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Abstract. In this paper, we first model visual data as a tensor and
then impose both low-rank and total-variation constraint to complete
the tensor. More specifically, we adopt a novel tensor-tensor production
framework (also known as t-product) and its theory of low-rank based
completion. By using the concept of t-product, it is the first time that
we extend classic Total-Variation (TV) to a t-product and l1,1,2 norm
based constraint on the gradient of visual data. After proposing our
model, we derive a iterative solver based on alternating direction method
of multipliers (ADMM). We show the effectiveness of our method and
compare our method with state-of-art algorithms in the experimental
section.
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1 Introduction

Recent years has witnessed the development of acquisition techniques, and the
visual data tends to contain more and more information and thus should be
treated as a complex high-dimensional data, i.e. tensors. For example, a hyper-
spectral image or multispectral image can be represented as a third-order tensor
since the spatial information has two dimensions and the spectral information
takes one dimension. Using a tensor to model visual data can handle the com-
plex structure better and has become a hot topic in computer vision community
recently, for instance, face recognition [15], color image and video in-painting [7],
hyperspectral image processing [16,17], gait recognition [12].

Visual data may have missing values in the acquisition process due to mechan-
ical failure or man-induced factors. If we process the multi-way array data as a
tensor instead of splitting it into matrices, estimating missing values for visual
data is also known as tensor completion problem. Motivated by the successful
achievements of low-rank matrix completion methods [8,10], many tensor com-
pletion problems could also be solved through imposing low-rank constraint.
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Decomposition and subspace methods has been widely studied [13,14] and a
common way to impose low-rank constraint is to decompose tensors and get
its factors first, then by limiting the sizes of factors we attain low-rank prop-
erty. CP decomposition and Tucker decomposition are two classic decomposition
methods to compute the factors of a tensor [5]. However, both the two methods
mentioned above have crucial parameters that are supposed to be determined by
users. In this paper, we adopt a novel tensor-tensor product framework [1], and a
singular value decomposition formula for tensors [3,4], which is parameter-free.
The rencently proposed singular value decomposition formula for tensors is also
referred to as t-SVD, and t-SVD has been proved effective by many influential
papers [18].

When trying to restore degraded visual data, it is reasonable to utilize the
local smoothness property of visual data as prior knowledge or regularization.
A common constraint is Total-Variation (TV) norm, which is computed as the
l1 of the gradient magnitude, and this norm has been qualified to be effective
to preserve edges and piecewise structures. If we take the low-rank assumption
as a global constraint and TV norm as a local prior, then it is natural to com-
bine this two constraints together to estimate missing values in visual data. So
more recently, some related methods that take tensor and TV into considera-
tion are proposed [2,6,11]. [2] aims to design a norm that considers both the
inhomogeneity and the multi-directionality of responses to derivative-like filters.
[11] proposes an image super-resolution method that integrates both low-rank
matrix completion and TV regularization. [6] proposes integrating TV into low-
rank tensor completion, but their methods use the same rank definition as [7] or
Tucker decomposition, and as mentioned before, the parameters are hard to deal
with. Moreover, TV is l1 norm on matrix but we are processing visual tensors,
so we need to extend TV to tensor cases. Also, we employ a new tensor norm
namely l1,1,2 which stems from multi-task learning [9].

In this paper, we seek to design a parameter-free method for low-rank based
completion procedure, which means parameters only exist in TV regularization.
To achieve this goal, simply using t-SVD framework is not enough, since t-SVD is
based on t-product and a free module so we need to reinvent TV with t-product
system. Our main contributions are as follows:

1. Using the concept of t-product, we design difference tensors A and B that
when multiplied by a visual tensor X takes the gradient of X , i.e. ∇X .

2. Motivated by l1,1,2 norm which is originally designed to model sparse noise
in visual data [18], we use l1,1,2 norm to ensure sparsity of the gradient mag-
nitude, then traditional TV is extended to tensor cases.

2 Notations and Preliminaries

In this section, we introduce some notations of tensor algebra and give the basic
definitions used in the rest of the paper.

Scalars are denoted by lowercase letters, e.g., a. Vectors are denoted by bold-
face lowercase letters, e.g., a. Matrices are denoted by capital letters, e.g., A.
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Higher-order tensors are denoted by boldface Euler script letters, e.g., A. For a
third-order tensor A ∈ R

r×s×t, the ith frontal slice is denoted Ai. In terms of
MATLAB indexing notation, we have Ai = A(:, :, i).

The definition of new tensor multiplication strategy [1] begins with converting
A ∈ R

r×s×t into a block circulant matrix. Then

bcirc(A) =

⎛
⎜⎜⎜⎜⎜⎝

A1 An An−1 · · · A2

A2 A1 An · · · A3

A3 A2 A1 · · · A4

...
...

...
. . .

...
An An−1 An−2 · · · A1

⎞
⎟⎟⎟⎟⎟⎠

is a block circulant matrix of size rt × st. And the unfold command rearrange
the frontal slices of A:

unfold(A) =

⎛
⎜⎜⎜⎝

A1

A2

...
An

⎞
⎟⎟⎟⎠ , fold(unfold(A)) = A

Then we have the following new definition of tensor-tensor multiplication.

Definition 1 (t-product). Let A ∈ R
r×s×t and B ∈ R

s×p×t. Then the
t-product A ∗ B is a r × p × t tensor

A ∗ B = fold(bcirc(A) · unfold(B)) (1)

An important property of the block circulant matrix is the observation that
a block circulant matrix can be block diagonalized in the Fourier domain [3].
Before moving on to the definition of t-SVD, we need some more definitions
from [4].

Definition 2 (Tensor Transpose). Let A ∈ R
r×s×t, then AT ∈ R

s×r×t and

AT = fold([A1, An, An−1, · · · , A2]T )

Definition 3 (Identity Tensor). The identity tensor I ∈ R
m×m×n is the ten-

sor whose first frontal slice is the m×m identity matrix, and whose other frontal
slices are all zeros.

Definition 4 (Orthogonal Tensor). A tensor Q ∈ R
m×m×n is orthogonal if

QT ∗ Q = Q ∗ QT = I.

Definition 5 (f-diagonal Tensor). A tensor is called f-diagonal if each of its
frontal slices is a diagonal matrix.

Definition 6 (Inverse Tensor). A tensor A ∈ R
m×m×n has an inverse tensor

B if
A ∗ B = I and B ∗ A = I
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Using these new definitions, we are able to derive a new decomposition method
named t-SVD and an approximation theorem on this decomposition.

Theorem 1 (t-SVD). Let A ∈ R
r×s×t, then the t-SVD of A is

A = U ∗ S ∗ VT (2)

where U ∈ R
r×r×t, V ∈ R

s×s×t are orthogonal and S ∈ R
r×s×t is f-diagonal.

By using the idea of computing in the Fourier domain, we can efficiently
compute the t-SVD factorization, and for more details see [3,4]. Then nuclear
norm for A is defined as ‖A‖∗ =

∑t
j=1

∑min(r,s)
i=1 |Ŝ(i, i, k)|, where Ŝ is the result

of taking the Fourier transform along the third dimension of S.

3 Proposed t-SVD-TV

In this section, we will first give the details of our model, and then derive a solver
with alternating direction method of multipliers (ADMM). Since we combine
t-SVD and TV together, we name our method as t-SVD-TV.

3.1 Low-Rank Regularization

Before discussing low-rank model, we need some notations for our problem first.
Suppose there is a tensor M ∈ R

n1×n2×n3 representing some visual data with
missing entries, and we use Ω indicating the set of indices of observations, X
denoting the desired recovery result, then we have

PΩ(X ) = PΩ(M)

where PΩ() is the projector onto the known indices Ω. So we have the following
vanila model [18]:

min
X

‖X‖∗

s.t. PΩ(X ) = PΩ(M)
(3)

Our method takes both low-rank and TV into consideration, which means we
also have terms to ensure sparsity on gradient field. We use Ψ(·) as a function
promoting sparsity, so our model is

min
X

‖X‖∗ + λ1Ψ

(
∂

∂x
X

)
+ λ2Ψ

(
∂

∂y
X

)

s.t. PΩ(X ) = PΩ(M)
(4)

where λ1, λ2 are tunable parameters. The forms of ∂
∂x

X , ∂
∂y

X and Ψ(·) are given
in the following texts.
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3.2 TV Regularization

When we need to compute the gradient matrix of a 2D image M , a common
way is to design a difference matrix A,B. If we assume vertical direction is
x and horizontal direction is y, then from AM we get ∂

∂x
M and from MB

we get ∂
∂y

M . And for a 3D data X we can derive similar means implemented
by t-product system. Without loss of generality, we assume X ∈ R

n×n×k. By
extending difference matrices to tensors, we define a difference tensor as follows:

A = fold

⎛
⎝

A
0
0

⎞
⎠ and B = fold

⎛
⎝

B
0
0

⎞
⎠

where A and B are n × n difference matrix:

A =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 2 0 · · · 0 0
−1 0 1 · · · 0 0
0 −1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · −2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and B =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 −1 0 · · · 0 0
2 0 −1 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 −2
0 0 0 · · · 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

For a visual tensor X , we get its gradient tensor by multiplying with A,B
∂

∂x
X = A ∗ X ,

∂

∂y
X = X ∗ B (5)

Note that A∗X ,X ∗B are third order tensors which have the same size as X . In
order to promote sparsity of the gradient, we use the l1,1,2 norm for 3D tensors
as penalty function Ψ(·). l1,1,2 norm is introduced in [18] to model the sparse
noise, and for a third order tensor G, ‖G‖1,1,2 is defined as

∑
i,j ‖G(i, j, :)‖F .

Then our optimization problem (4) becomes

min
X

‖X‖∗ + λ1‖A ∗ X‖1,1,2 + λ2‖X ∗ B‖1,1,2

s.t. PΩ(X ) = PΩ(M)
(6)

The terms in (6) are interdependent, so we adopt a widely used splitting scheme
which is known as ADMM.

3.3 Optimization by ADMM

The first step of applying ADMM is introducing auxiliary variables. Specifically,
let S,Y,Z1,Z2 have the same size as X , then our optimization problem (6)
becomes

min
X

‖S‖∗ + λ1‖Y1‖1,1,2 + λ2‖Y2‖1,1,2

s.t. Y1 = A ∗ Z1,Y2 = Z2 ∗ B
S = X ,Z1 = X ,Z2 = X ,

PΩ(X ) = PΩ(M)

(7)
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So the augmented Lagrangian is

L = ‖S‖∗ +
ρ1
2

∥∥∥∥S − X +
U
ρ1

∥∥∥∥
2

F

+ λ1‖Y1‖1,1,2 +
ρ2
2

∥∥∥∥Y1 − A ∗ Z1 +
V1

ρ2

∥∥∥∥
2

F

+ λ2‖Y2‖1,1,2 +
ρ3
2

∥∥∥∥Y2 − Z2 ∗ B +
V2

ρ3

∥∥∥∥
2

F

+
ρ4
2

∥∥∥∥Z1 − X +
W1

ρ4

∥∥∥∥
2

F

+
ρ5
2

∥∥∥∥Z2 − X +
W2

ρ5

∥∥∥∥
2

F

s.t. PΩ(X ) = PΩ(M)

(8)

where tensors U ,V1,V2,W1,W2 are Lagrange multipliers and ρi(i = 1, ..., 5) are
positive numbers. We solve (8) by alternatively minimize each variable, so (8)
are turned into several subproblems:

Computing S. The subproblem for minimize S is

Sk+1 = arg min
S

‖S‖∗ +
ρ1
2

∥∥∥∥S − X k +
Uk

ρ1

∥∥∥∥
2

F

(9)

Note that (9) can be solved by the singular value thresholding method in [18],
so

Sk+1 := arg min
S

‖S‖∗ +
ρ1
2

∥∥∥∥S − X k +
Uk

ρ1

∥∥∥∥
2

F

(10)

Computing Y1 and Y2. The subproblem for minimize Y1 is

Yk+1
1 = arg min

Y1

λ1‖Y1‖1,1,2 +
ρ2
2

∥∥∥∥Y1 − A ∗ Zk
1 +

Vk
1

ρ2

∥∥∥∥
2

F

(11)

The closed form solution to (11) is given by

Yk+1
1 :=

(
1 − λ1

ρ2

∥∥∥∥A ∗ Zk
1 +

Vk
1

ρ2

∥∥∥∥
−1

F

)

+

(
A ∗ Zk

1 +
Vk
1

ρ2

)
(12)

where (x)+ = max(x, 0). Updating strategy for Y2 is similar to Y1, so

Yk+1
2 :=

(
1 − λ2

ρ3

∥∥∥∥A ∗ Zk
1 +

Vk
1

ρ3

∥∥∥∥
−1

F

)

+

(
Zk

2 ∗ B +
Vk
2

ρ3

)
(13)
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Input: an incomplete tensor M, index of known entries Ω, iterarion number N ,
parameters λ1, λ2 and ρi(i = 1, ..., 5)

Output: a tensor X after completion
1 Set PΩ(X ) = PΩ(M), PΩ̄(X ) = 0, randomly initialize S, Y1, Y2, Z1, Z2;
2 for n = 1 to N do
3 Update S by singular value thresholding [18];
4 Update Y1, Y2 by Eq.(12) and Eq.(13) respectively;
5 Update Z1, Z2 by Eq.(15) and Eq.(16) respectively;
6 Update X by Eq.(18);
7 Update multipliers by

Uk+1 := Uk + ρ1(
k − X k)

Vk+1
1 := Vk

1 + ρ2

(
Yk − A ∗ Zk

1

)

Vk+1
2 := Vk

2 + ρ3

(
Yk − Zk

2 ∗ B
)

Wk+1
1 := Wk

1 + ρ4(Zk
1 − X k)

Wk+1
2 := Wk

2 + ρ5(Zk
2 − X k)

8 end
9 Return X .

Algorithm 1. t-SVD-TV

Computing Z1 and Z2. The subproblem for minimize Z1 is

Zk+1
1 = arg min

Z1

ρ2
2

∥∥∥∥Yk
1 − A ∗ Z1 +

Vk
1

ρ2

∥∥∥∥
2

F

+
ρ4
2

∥∥∥∥Z1 − X +
Wk

1

ρ2

∥∥∥∥
2

F

(14)

Then Update Z1 and Z2 by

Zk+1
1 := (ρ4I + ρ2AT ∗ A)−1 ∗

(
ρ4I − Wk

1 + ρ2AT ∗ Yk
1 + AT ∗ Vk

1

)
(15)

Similarly, we have update rules for Z2:

Zk+1
2 :=

(
ρ5I − W2 + ρ3Yk

2 ∗ BT + Vk
2 ∗ BT

)
∗ (ρ5I + ρ3B ∗ BT )−1 (16)

Note that the calculation of inverse tensors in (15) and (16) are not hard, since
only the first front slices of ρ4I + ρ2AT ∗ A and ρ5I + ρ3B ∗ BT are non-zero.

Computing X . The subproblem for X is

X k+1 = arg min
X

ρ1
2

∥∥∥∥Sk − X +
Uk

ρ1

∥∥∥∥
2

F

+
ρ4
2

∥∥∥∥Zk
1 − X k +

Wk
1

ρ4

∥∥∥∥
2

F

+
ρ5
2

∥∥∥∥Zk
2 − X k +

Wk
2

ρ5

∥∥∥∥
2

F

(17)
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So update X by

PΩ̄(X ) :=
[

1
ρ1 + ρ4 + ρ5

(ρ1 k + Uk + ρ4Zk
1 + Wk

1 + ρ5Zk
2 + Wk

2 )
]

Ω̄

PΩ(X ) = PΩ(M)
(18)

Updating Multipliers

Uk+1 := Uk + ρ1( k − X k)

Vk+1
1 := Vk

1 + ρ2
(
Yk − A ∗ Zk

1

)

Vk+1
2 := Vk

2 + ρ3
(
Yk − Zk

2 ∗ B
)

Wk+1
1 := Wk

1 + ρ4(Zk
1 − X k)

Wk+1
2 := Wk

2 + ρ5(Zk
2 − X k)

(19)

With these update formulae, we conclude the solver in Algorithm 1.

4 Experiments

In this section, we evaluate our methods on eight benchmark RGB-color images
with different types of missing entries. The eight benchmark images are showed in
Fig. 1. Each image is 256 × 256 and has 3 color channels, so it is a 256× 256× 3
tensor. We compare our method (t-SVD-TV), with five state-of-art methods:
HaLRTC [7], FBCP [19], t-SVD [18], LRTC-TV-I and LRTC-TC-II [6]. Rela-
tive Square Error (RSE) and Peak Signal to Noise Ratio (PSNR) are used to

Fig. 1. RGB-color images used in our experiment. From left to right they are
(a) Airplane (b) Baboon (c) Barbara (d) Facade (e) House (f) Lena (g) Peppers
(h) Sailboat
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assess the recovery result, and if we denote true data as T , RSE and RSNR are
defined as

RSE =
‖X − T ‖F

‖T ‖F
(20)

PSNR = 10 log10
T 2
max

‖X − T ‖2F
(21)

where Tmax is the maximum value in T . Better recovery result will have a smaller
RSE and larger PSNR.

Parameter Settings. The key parameters in our methods are λ1 and λ2.
Since they are balancing the weights of vertical and horizontal gradient, and
in general vertical and horizontal gradient are of the same importance, so we
set λ1 = λ2. And by experience, we set λ1 = λ2 = 0.01 in our experiments.
Other parameters such as ρi(i = 1, ..., 5) are concerned with the convergence
property of the algorithm, and in our experiments we set ρ1 = ρ2 = 0.001,
ρ3 = ρ4 = ρ5 = 0.1.

Color Image Inpainting. We first compare our methods with the five state-of-
art methods under different missing rates. We use Baboon in Fig. 1 to illustrate
the different inpainting performances with random missing entries. As is shown in
Fig. 2, our method performs well for both low and high missing rates while others
have their limitations. For example, FBCP only performs well when missing rate
is high while results of LRTC-TV-I and LRTC-TV-II are not so good with such
a high missing rate.

Then we test our method with the eight images in Fig. 1 with 50% random
missing entries. The results is shown in Table 1, from which we can see that our
method outperforms others in most pictures and only the result on Peppers is
an exception.

Fig. 2. Result of recovering Baboon with random missing entries
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Table 1. Result of recovering different images with 50% missing entries

Airplane Baboon Barbara Facade House Lena Peppers Sailboat

PSNR Ours 31.1781 25.2686 31.5562 35.0539 33.4708 31.6148 29.4887 27.9553

FBCP 29.5188 24.0503 29.3032 29.7581 31.3138 30.6669 29.1078 27.0701

t-SVD 30.4749 24.8544 30.8871 34.5542 32.5710 30.8560 28.6451 27.3461

HaLRTC 30.2067 24.7912 29.7100 33.5470 32.0453 30.0387 29.2286 27.6037

LRTC-TV-I 29.7039 25.1704 30.3483 30.9438 32.6083 30.9768 30.9704 27.9658

LRTC-TV-II 29.6746 25.2043 29.8204 27.8308 32.4180 31.0287 31.2462 27.9656

RSE Ours 0.0392 0.1016 0.0554 0.0342 0.0363 0.0480 0.0680 0.0756

FBCP 0.0463 0.1166 0.0717 0.0630 0.0466 0.0528 0.0699 0.0819

t-SVD 0.0423 0.1064 0.0599 0.0363 0.0403 0.0523 0.0748 0.0805

HaLRTC 0.0440 0.1073 0.0685 0.0407 0.0430 0.0574 0.0703 0.0796

LRTC-TV-I 0.0463 0.1028 0.0635 0.0550 0.0404 0.0514 0.0573 0.0767

LRTC-TV-II 0.0463 0.1026 0.0675 0.0787 0.0417 0.0511 0.0559 0.0766

Fig. 3. Comparison of inpainting image Facade. The first line is random missing entries
with rate 30%. The second line is random missing pixels with rate 30%. The third line
is simulated scratches.

Finally, we present the visual effect of the inpainting algorithms in Fig. 3. The
first line is random missing entries with rate 30%. The second line is random
missing pixels with rate 30%. The third line is simulated scratches. And we
can see that our method performs well in local details while preserving global
structures.

5 Conclusions

In this paper, we aim to take both low-rank and total-variation constraint into
consideration to complete visual data with missing entries. We propose a novel
tensor named gradient tensor by using the t-product framework, then we fuse the
novel tensor framework and classic TV together and we verify the effectiveness
of our method by experiments. Our future work will focus on design a tensor
framework directly that ensure global low-rank property and local smoothness.
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