact, Li et al. proposed the glow decomposition method [11] by
layer separation using relative smoothness. In this paper, we adopt Li’s approach
[9] to decompose the glow image from original input. The objective function for
layer separation is defined as:

E (R) =
∑

x

(
ρ (R (x) ∗ f1,2) + λ((I (x) − R (x)) ∗ f3)

2
)

s.t. 0 ≤ R (x) ≤ I (x),∑
x Rr (x) =

∑
x Rg (x) =

∑
x Rb (x).

(3)

where R(x ) = J (x )t(x ) +A(x )(1−t(x )) is the nighttime haze image, f 1,2 is the
two direction first order derivative filters, f 3 is the second order Laplacian filter
and the operator ∗ denotes convolution. ρ(s) = min(s2,τ) is a robust function
which preserve the large gradients of input image I in the remaining nighttime
haze layer R(x ). λ is the parameter that controls the smoothness of the glow
layer. The first inequality constraint is to ensure the solution is in a proper
range, and the second constraint is to force the range of the intensity values for
difference color channels to be balanced. The objective function in Eq. (3) can
be solved efficiently using the half-quadratic splitting technique [11].

3.2 Atmospheric Light Estimation

After glow decomposition, we get the nighttime haze image. To obtain the haze-
free scene radiance, we still need to estimate the atmospheric light and trans-
mission. In a previous work [9], Li assumed that atmospheric light is locally
constant and the brightest intensity in a local area is the atmospheric light of
that area. He split the original input image into a grid of small patches (15 × 15)
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and found the brightest pixel in each area as atmospheric light. However, Li’s
estimation of the varying atmospheric light is admittedly a rough approximation
that suffers from two weaknesses. First, there may be of the boosting noise and
blocking artifacts in the de-hazed results as shown by the sky region of Fig. 3(b).
Second, it is very hard to select the size of the patches, since small patches are
desirable to achieve fine spatial adaptation to the atmospheric light, but might
also induce poor light estimates and reduced chance of capturing hazy pixels. By
choosing a too large patch size, the haze is better removed, but the color might
be shifted, the influence of the airlight might not be entirely removed and some
details may remain poorly restored [8].

Fig. 3. Dehazed results using different atmospheric light estimation methods.

To circumvent this problem, we employ a multiscale fusion approach to esti-
mate the atmospheric light [8]. We assume that the atmospheric light is locally
constant and define the local atmospheric light intensity to be:

Ac (x) = max
y∈ψ(x)

[
minz∈Ω(y)(Ic(z))

]
= max

y∈ψ(x)
[Ic

MIN (z)], (4)

where I is the observed intensity, A is the local atmospheric, c ∈ {r, g, b} is the
color channel index, and ψ, Ω are local patches. In this paper, all results have
been generated using patches ψ twice the size of Ω.

Our fusion process approach is implemented in three main steps. First, based
on the formula for estimating atmospheric light, we derive the two inputs of the
fusion approach by using different sizes of the patches to estimate atmospheric
light. As shown in Fig. 2(d), (e), for an original input image of size 500 × 300, we
take the patch size 10 × 10 and 30 × 30, respectively. We then apply the guided
image filter [12] as a post-process, the atmospheric light after refined is shown
in Fig. 2(f), (g). In the second step, we calculate the corresponding normalized
weight maps according to the contrast and saturation of the two inputs as shown
in Fig. 2(h), (i). Finally, the derived inputs and the normalized weight maps are
blended by means of multi-resolution fusion algorithm using a Laplacian pyramid
decomposition of the inputs and a Gaussian pyramid of the normalized weights.
By using these maps, we can get the fused atmospheric light as shown in Fig. 2(j).
Figure 3 compares the final results of using the Li’s method [9] and our proposed
method, our result have a good visual effect without blocking artifacts at the
sky region.
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3.3 Transmission Estimation

As written in (2), once we estimate the Atmospheric light, the scene radiance
depends on the transmission. In previous methods, transmission was estimated
by using the Dark Channel Prior [3] even though they used different imaging
models. As we all know, the Dark Channel Prior is a statistical result based on
the observation on a great deal of daytime outdoor haze-free images. When it
is applied to nighttime scenes, this assumption may fail and lead to inaccurate
estimation of transmission.

Note that the entropy of haze-free image is bigger than that of hazy image at
same scene, Park et al. [13] proposed a novel method to estimate transmission
by maximizing the image entropy at non-overlapped sub-block regions without
using any prior knowledge. The objective function he proposed is comprised of
two functions. The first one is the image entropy f entropy as a contrast measure,
which has been proven can be used to characterize texture of an image [14,15].
An image entropy can be expressed by the function of transmission t as follows:

fentropy (t) = −
255∑

i=0

hi (t)
N

log
hi (t)
N

, (5)

where N is the number of pixels in the image, hi(t) is the number of pixels that
have intensity i in the gray-scaled image of scene radiance J calculated from
(2), when the transmission is set to t. However, the de-hazed image may take
values smaller than 0 or larger than 255 when transmission t is too small. There-
fore, the second objective functions is designed to restrict excessive overflow and
underflow as follows:

ffidelity (t) = min
c∈{r,g,b}

sc (t), (6)

sc (t) =
1
N

N∑

p=1

δ (p), δ (p) =
{

1, 0 ≤ Jc (p) ≤ 255
0, otherwise

(7)

where, sc(t) expresses the ratio of pixels between 0 and 255 at each color channel
of the de-hazed image J when the transmission is set to t. Note that as the
number of overflow and underflow pixels becomes fewer, f fidelity(t) becomes
larger. The final objective function is defined as:

fobjective (t) = fentropy (t) · ffidelity (t), (8)

by maximizing the objective function in (8), the transmission t can be estimated
from the daytime haze image. However, as shown in Fig. 4(b), maximizing this
objective function of nighttime haze image may cause color distortion since the
contrast has been over enhanced. In order to solve this problem, we introduce
the third objective functions f hue(t) to indicate the color distortion before and
after haze removal. It can be defined as:

fhue (t) =
hJ (t) − hR (t)

N
, (9)



Nighttime Haze Removal 329

Fig. 4. Dehazed results using transmission estimated by different objective functions.

h (t) = arctan
(

O2x (t)
O1x (t)

)

, (10)

{
O1x (t) = Rx(t)−Gx(t)√

2

O2x (t) = Rx(t)+Gx(t)−2Bx(x)√
6

, (11)

where N is the number of pixels in the image, O1x(t) and O2x(t) are the two com-
ponent of the opponent color space, h(t) is corresponding to the hue of an image,
hJ(t) and hR(t) are the hue of scene radiance and nighttime haze image, respec-
tively, when the transmission is set to t. In theory, hJ(t) and hR(t) are equal
[16]. However, the existing haze removal algorithms are difficult to achieve the
desired effect, resulting the value of hJ(t) and hR(t) are usually biased. There-
fore, the color distortion after haze removal can be measured by calculating the
degree of variation of f hue(t). Note that as the image has less color distortion
after haze removal, f hue(t) becomes smaller. In other words, we can reduce the
color distortion effectively by minimizing the proposed color distortion measure.
Consequently, the improved objective function we propose is defined as:

fobjective (t) =
fentropy (t) · ffidelity (t)

max(fhue (t) , 0.01)
, (12)

the minimum f hue(t) value is set by 0.01 to prevent division by zero. The objec-
tive function we proposed can well satisfy two quotas of contrast and color
distortion. By maximizing the objective function in (12), we can estimate the
transmission which provides good contrast and faithful dehazing results without
distortions as shown in Fig. 4(c).

However, since the values of the transmission in outdoor hazy image is non-
homogeneous and space-varying [17], local optimal transmission is estimated at
each of the non-overlapped sub-block regions as follows:

tblock
k = arg max

t∈{0.01≤t≤1}
fobjective (t), (13)
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where tblock
k is the k -th sub-block which is divided by pre-specified block size from

a hazy image, the minimum t value is set by 0.01 to prevent division by zero. The
size of the block has an important impact on the estimation of the t. If we choose
a larger block, transmission may have different values in this region. Conversely,
if the block we choose is too small, the estimated transmission may be inaccurate
due to the insufficient number of pixels. We set a medium block size to 15 × 15
in this paper. We find the optimal solution by exhaustive searching of t with
0.01 step size within the range of 0.01 to 1.0, which achieves high computational
efficiency than traditional optimization algorithms.

Since the transmission from (13) is estimated by non-overlapped local region,
halo effect and block artifact may occur. We chose the guided filter [12] to
alleviate those artifacts. Figure 2(k) shows the refined transmission map.

Fig. 5. The comparison of the proposed method with conventional methods.

4 Experimental Results

To demonstrate the effectiveness of the proposed algorithm, we evaluated our
method compared our method with conventional methods [6,7,9]. Figure 5 shows
the comparison of the proposed method with Pei’s work [6], Zhang’s work [7]
and Li’s work [9]. As can be seen from Fig. 5, Pei’s method and Zhang’s method
can remove haze effectively, but there are color distortion, and glow effects are
still visible since their model did not account for glow effects. Although Li’s
method removes the glow effects effectively, there are blocking artifacts at the
sky area as well as areas with low brightness values look unnatural. The method
we proposed can remove the glow effects effectively while provide better visual
effect overall as shown in Fig. 5(e).

We also compared performance of the proposed method with other con-
ventional methods [3,6,9] whose results are shown in Fig. 6 in terms of image
entropy [15], structural similarity index (SSIM) [18] and peak signal to noise
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Fig. 6. The comparison of the proposed method with other conventional methods.

ratio (PSNR) [19]. Image entropy is a measure of image contrast that can be
used to characterize texture of an image. High entropy means that the image can
present more detail and texture features. SSIM index can measure the structural
similarity of the dehazed image to the original image. Table 1 shows the quanti-
tative results in Fig. 6. From the statistical data in Table 1, we can see that the
entropy and PSNR of our result improves obviously with the SSIM is very close
to the others. The comparison results show that our result can provide more
detailed texture features while maintaining high structural similarity.

Table 1. Quantitative measurements of results in Fig. 6.

Index He Pei Li Our

Entropy 17.6432 18.1718 20.7183 21.8546

SSIM 0.9991 0.9984 0.9993 0.9992

PSNR 28.3678 25.6779 28.8196 29.7488

5 Conclusion

In this paper, we propose an efficient algorithm for nighttime dehazing. We
exploit a new nighttime haze imaging model which takes into account both the
non-uniform illumination from artificial light sources and the scattering and
attenuation effects of haze. Based on the new model, we first decompose the
glow image from the nighttime haze image. Then, we estimate two parameters,
the atmospheric light and transmission. Finally, scene radiance is restored using
the two estimated parameters. Experimental results on nighttime hazy images
show that the proposed algorithm can successfully enhance image visibility while
provides a good visual effect.
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