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Abstract. Since the appearance of deep learning, face verification (FV)
has made great progress with large scale datasets, well-designed net-
works, new loss functions, fusion of models and metric learning meth-
ods. However, incorporating all these methods obviously takes a lot of
time both at training and testing stages. In this paper, we just select
training images randomly without any clean and alignment procedure.
Then we propose a simple weighted average method which combines
features of the last two layers with different weights on the modified
VGGNet, named as CB-VGG. It is significantly reducing the complexity
of time that one model can be treated as two models. LMNN is used as a
post-processing procedure to improve the discrimination of the combined
features. Our experiments show relatively competitive results on LFW,
CFP, and CACD datasets.
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1 Introduction

Face verification (FV), whose protocol is to classify whether a pair of faces
belongs to the same person or not, is one of the most challenging face tasks with
difficulty of variations on pose, age, occlusion and so on [1].

In recent years, the state-of-the-art methods based on deep learning achieved
the great success on FV [2–5]. One of the most important ingredients for this
success is large scale facial public datasets [6] with identity labels. However, there
are often noise contaminated since images are crawled from the Internet. Some
methods use various measures [4,7] to clean images, while others produce mul-
tiple patches [8–12] and synthesized images [13]. It requires a lot of extra time
and human resources. Since excessive noise data usually depress the classifica-
tion performance, in this paper, we only select partial training data of MsCeleb
[6] randomly without any cleaning and alignment methods in order to simplify
pre-processing process.
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Some methods obtain better performance [8–11] along with concatenating
features from multiple models. It needs additional time to acquire multiple mod-
els and evaluate models with high-dimensional features. Here, we propose to
use both of the last two layers of a single model. Unlike concatenation, we use
weighted average of the two layers without dimension increase. It can be seen
that we only train one model but use it as two models by fusion of two layers,
which effectively reduces the time at train and test stages.

Besides, many other strategies are effective for better performance, such as
carefully-designed models [4,7] and center loss [14]. While joint Bayesian [15]
has been highly successful as metric learning in many methods [9–11], Large
Margin Nearest Neighbor (LMNN) [16] is used to improve accuracy. LMNN [16]
is first introduced to train a matrix that maintains a large distance between
imposters and constrains the k-nearest neighbors belonging to the same class. In
this research, we use LMNN to further improve the discrimination of features.

Despite its simple process, our method achieves competitive results on
Labeled Faces in the Wild(LFW) [17], Celebrities in Frontal-Profile in the
Wild(CFP) [18] and Cross-Age Celebrity Dataset(CACD) [19]. We summarize
the contributions of this paper as follows:

1. We simplify the pre-processing procedure only by selecting partial training
data randomly. No any other clean measures are used to carefully select the
label-corrected images.

2. We propose a new method that only requires to train one model but uses
the last two layers of features via computing their weighted average, which
improves performance without much time consumption.

3. We use LMNN as metric learning to strengthen the discriminative power of
deeply features.

4. The proposed method performs excellent and significant results on all the
three datasets of LFW, CFP and CACD.

2 Related Work

Various of methods exploited deep networks to achieve remarkable results in FV.
We analyse the most critical aspects.

Data Preparation. Large scale public facial images are introduced to encour-
age the development of face recognition [2–5], such as CASIA-Webface [20] and
MsCeleb [6]. In addition, data augmentation like multiple patches [8–12] and
synthesized images [13] can make the system be more robust to various of face
variation. Others like 2D/3D alignment [2,14], RGB/Gray channels [8,9] and
rotated poses [13] can also contribute to performance.

Elaborately Designed Networks. Inspired by “very deep” networks, VGGNet
is widely used to FV [2,13]. After that, many blocks are added to networks
[4,7,11], like inception [21] and residual [22]. Besides, local connected layer(LC)
[8,9,14], L2 norm [4], DeepVisage(feature normalization) [7] are designed.
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Fusion of Models. Many methods show that model fusion provides additional
boosts to feature presentation. DeepID series [8–11] train at least 25 models on
different facial patches which are complementary with each other.

Metric Learning. Several methods use metric learning after extracting features
from CNN. Principal component analysis(PCA) is mainly used [8–11] which
learns a mapping matrix to reduce dimensions. Joint Bayesian is proved to be
an effective way [8–11,20]. Baidu [12] uses triplets which shortens the distance
of intra-class and enlarges that of inter-class.

Various Loss Functions. Softmax loss [2,12] is largely used for classification
and has been used for feature embedding by removing the last classification layer.
Contrastive loss [3,9–11] and triplet loss [2,5,12] are introduced to enhance intra-
class binding. Then, center loss [14] is proposed to learn a center for each class.

3 The Proposed Method

We use VGGNet [2] as our baseline and modify it with a convolution-branch
block(CB), called CB-VGG. What’s more, it brilliantly exploits weighted aver-
age of the last two layers, followed by LMNN [16] before computing the cosine
similarity as the verification score of a pair images. Next, we describe all the
details.

3.1 Data Pre-processing

Our pre-processing process is extremely simple which saves a lot of time.

Training Data: We use MsCeleb [6] as our training data. Different from other
approaches [4,7,14] cleaning the training data, we only select 29,731 identifies
randomly except target datasets. For simplification, we only use Normalized
Pixel Difference(NPD) [23] detector without any 2D [2,7] or 3D alignment [3]. It
is inherited by [2] which found that alignment on test images instead of training
data brought the best benefits. The work in [2] uses large amounts of images
and the alignment step on test stage spends plenty of time. In contrast, we
crop 4 corner with 1 center patches and randomly flip these images for data
augmentation to promote the performance of model.

Test Data: The process is similar as training stage. Differently, LFW [17] and
CACD [19] are all cropped 10 times consisting of 4 corners and 1 center with
their flips. For CFP [18], we only use 1 crop without flip due to Frontal-Profile
pairs.

3.2 CB-VGG Architecture

Baseline: Our baseline, VGGNet [2] comprises 11 sections with more than one
linear and non-linear blocks like ReLU and max pooling. The first 8 sections
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use convolution as linear operator while the following 2 use fully connected lay-
ers(FC). The last FC layer is only used for classification.

CB-VGG Model: We make a small modification on the baseline model. Similar
to [14], the 4th and 5th pooling units are concatenated together as the input
of the 1st FC layer. In order to match the size of the two layers, we apply
another convolutional operation after the 4th pooling layer, which is named
as convolution-branch block(CB). It is critical for accurate face representation,
because some information would be lost after successive down sampling. In this
case, we can make full use of both global-abstract semantic information and high-
resolution feature. Moreover, we simply use softmax loss instead of combining
with other loss [14] or normalization [4,7]. The details of the model are given in
Fig. 1.

Fig. 1. Structure of CB-VGG model. IN is the input images. Conv is convolution
layer. P represents padding. K is kernel size. N is the output number. Pool indicates
max pooling unit. CT is concatenation layer which concatenates the 4th pooling(after
one extra convolution) and the 5th pooling layers. FC and FC Classifier indicate fully
connected layer and classification layer respectively. OUT is the softmax loss function.

3.3 Weighted Average Features

The deep features are taken from the last FC layer almost in all other methods.
What’s different in our method is that we extract features on both the last two
FC layers. For an image x, we represent its feature descriptors using the 1st and
the 2nd FC layer as fx

1st and fx
2nd. Then, the final feature descriptor fx

final is
expressed by taking weighted average of these two features:

fxfinal = α × 1
C

C∑

i=1

fxi
1st + β × 1

C

C∑

i=1

fxi

2nd. (1)

α and β are the weights of the 1st and the 2nd FC layer’s descriptors respectively
which act on every elements. In order to discriminate the role of the two layers,
we impose restrictions on the weights with β = 1 − α. C is the number of crops
which is 1 in CFP and 10 in LFW and CACD.

Model fusion is always effective. Sun et al. [9–11] concatenate 25 model’s
features to improve performance. Baidu [12] uses 10 embedding models to obtain
high performance. However, our method only trains one model but uses two
layers to extract features, which is equal to training two models but saves a lot
of time and boosts the performance at the same time.
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3.4 LMNN Metric Learning

Large Margin Nearest Neighbor(LMNN) [16] learns a Mahanalobis distance
matrix which is good for decreasing the distance of k target neighbors, while
enlarging the distance of different k nearest points. In FV task, some distances
of positive pairs are larger than negative pairs, causing a bad effect on thresholds
selection. Based on LMNN, we can pull the same faces closer and repel differ-
ent faces further. The problem can be described as follows. i and j are same
pairs, yet l is different from them. ξijl is a slack variable. M is the transformable
matrix.

min
∑

i,j→Ci
(xi − xj)TM(xi − xj) +

∑
i,j→Ci,l→Cl

ξijl. (2)

s.t.∀yi=yj �=yl
(xi − xl)TM(xi − xl) − (xi − xj)TM(xi − xj) ≥ 1 − ξijl,

ξijl ≥ 0,M � 0.
(3)

FaceNet [5] uses triplet loss similar to LMNN based on triplets consisting of a
positive pair and a negative identity. However, it is not easy to generate triplets
and [5] uses 200 M images for training. Instead, we use LMNN for employing
idea of triplet but avoiding triplets selection.

4 Experiments

In this section, we first introduce the details of the training stage. Then we
extract features of the last two FC layers(FC6, FC7) and perform LMNN to
calculate the cosine similarity in FV. In order to verify the effectiveness of our
method, we evaluate it on three different datasets. All experiments we carry out
are on Caffe [24].

4.1 Details of Training Stage

In this subsection, we describe the details of model training. We randomly select
2.29 M images of 29,731 identities from MsCeleb dataset [6] without including the
test identities. For simplification, no other cleaning and alignment strate-
gies are used to pick up images. We train our model using 95% images (2.17 M
images) and other 5% images (120 K) are used for monitoring and validating the
loss. Our CNN model only uses identity information to optimize softmax
loss. No other normalization methods [4,7] are used.

The baseline model and our CB-VGG model are trained from scratch with
the same hyper parameters. We use stochastic gradient descent(SGD) method.
Momentum and weight decay are set to 0.9 and 5e−4. We begin the training with
a learning rate of 0.01 and decrease it by 10 times every 100K iterations. The
training batch size is 120. Images are resized into 170 × 170, and then cropped
into 160 × 160 of 4 corners and 1 center. We also apply randomly horizontal
flipping to the images for data augmentation.
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4.2 Results of Test Datasets

Evaluation is performed on the commonly used LFW dataset [17], frontal-profile
CFP dataset [18] and cross-age CACD dataset [19]. Like training stage, we also
only use NPD to detect images without any other extra alignment process. The
parameters of α and β for FC6/FC7 are 0.15/0.85 respectively. The number of
target neighbors k is set to 3 in LMNN.

LFW Dataset: LFW dataset [17] is one of the most popular datasets and the
performance on it is close to saturation. It consists of 13,233 face images of
5,749 different identities. We evaluate our model following the most permissive
protocol: unrestricted with labeled outside data. The FV task requires evaluating
on 6,000 pairs in 10 folds. Each fold contains half of the genuine pairs and half
of the impostor pairs.

We compare the network trained on Baseline and CB-VGG. For both FC6
and FC7, we extract features of 10 patches separately. Table 1 shows that CB-
VGG is lightly better than Baseline. More over, with the weighted average
method and LMNN metric learning, accuracy is further improved. The result
verifies the effectiveness of weighted average of the last two layers which can be
thought as fusion of two models but only trained once.

Table 1. Accuracy on LFW (%). Y is Yes (Use), N is Not (Not use)

No Method FC6 FC7 LMNN Acc%

1 Baseline Y N N 98.78

2 Baseline N Y N 98.85

3 Baseline Y Y N 98.95

4 CB-VGG Y N N 98.78

5 CB-VGG N Y N 98.90

6 CB-VGG Y Y N 99.02

7 CB-VGG LMNN Y Y Y 99.07

We also compare our method with other state-of-the-art methods. The results
are given in Table 2. We observe that our method achieves relatively significant
accuracy (99.07%) with relative less images and simple methods.

CFP Dataset: CFP [18] is one of the large-pose face datasets which is composed
of 10 frontal and 4 profile images of each 500 individuals. Unlike LFW, CFP has
two FV experiments: frontal-frontal (FF) and frontal-profile (FP). Both contains
10 folds, each with 350 same pairs and 350 different pairs.

We also compare the Baseline and CB-VGG model. However, features are
extracted from both FC6 and FC7 with only 1 center crop. PCA is applied for
reducing dimensions of fusional features from 4096d to 300d. Table 3 shows that
CB-VGG with fusional features and LMNN is more robust to pose transformation.
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Following the protocal in CFP [18], we also report the EER(Equal Error
Rate) and AUC(Area under the curve) values on averages of 10 splits. Table 4
and Fig. 2 provide the results and the ROC curve1 of ours along with the state-
of-the-art methods.

Table 2. Performance comparison of state-of-the-art on LFW (%). Y is Yes (Use), N
is Not (Not use)

Method Train-Images Clean Align Norm Models Other-Loss Metric-Learning Acc%

DeepFace [3] 4.4M, 4K N Y – 3 Y Kafang 97.35

VGG Face [2] 2.6M, 2.6K N Y Y 1 Y Triplet 98.95

Baidu [12] 1.2M, 1.8K Y Y – 1 Y Triplet 99.13

Center Loss [14] 0.7M, 17.2K – Y – 1 Y – 99.28

DeepID2+ [9] 0.29M, 12K – Y – 25 Y Joint Bayesian 99.47

DeepID3 [11] 0.29M, 12K – Y – 25 Y Joint Bayesian 99.53

L2-softmax [4] 3.7M, 58.2K Y Y Y 1 N – 99.60

DeepVisage [7] 4.48M, 62K Y Y Y 1 N N 99.62

FaceNet [5] 200M, 8000K – Y Y 1 Y – 99.63

CB-VGG LMNN 2.29M, 29.7K N N N 1 N LMNN 99.07

Table 3. Accuracy on CFP (%). Y is Yes (Use), N is Not (Not use)

No. Method FC6 FC7 LMNN Acc%

FF FP

1 Baseline Y N N 98.21 90.36

2 Baseline N Y N 98.34 91.73

3 Baseline Y Y N 98.43 91.99

4 CB-VGG Y N N 98.11 90.41

5 CB-VGG N Y N 98.39 91.94

6 CB-VGG Y Y N 98.46 92.06

7 CB-VGG LMNN Y Y Y 98.59 92.43

We observe that our method achieves the competitive results to the best
accuracy on both FF and FP. For FF ours result is slightly lower than FV-
DCNN+pool5 [25] but enjoys being simple. FV-DCNN+pool5 [25] learns the
Gaussian mixture model and performs Fisher vector encoding after extracting
features from models. Besides, they also use PCA, Joint Bayesian and scores
fusion with pool5. For FP, we achieve the first place if not competing p-CNN [1].
p-CNN(pose-directed multi-task CNN) specially tackles pose variation by sepa-
rating all poses into several groups and then jointly learn identity and PIE(pose,

1 Because of lacking of data, we couldn’t report the work of Sankarana et al. [26].
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Table 4. Performance comparison of state-of-the-art on CFP (%). ACC is Accuracy.
EER is Equal Error Rate. AUC is Area Under the Curve

Method FF (Frontal-Frontal) FP (Frontal-Profile)

ACC EER AUC ACC EER AUC

Human [18] 96.24± 0.67 5.34± 1.79 98.19± 1.13 94.57± 1.10 5.02± 1.07 98.92± 0.46

Deep features [18] 96.40± 0.69 3.48± 0.67 99.43± 0.31 84.91± 1.82 14.97± 1.98 93.00± 1.55

Sankarana et al. [26] 96.93± 0.61 2.51± 0.81 99.68± 0.16 89.17± 2.35 8.85± 0.99 97.00± 0.53

FV-DCNN [25] 98.41± 0.45 1.54± 0.43 99.89± 0.06 91.97± 1.70 8.00± 1.68 97.70± 0.82

FV-DCNN+pool5 [25] 98.67±0.36 1.40±0.37 99.90±0.09 89.83± 1.88 10.40± 1.85 96.37± 0.97

p-CNN [1] 97.79± 0.40 2.48± 0.07 99.71± 0.02 94.39±1.17 5.94±0.11 98.36±0.05

CB-VGG LMNN 98.59±0.53 1.47±0.55 99.90±0.07 92.43±0.75 8.18±0.82 97.03±0.75

Fig. 2. ROC curve of CFP dataset. (a) is the protocol of Frontal-Frontal, while (b)
is the protocol of Frontal-Profile. We only compare deep learning methods without
conventional methods.

illumination and expression) for each group. Although p-CNN has great advan-
tage on pose, it performs relatively worse than us on FF.

CACD Dataset: CACD [19] is a large cross-age celebrity dataset which con-
sists of 163,446 images of 2,000 celebrities with age ranging from 16 to 62. For
verification task, 2,000 positive image pairs and 2,000 negative pairs are selected
to form CACD-VS and divided by 10 folds.

Similar to the previous process, we report comparison of baseline with ours
and provide the results of other methods on CACD-VS. The results are shown
in Tables 5 and 6.

MFM-CNN [28] and DeepVisage [7] are well designed that the former uses
maxout activation to separate noisy signals with informative signals and the lat-
ter uses feature normalization to restrict features keeping equal contribution to
cost function. LF-CNNs [27] aim at learning age-invariant features via combin-
ing latent factor layer. Note that we don’t use any complex blocks or finetune
measures to fit age variation.

In summary, we only use VGGNet with modification of combining FC6 with
FC7 and LMNN metric learning. All the training images are randomly selected
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Table 5. Accuracy on CACD (%). Y is Yes (Use), N is Not (Not use)

No Method FC6 FC7 LMNN Acc%

1 Baseline Y N N 97.68

2 Baseline N Y N 97.38

3 Baseline Y Y N 97.70

4 CB-VGG Y N N 97.38

5 CB-VGG N Y N 97.58

6 CB-VGG Y Y N 97.78

7 CB-VGG LMNN Y Y Y 97.88

Table 6. Performance comparison of state-of-the-art on CACD (%). Y is Yes (Use).

Method Well-designed block Aiming at age Acc%

Human, Avg [19] – – 85.70

Human, Voting [19] – – 94.20

VGG Face [2] – – 96.00

LF-CNNs [27] – Y 98.50

MFM-CNN [28] maxout activation – 98.55

DeepVisage [7] feature normalization – 99.13

CB-VGG LMNN – – 97.88

without any clean measures. Experiments show that our method is definitely
robust to pose and age variation on FV task. It means our method is robust
to both frontal and pose-variable faces and weighted features of the last two
layers really learns mutually complementary information. LMNN is a fast metric
learning which is really able to improve discrimination.

4.3 Analysis and Discussion

For highlighting the influences of methods, we perform further analysis on (i)
number and data augmentation of training datasets; (ii) different settings of
weights; (iii) some examples which are corrected by our methods. All the inves-
tigations are conducted on LFW dataset.

First, we study the influence from the quantity of training data. Table 7
presents the results2 which we observe that: (i) the larger number of images
creates the better CNN performance, although the 100K identities decrease the
results due to the large dirty images; (ii) Multi-crop augmentation is really help-
ful for performance, since it is equal to add more pure images for per identities
2 Due to the restrictions of memory and time, we don’t conduct an experiment on

100 K dataset with multiple crop. The number of images is less than original images
which is due to failing detection.
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to increase number of training images. In this paper, we don’t use any selection
or alignment for training dataset. Instead, multiple crop for data augmentation
helps us to extract features with location and pose invariance.

Table 7. Analysis of the influences from number and data augmentation of training
dataset. ∼ is the approximate number which is obtained after detection.

Number Single-crop (%) Multi-crop (%)

1.62 M, ∼20 K 97.00 98.75

2.29 M, ∼30 K 98.83 99.02

7.66 M, ∼100 K 98.63 –

Next, we analyse the various weights combination of the last two layers.
Figure 3 shows that the weights selection of the features is important. Since FC7
layer extracts more information than FC6, the weights of the former is must be
larger than the latter. Otherwise, the performance will be pull down by the weak
feature.

Fig. 3. Analysis of the influences from the weights of the last two layers. (Color figure
online)

Finally, we provide some examples which are corrected by our methods. In
Fig. 4, four misclassified pairs are presented that (a) two pairs are false rejected
images and (b) another two are false accepted images. These pairs are erro-
neously classified by CB-CNN model with only FC7 layer. When we use weighted
average features of last two layers, pairs marked with green colored rectangles
are corrected. It can be seen that more discriminative features are extracted
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using simple weighted combination which are more robust to pose, illumination,
occlusion and so on. Then, when we further use LMNN, more difficult pairs can
be corrected, such as the pair with red rectangle. That’s to say that our method
really have ability to improve the representation of features.

(a) Examples of false rejected images.

(b) Examples of false accepted images.

Fig. 4. Some misclassified pair images of LFW dataset by CB-CNN model with only
FC7 layer. Pair images with green rectangle is corrected via weighted average features
of FC6 and FC7 layers. Then the pair with red rectangle is further corrected using
LMNN. (a) and (b) is false rejected images and false accepted images respectively.

5 Conclusions

In this paper, we not only use extremely simple pre-processing procedure without
clean or alignment, but also propose a single model named as CB-VGG. Taking
care of time and accuracy, we present a simple weighted average on the last
two FC layers instead of fusing several models. This can be seen as fusion of
two models but only training once. After that, we use LMNN metric learning as
post-processing process. Combining all these methods, we achieve competitive
results and perform relatively robust to pose and age variations. These results
successfully show that it may not be necessary to use complex process of selecting
images or training multiple models to boost performance. Single models can be
fully used to develop a good result and the time can be saved enormously. In the
future, we will explore whether the cleaned images are really important for the
performance.



Improved Face Verification with Simple Weighted Feature Combination 27

Acknowledgements. This work was supported by Natural Science Foundation of
Shanghai (No. 17ZR1431500).

References

1. Yin, X., Liu, X.: Multi-Task Convolutional Neural Network for Face Recognition.
arXiv preprint arXiv:1702.04710 (2017)

2. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Proceedings
of the British Machine Vision Conference, pp 41.1-41.12 (2015)

3. Taigman, Y., Yang, M., Ranzato, M.A., et al.: Deepface: closing the gap to human-
level performance in face verification. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp 1701–1708 (2014)

4. Ranjan, R., Castillo, C.D., Chellappa, R.: L2-constrained Softmax Loss for Dis-
criminative Face Verification. arXiv preprint arXiv:1703.09507 (2017)

5. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face
recognition and clustering. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp 815–823 (2015)

6. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and bench-
mark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016, Part III. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46487-9 6
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