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Abstract. There has been a great concern on blind image quality assess-
ment in the field of 2D images, however, stereoscopic image quality
assessment (SIQA) is still a challenging task. In this paper, we propose
an efficient blind image quality assessment model for stereoscopic images
according to binocular adding and subtracting channels. Different from
other SIQA methods which focus on complex binocular visual proper-
ties, we simply use the visual information from adding and subtracting to
describe binocularity (also known as ocular dominance) which is closely
related to distortion types. To better evaluate the contribution of each
channel in SIQA, a dynamic weighting is introduced according to local
energy. Meanwhile, distortion-aware features based on wavelet transform
are utilized to describe visual degradation. Experimental results on 3D
image databases demonstrate the potential of the proposed framework
in predicting stereoscopic image quality.
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1 Introduction

In recent years, there has been great progress in Image Quality Assessment
(IQA). The emergence of various IQA databases and the proposal of IQA theory
greatly enrich the way to evaluate image quality [1]. At the beginning, 2D-IQA
metrics mainly focus on the difference between reference and distorted images
(known as Full-Reference (FR) methods). For example, the well-known Struc-
tural Similarity Index Measurement (SSIM) measures image quality from the
perspective of image formation, and Visual Information Fidelity (VIF) explores
the consistence between image information and distortion. The rising of blind
(No-Reference, NR) IQA methods has a huge influence on IQA, such as Dis-
tortion Identification-based Image Verity and INtegrity Evaluation (DIIVINE)
[2], Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [3], Blind
Image Integrity Notator using DCT Statistics-II (BLIINDS-II) [4]. They utilize
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distortion-aware/sensitive features to evaluate image quality, and therefore the
availability of visual features is of great importance. Meanwhile, there are also
deep learning based frameworks [5]. These newly proposed IQA methods achieve
great success in predicting image quality.

However, Bosc et al. have proved that 2D-IQA metrics are not applicable
to SIQA because of the weak correlation with binocular visual properties [6].
To solve this problem, scholars and experts have been long focusing on binoc-
ular visual characteristics. Chen et al. designed an intermediate image closely
resembles the cyclopean image [8]. Shao et al. classified the stereoscopic images
into non-corresponding, binocular fusion and binocular suppression regions [9].
Ryu et al. models the binocular quality perception in context of blurriness and
blockiness [10]. Yang et al. proposed a quality index by evaluating binocular
subtracting and adding.

Recently, it has been found that the Human Visual System has separately
adaptable channels for adding and subtracting the visual signals from two views.
Compared with previous research on binocular interactions, we simply focus on
the adding and subtracting channels to demonstrate binocular visual proper-
ties. In addition, ocular dominance which produces binocularity is considered to
characterize the receptive field properties from monocular response to binocular
response, and it is closely related to different distortions. Therefore, we try to
use the information from subtracting and adding to measure the ocular dom-
inance. With this method, we also greatly reduce the amount of computation
in modeling complicated binocular visual properties. However, to what extent
each channel contributes to binocular visual perception is still undiscovered. To
solve this problem, we take the local energy response as a weighting index to
balance their performance in stereo perception, since energy maps provide useful
local binocular rivalry information, which may be combined with the qualities
of single-view images to predict 3D image quality [12].

Another key point would be how to extract distortion-aware features from
the adding and subtracting channels to describe visual degradation. There have
been a great number of effective ways to extract Natural Scene Statistics (NSS)
features. For example, General Gaussian Distribution (GGD) model has been
used to fit the non-Gaussian distribution from frequency domain, and statistical
properties of MSCN coefficients are also explored in spatial domain. However,
sometimes these properties would change with different visual content. Taking
this shortcoming of these methods into account, He et al. studied the expo-
nential attenuation characteristics of the magnitude, variance and entropy in
different wavelet subbands. In this paper, those features from wavelet transform
are utilized to represent the properties of natural scenes since they are less sensi-
tive to the image content. Meanwhile, the feature extraction procedure is rather
computationally efficient.

Our framework is based on the adding and subtracting theory which describes
ocular dominance. As a result, NSS features are extracted from the adding and
subtracting channels. Compared with the time-consuming methods, the pro-
posed framework achieves a good balance between efficiency and prediction
accuracy.
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The rest of the paper is organized as follows. Section 2 presents the framework
of the proposed metric. The experimental results and analysis are given in Sect. 3,
and finally conclusions are drawn in Sect. 4.

2 Background and Motivation

Before the proposed method, we refers some basic theory about stereo image
quality, which will give us some motivation. As for stereo image quality, it refers
to the machine method to keep consistent with subjective feelings of humans. In
the processing of acquisition and display, the stereo images will be affected by the
existing noise interference, which will make the images have a certain difference
with the original images. In this way, it will give a bad visual perception.

For human eyes, it can make use of emitted light to see the objects, and the
final images will be sent to the visual center through internal light system. In this
way, it can produce the visual perception. Based on the previous researches, there
are three important visual neural pathways for people brains. Specially, they are
ventral pathway, dorsal pathway and visual pathway. For ventral pathway, it
contains the primary visual cortex named V 1, secondary visual cortex named
V 2 and V 3. And it also contains the ventral extrastriate cortex named V 4.

When people make use of consciousness and perception, all of the above parts
will combine to determine the movement and location of the object. Judging from
above, human visual system(HVS) is very complex and it contains physiological
structure. In addition, some high level visual cortex interaction should be used
for the visual pathway in order to finish the circulation mechanism and the
feedback types.

Through the production of random point of view, the absence of any cue
will happen in the human eyes, which will affect the perception of the depth. In
stereo images perception, the human eye’s binocular disparity and convergence
can be made use of. And then the binocular disparity can be regarded as the
most important part for the three-dimensional technology.

In general, the horizontal distance of the two human eyes is about 6 cm,
which can help people get the certain difference in scene. In detail, the projected
object in left and right eyes are different respectively. The difference can be
named binocular disparity. As for disparity, it can be divided into two parts:
vertical and horizontal parallax. specially, the horizontal parallax is the most
important for the depth perception. And vertical parallax can only determine
the perception comfort. In other word, if the vertical parallax is bad, the human
will feel uncomfortable perception.

In this connection, a lot of researchers to study the visual characteristics
of the human eye binocular fusion, and establish a corresponding stereo vision
model, the corresponding mathematical model is as follows:

Model of Eye-Weighting (EW): Engel et.al proposed a binocular weighted
(EW) model. The model also contains a weighting factor for the binocular fusion
process, but unlike the simple model, the model coefficients can be obtained by
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integrating the square root of each eye signal autocorrelation function. And it
can be described as

C = ((WL · EL)2 + (WR · ER)2)
1
2 (1)

Model of Vector Summation (VS): Therefore, Curtis et al. Found that the
binocular fusion graph is the sum of the two normalized orthogonal vectors, and
the vector sum (VS) model is proposed.

C =
√

I2L + I2R + IL · IR (2)

Among them, IL and IR represent the left and right view information.
Model of Gain Control (GC): Ding et al. on the basis of previous research

proposed the corresponding gain control model, they pointed out that people
each eye visual gain information not only from in its input signal, but also from
in the other eye gain control signal energy.

C =
IL

1 + IR
+

IR

1 + IL
+ 0.1 · IL · IR (3)

Model of Neural Network (NN): A neural network (NN) model is proposed
by Cogan et al.

C =
EL

1 + EL + ER
· IL +

ER

1 + EL + ER
· IR (4)

He proposed that the log − Gabor model can well reflect the simple visual
cell function of the human eye. Using log − Gabor filter to volume response
calculation of gain control system model of weighted value, according to the US
in the literature, we define [ηs,o, ζs,o] as a different direction and size of the filter
response, this chapter of the log − Gabor filter Gs,o(ω, θ) is defined as shown.

Gs,o(ω, θ) = exp[− (log(ω/ωs))2

2σ2
s

] · exp[−θ − θ0
2σ2

o

] (5)

Among them, s and o is respectively spatial scale and orientation information,
θ said direction angle information, ωs and ωo is used to determine the filter
energy, ω and ωs represent the normalized radial filter frequency and the center
frequency. According to this, we can calculate the signal X position in the size
of s, o direction of the local energy information for the:

Eo(X) =
√

Fo(X)2 + Ho(X)2 (6)

Among them,
Fo(X) =

∑
s

ηs,o(X) (7)

Ho(X) =
∑

s

ζs,o(X) (8)
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And the energy of the filter is:

E(X) =
∑

Eo(X) (9)

At last ,we can see the energy value is the weight value of the left eye and
right eye.

Motivated by the above model, we find that binocular adding and subtracting
is another obvious model which can affect the stereo perception. However, there
is few research results that pay attention on this issue.

3 The Proposed Framework

The proposed framework contains two parts: binocular adding and subtracting
and NSS feature extraction. At last, SVM is used to connect the NSS features
with image quality. Detailed information about the framework is shown in Fig. 1.

Fig. 1. Framework of the proposed image quality assessment metric

3.1 Binocular Adding and Subtracting

HVS has separately adaptable channels for adding and subtracting the neural
signals from the two views. Encoding the adding channel A and subtracting
channel S between two stereo-halves can be used for stereopsis.

A = L + R
S = |L − R| (10)
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Fig. 2. Examples of binocularity. (a) Original image pair. (b) JP2K compressed image
pair.(c) JPEG compressed image pair. (d) White noised image pair. (e) Fast faded
image pair. (f) Gaussian blur image pair

Examples of binocular adding and subtracting are shown in Fig. 2. It can
be seen that subtracting and adding show totally different visual information
from each other, the subtracting channel contains the difference between two
views because of the viewing angle, which could be considered as an alternative
of disparity. Considering that the computation of disparity is extremely time-
consuming, we take subtracting channels as another choice to achieve the bal-
ance between better efficiency and prediction results. In comparison, the adding
channel is more similar to a information-enriched map.

In order to model neural mechanism for binocular processing, the responses
from subtracting and adding channels are used to characterize the ocular domi-
nance. To be specific, the binocularity is defined as :

b =
|Wleft| − |Wright|
|Wleft| + |Wright| (11)

where Wleft and Wright are the monocular response from each view, and b rep-
resents the degree of binocularity. A large absolute value of b represents a weak
binocular response, and vice versa. To better visualize ocular dominance in terms
of distortion, Fig. 2 shows that ocular dominance changes with regard to differ-
ent distortions, and therefore it could be an index which characterize binocular
visual properties.

However, to the best of our knowledge, which channel contributes more to
visual perception is still unsolved. Therefore we proposed a weighting scheme to
combine the two channels together. Based on the fact that distortion in either
view may affect the consistency between the two views and lead to binocular
rivalry, a reasonable way to characterize this property is the local energy map
since higher-energy regions are more likely to attract visual attention. Therefore,
a local energy based weighting scheme is adopted to balance the adding and sub-
tracting channels. Here, the energy for each channel is obtained by summing the
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local variances using an 11×11 circular-symmetric Gaussian weighting function
w = {ωi|i = 1, 2, ..., N}, with standard deviation 1.5 samples, normalized to unit
sum (

∑N
i=1 ωi = 1). And then local energy is calculated by

ein =

(
N∑

i=1

ωi(xi − μin)2
) 1

2

(12)

where μin =
N∑

i=1

ωixi is the local mean value. Finally the energy map is computed

from 4scales by:

el =
1

ns × M

ns∑
i=1

M∑
j =1

ein,j − l (13)

3.2 NSS Feature Extraction

He et al. have demonstrated that the tertiary properties of the wavelet coeffi-
cients reflect the self-similar property of scenes. In particular, the exponential
attenuation characteristics of the magnitude, variance and entropy in different
wavelet subbands are less specific in their representation of an image, and thus
are utilized to represent the generalized behaviors of natural scenes.

Specifically, the magnitude mk is used to encode the generalized spectral
behavior, the variance vk to describe the fluctuations of energy, and the entropy
ek to represent the generalized information, following Eqs. 14−16.

mk =
1

Nk × Mk

∑
j =1

∑
i=1

log 2 |Ck (i, j)| (14)

vk =
1

Nk × Mk

∑
j =1

∑
i=1

log 2 |Ck (i, j) − mk| (15)

ek =
Nk∑

j =1

Mk∑
i=1

p [Ck (i, j)] ln p [Ck (i, j)] (16)

where Ck (i, j) represents the (i, j) coefficient of the k-th subband, Mk and Nk

are the length and width of the k-th subband, respectively; p [·] is the probability
density function of the subband.

In our framework, an image is decomposed into 4 scales and 8 wavelet sub-
bands without distinguishing the the low-high and high-low subbands because of
their similarity in statistics. The vertical and horizontal subbands with an iden-
tical mark in the same scale are combined through averaging after the above
process. Finally, there are 24 features extracted from each channel in total

f = [m1,m2, ...,m8, v1, v2, ..., v8, e1, e2, ..., e8]
T (17)
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4 Experimental Results and Analyses

4.1 Stereo Database

To verify the performance of the proposed method, the LIVE 3D Image Quality
Databases (Phase I and Phase II) of the University of Texas at Austin are used
[13], which are shown in Fig. 3. Database Phase I database contains 365 stere-
opairs with symmetric distortion and Database Phase II contains 360 stereopairs
with both asymmetric and symmetric distortion, including JPEG compression,
JP2K compression, white noise (WN), Gaussian blur (Blur) and fast fading (FF).

Fig. 3. LIVE 3D image quality databases

4.2 Performance Measure

For performance evaluation, four commonly used indicators are adopted: Pear-
son Linear Correlation Coefficient (PLCC), Spearman Rank Order Correlation
Coefficient (SROCC), Kendall Rank-order Correlation Coefficient (KROCC),
and Root Mean Squared Error (RMSE) between subjective scores and objective
scores after nonlinear regression. For nonlinear regression, we use a 4-parameter
logistic mapping function:

DMOSP =
β1 − β2

e(Q − β3)/|β4| + 1
+ β2 (18)

where β1, β2, β3 and β4 are the parameters to be fitted. A better match is
expected to have higher PLCC, SROCC, KROCC and lower RMSE.

In the prediction phase, the stereopairs in each database were randomly
divided into two parts, with 80% for training and 20% for test. To ensure that
the proposed framework is robust, 1000 iterations of training are performed by
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varying the splitting of data over the training and test sets, and the median
value of all iterations is chosen as the final prediction model. All the parameters
of our SVM model are the same for different databases.

In order to demonstrate its efficiency, the proposed method is compared with
several existing state-of-art IQA metrics, including five 2D metrics (DIIVINE [2],
BLIINDS-II [4] and BRISQUE [3]), and four 3D metrics (Lin’s scheme [7],
Chen’s scheme [8], Shao’s scheme-A [9] and Shao’s scheme-B [11]). For those
2D-extended BIQA metrics, feature vectors extracted from the left and right
views are averaged, and SVM is used to train a regression function. For Lin’s
scheme, the FI-PSNR metric is adopted into the comparison. For Chen’s scheme,
the adopted 2D metric is MS-SSIM which performs the best. For Shao’s schemes,
experimental results in the reference are directly adopted.

4.3 Overall Performance on LIVE 3D Image Database

As shown in Table 1, the values of PLCC, SROCC, KROCC, and RMSE of each
metric are reported, where the indicator that gives the best performance is high-
lighted in bold. It can be observed that the overall performance of the proposed
framework on Database Phase-I significantly outperforms other IQA metrics.
Shao’s scheme also achieves rather competitive performances. The outstanding
performance partially demonstrates the efficiency of the proposed framework.

Table 1. Overall performances on LIVE 3D image database

Criteria LIVE 3D image database phase I LIVE 3D image database phase II

PLCC SROCC KROCC RMSE PLCC SROCC KROCC RMSE

DIIVINE [2] 0.9252 0.9233 0.7474 6.2245 0.7758 0.7707 0.6023 7.1221

BLIINDS-II [4] 0.9117 0.9087 0.7220 6.7368 0.7865 0.7167 0.5427 6.9708

BRISQUE [3] 0.9119 0.9083 0.7197 6.7314 0.7513 0.7242 0.5481 7.4496

Lin [7] 0.8645 0.8559 0.6559 8.2424 0.6584 0.6375 0.4701 8.4956

Chen [8] 0.9161 0.9153 0.7360 6.5740 0.9067 0.9068 0.7314 4.7587

Shao-A [9] 0.9350 0.9251 - 5.8155 0.8628 0.8494 - 5.7058

Shao-B [11] 0.9565 0.9449 - 4.7552 0.9265 0.9106 - 4.3381

Proposed 0.9594 0.9447 0.8004 4.5086 0.9350 0.9097 0.7347 4.2739

Results on asymmetric distorted stereopairs are also listed. According to the
experimental results on Database Phase II which contains both symmetric and
asymmetric distortion, the proposed framework overtakes the other metrics by a
large extent. The significant difference further confirms the previous conclusion
that our framework can effectively predict the quality of stereoscopically viewed
images. However, predicting the quality of asymmetric distorted stereopairs is
still a challenge, since all the metrics show less consistency with subjective test.

Considering that samples of training and test are selected from the same
dataset, experiments on individual databases are not sufficient to explain the
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Table 2. Cross-database performances on LIVE 3D image database (training/test)

Criteria LIVE I /LIVE II LIVE II /LIVE I

PLCC SROCC PLCC SROCC

DIIVINE [2] 0.6161 0.5177 0.5375 0.4954

BLIINDS-II [4] 0.6986 0.6716 0.7652 0.7398

BRISQUE [3] 0.5949 0.4582 0.5718 0.5564

Shao-B [11] 0.7791 0.7514 0.8936 0.8917

Proposed 0.8127 0.7809 0.8464 0.8280

generality and stability of the evaluation model, and therefore cross-database
experiments are also carried out in this part. Table 2 also gives the detailed
information of cross-database test. Note that two FR metrics (Lin, Chen and
Shao’s schemes) are not reported. Obviously, the performance of the metrics sig-
nificantly declines compared with individual dataset, because the source images
and distortion types are not consistent. Another probable reason would be that
Database Phase-I only contains both symmetrically distorted stereopairs. How-
ever, our metric still has a relatively good predictive ability, when metrics are
trained on LIVE phase I and tested on LIVE phase II.

Table 3. Running time

Criteria DIIVINE [2] BLIINDS-II [4] BRISQUE [3] Lin [7] Chen [8] Ours

Time(s) 6800 21923 37 82 5143 145

In addition to the excellent performance on predicting image quality, the pro-
posed method is also computationally efficient, as shown in Table 3. The total
running time on LIVE 3D Image Database-Phase I (365 stereopairs with a res-
olution of 640× 360 for each view) is only 145 s on a computer with a Core
i7 CPU. It means that predicting a stereopair costs less than 0.4 s. Although
it is not the most efficient one, it achieves better balance between accuracy
and time. Compared with those metrics which spend a lot of time in modeling
complex binocular visual properties (e.g. Chen’s scheme) and computing NSS
features (BLIINDS-II), the proposed method is much less time-consuming. How-
ever, designing an quality assessment index applicable to real-time image (video)
processing is still challenging.

5 Conclusions

In this paper, an ocular dominance based quality index for stereoscopic images
is proposed, in which the NSS features are used to describe the visual degrada-
tion on stereopairs. Based on the fact that binocular adding and subtracting are
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closely related to stereo perception, we use the NSS features from three channels
(namely, binocularity, adding, and subtracting) to predict visual quality. Exper-
iments further confirm that the proposed framework is highly consistent with
subjective test, and the computation is relatively efficient.

In the future, we will pay much attention to the research on binocular visual
properties, and explore more effective ways to describe image degradation.
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