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Abstract. Taking advantage of the strong correlation between the
sequences of light field images, a distributed compressive sensing for light
field reconstruction method using structured random matrix is proposed.
Firstly, the sequence of light field images is superimposed to form the
3D image matrix. Since the angle difference of the optical field camera
array is fixed, the 2D slice images of each 3D image matrix will show the
characteristics of the stepped stripes, and the angles of the stripes are
same. Secondly, slices are rearranged according to the inclination angle
to obtain a 2D vertical stripe. Thirdly, structured random matrix (SRM)
is used as the measurement matrix to reconstruct these images. SRM-
DCS algorithm are proposed for reconstruction of light field images. The
experimental results represented that the proposed algorithm performs
better in subjective visualization and objective evaluation compared with
other compressive sensing algorithms.
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1 Introduction

In recent years, with the development of 3D display technology, great numbers
of researchers paid more and more attention to light field technology, which is an
effective mean achieving real-time rendering of 3D scene. The main research con-
tents of the light field technology include the theory and technology of light filed
rendering, the construction and application of light field array and the acquisi-
tion and reconstruction of signal [1]. And the acquisition and reconstruction of
light field signal is one of the core problems need to be solved in the light field.
As the light field consists of large-scale camera arrays, the system will have hun-
dreds of images per second to store and transmit in order to meet the real-time
needs of 3D scene interaction.
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At present, light field acquisition and reconstruction technology can be
divided into compressed and non-compressed light field technology. The for-
mer captures light field signals through dense camera array [1,2], generate high
precision light field images without compression and reconstruction. However,
the efficiency of this light field acquisition system reconstruction is not high due
to the large transmission and storage of data. And the latter implements the
compression coding of the light field by installing a microlens array or optical
mask and other devices in the camera [3]. The light field images are restored
by a linear or nonlinear algorithm during the reconstruction phase. Sparse light
field arrays can improve transmission and reconstruction efficiency in this way,
but with high cost of such a light field acquisition system and complex structure.

Now, the method of light field acquisition and reconstruction mainly face
the contradiction between reconstruction precision and efficiency. In this paper,
a distributed compressive sensing field reconstruction method using structured
measurement matrix are proposed to improve the accuracy and efficiency of
reconstructing the images using distributed compression sensing. In the signal
acquisition stage, the K-SVK algorithm is used to train the adaptive dictionary
of the light field, which makes light field signal sparse coding. In the reconstruc-
tion phase of the image, since the slices of the 3D image matrix formed by the
light field images sequence have the characteristics of the stepped stripes, the
slices are rearranged to obtain vertical stripe and then reconstruct the light field
image sequences by combining structured measurement matrix. The experimen-
tal results represented that the reconstructed light field images is more effective
in subjective visual and objective evaluation compared with other compressive
sensing algorithms.

2 Related Work

Light field theory and application is the core research content of computational
photography, which is studied for nearly a hundred years. At the beginning,
Lippmann put forward the concept of integral photography, and then Gershun
proposed the use of light to describe the radiation properties of light and formed
a prototype of the light field. Adelson et al. [4] of MIT proposed a seven-
dimensional plenoptic function P (x, y, z, θ, ϕ, λ, t) by using a formal description
of the light in space, where (x, y, z) is the position of the receiving light side in
the three-dimensional space, (θ, ϕ) is the azimuth and inclination of the light, λ
represent the wavelength of the light and t indicates the moment. On this basis,
Levoy et al. [5] of Stanford proposed a biplane parametric representation of the
light field, that is, the light field information is described by the coordinates (s, t)
and (u, v) of the intersection of a ray with the spatial plane and the angle plane,
the light field information briefly and intuitively through four-dimensional light
field function L(s, t, u, v). And Debevec et al. [5] of USC collected the dynamic
field of the periodic motion successfully. These series of work set off a wave of
light field research.
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These days in the field of image processing, the demand for fast and efficient
algorithms and low hardware requirements is becoming more and more promi-
nent, and the use of compressive sensing to capture and reconstruct light fields is
attracting more and more researchers. Compressive sensing (CS) was proposed
by Donoho and Candes et al. [6,7], which using a measurement matrix to project
a sparsible or compressible high-dimensional signal onto a low-dimensional space,
and the measured values obtained after projection can be reconstructed by a cer-
tain linear or non-linear decoding model [7,8]. The compressive sensing has loog
been applied to the image acquisition. Derin Babacan et al. [8] have proposed
a new camera sampling model and reconstructed the light field image using the
Bayesian method combined with compressive sensing. Shu and Ahuja [9] put
forward an idea of three-dimensional scene and used it in reducing the sampling
density of the light field camera array. Gan et al. [10] proposed the method uti-
lizing block compressive sensing to collect and reconstruct image signals, which
is use the independent measurement matrix on the same size of the image block
for projection and reconstruction, which improves the efficiency of image recon-
struction to a certain extent.

3 Proposed Approach

The image sequences of light field camera array are not much different, result-
ing in a large number of common parts, thus making full use of the correlation
between the light field images can effectively improve the efficiency of light field
reconstruction. In this paper, a distributed compressive sensing field reconstruc-
tion method using structured measurement matrix is proposed. Firstly, all images
are superimposed as 3D image matric. Since the slices of the 3D image matrix
formed by the sequence of the light field images have the characteristics of the
stepped stripes, the slices are rearranged to obtain 2D vertical stripe image,
and then the measurement matrix is modified into a Structured Random Matrix
(SRM) by using a compressive sensing reconstruction algorithm. Finally, the
light field images sequence is recovered from the 3D image matrix. The sketch
is shown in Fig. 1.

3.1 Problem Formulation

Compressive sensing is a new type of signal processing method for reconstructing
the original signal from sparse signals. The sparse representation of the signal is
the primary problem of compressive sensing. Since the compressive sense is based
on the original signal that can be sparse or compressed, it is necessary to sparse
and transform the original signal on some transform domains, where the original
signal x ∈ R

n can be represented by the sparse matrix Ψ ∈ R
n×m as x = Ψα,

Ψ is an orthogonal matrix, α is the coefficient vector of the original signal. If
there are only s non-zero elements in α, then α is the sparse representation of
the s-sparse of the signal x [11].
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Fig. 1. Proposed algorithm for acquisition and reconstruction of light field images

Distributed compressive sensing aims at the correlation between distributed
signals to explore the correlation between signals, and achieve multi-signal dis-
tributed compression sampling and joint reconstruction. Distributed compressive
sensing divides the signals collected by distributed sources into common com-
ponent and innovation [12], where the common components are the same and
the innovation components are different. When the signal is sparse and recon-
structed, the common only need to be processed once. For the distributed source
system of the light field array, the distributed compressive sensing technique
can reduce the sampling rate by accurately reconstructing the image signal and
improving light field image reconstruction efficiency (Fig. 2).

Fig. 2. Light field image capture used DCS method sketch
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Assuming that the light field camera array is equipped with k camera, the
measured value of the image signal capture by the camera p(p = 1, 2, ..., k) can
be expressed as yp = Φpxp, where yp ∈ R

m is the vector of the measured value
of the camera p, Φp ∈ R

m×n(m � n) is the sensing matrix of the camera, m is
called the sampling volume, R = m/n represents the sampling rate, xp ∈ R

n is
a vectorized representation of the captured image for camera p, so the camera
array signal and the set of measured values can be expressed as:

X =

⎡
⎢⎢⎢⎣

x1

x2

...
xk

⎤
⎥⎥⎥⎦ , Y =

⎡
⎢⎢⎢⎣

y1
y2
...

yk

⎤
⎥⎥⎥⎦ , Φ =

⎡
⎢⎢⎢⎣

Φ1 0 . . . 0
0 Φ2 . . . 0
...

...
. . .

...
0 0 . . . Φk

⎤
⎥⎥⎥⎦ (1)

Where X ∈ R
kn, Y ∈ R

km, Φ ∈ R
kn×km, then the measured values of

camera arrays can be expressed as Y = ΦX. In order to reconstruct the s-sparse
coefficient signal α from the measured value yp, where the measurement matrix
Φ and sparse matrix Ψ need to satisfy the RIP criterion [9], which is used to
limit the column vectors of these two matrices to irrelevant. For any s-sparse
signal α and fitting error threshold δ ⊂ (0, 1) is satisfied as:

(1 − δ)‖αp‖22 ≤ ‖Φpxp‖22 ≤ (1 + δ)‖αp‖22 (2)

After completing the design of the measurement matrix, it is necessary to
design the reconstruction algorithm to solve the problem of reconstructing the
original signal x from the measured value y. The essence of the problem is to
solve an under-determined equation, which is theoretically infinite solution, but
because of the RIP standard, the problem can be transformed into a convex
optimization problem:

arg min‖α‖1 s.t. ‖Y − ΦΨα‖2 ≤ ε (3)

Where Φ is the distributed compression sensing matrix, ε is the noise value of
the measured value, which determines the accuracy of the reconstructed image,
and the image sequence X of light field camera array is reconstructed by X = Ψα.

3.2 Light Field Images Acquisition and Sparse

The sparse representation of the light field signal is the basis and premise of
the compressive sensing application in the reconstruction of the light field. The
sparse representation of the signal is a linear combination of the primitive signals
as a few radians through the sparse matrix, which transforms the signal over a
sparse domain to reduce redundant information in the original signal, it can also
save storage space and improve signal processing efficiency. Dictionary learning
solute the problem of the atomic library can find the best linear combination
of m atoms to represent the signal. The core issue is to optimize the following
questions:

min ‖x − Dα‖22 s.t. ‖0 ≤ s (4)
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The light field image sequence has a particularity, that is, a collection object
is generally fixed, so the gap between the collected images is small. In the sparse
representation of the light field signal, the adaptive dictionary is obtained by
training the light field signal. The proposed method uses the K-SVK algorithm
[13,14,16] to train the adaptive dictionary of the light field image sequence
named Lego Knights provided by the Stanford University Computer Graphics
Laboratory signal acquisition phase.

The K-SVK algorithm is a commonly used algorithm for dictionary learn-
ing, and the resulting dictionary has a lower average representation error and a
faster convergence rate. The K-SVK dictionary learning algorithm produces a
dictionary of segmented smooth texture atoms, the visualization results of the
adaptive dictionary obtained by training the light field are shown in Figure 3,
which is capable of effectively sparse representation of other light field images.

Fig. 3. Light field dictionary learning visualization results

3.3 Light Field Images Reconstruction

The light field images is a sequence of images obtained by photographing the
same scene from different views through the camera array. There is great cor-
relation between images. Compared with traditional compressive sensing, the
distributed compressive sensing makes full use of the correlation between the
light field images to reconstruct the image. According to the characteristics of
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camera parallax fixation in the light field array, all the images are superimposed
into 3D image matrix and the image matrix is cut along each line to get the
same stepped stripes with the same inclination angle. And the slice image pix-
els are rearranged along the inclination angle θ of the stepped stripes, then the
rearranged image is maked to form into a vertical stripe image slice. Finally,
these images are reconstructed by compressive sensing [15]. Figure 4 illustrates
the light field image sequence rearrangement: (a) The 3D image matrix consists
of a sequence of light field images and is cut along each row to obtain slices of
stepped fringe features. (b) According to the characteristics of the slice image,
the inclination angle θ of the reorder line Lθ is solved. (c) The 2D vertical stripe
image is rearranged along the Lθ.

Another key problem to reconstruct light field images using DCS is to select a
measurement matrix Φ. At present non-structured measurement matrix (NSRM)
such as Gaussian matrix, Bernoulli matrix and Hadamard matrix were generally
selected to reconstruct image when use CS. This kind of measurement matrix
satisfies the RIP criterion and is simple to construct, but it has the drawbacks of
its unfixed inherent elements and large required storage space, which is difficult
to meet in a large scale of data transmission and real-time reconstruction.

Fig. 4. Light field images sequence reconstruction using DCS

In this paper, a structured random matrix [16] (SRM) with high compu-
tational speed and storage efficiency is selected for the measurement matrix
according to the mass data feature of light field, which has following advantages:
(1) SRM is almost uncorrelated to all orthogonal matrices and multiple sparse
signals and satisfy RIP criteria; (2) SRM accurately reconstructs the original
signal with fewer number of measurements than NSRM; (3) SRM can be decom-
posed into the product of many structured sub-matrices of block diagonalized
matrices, facilitating block processing and linear filtering, with low complexity
and fast computational properties. SRM is defined as:

ΦB =
√

N/M · D · F · R (5)

Where R ∈ R
n×n is a random permutation matrix or diagonal random

matrix, which randomly scrambles the order of the target signal, the diagonal
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element Rii is Bernoulli random variables in the same distribution. F ∈ R
n×n is

a standard orthogonal matrix, the role of which is to disperse the sampling sig-
nal information to all measurement points, usually with Fast Fourier Transform
(FFT), Discrete Cosine Transform (DCT), Walsh Hadamar Transform (WHT).
D ∈ R

n×n is called the subsampling matrix, which randomly selects the M-row
subset of the matrix FR. The coefficient

√
N/M is in order to make the energy

of the measurement vector consistent with the original signal, also known as the
compression sampling rate. Using the SRM as the measurement matrix to carry
out the signal reconstruction consists of three steps. First, the target signal is
pre-randomized by R; Then, the target orthogonal matrix F is applied to the
random signal of the previous step; Finally, randomly select the N column from
FR as the measurement matrix.

In this paper, taking advantage of SRM can be used for large-size images
directly observe the characteristics of sampling, the SRM-DCS algorithm, which
is suitable for light field signal acquisition, is proposed by using SRM as the
measurement matrix (Table 1).

Table 1. Proposed SRM-DCS algorithm

Input: Original images L, Termination condition ε, Image sequence number k;

Output: Reconstructed images I;

step1. k images with a size of n×n are superimposed into a three-dimensional
image matrix, and the image matrix is cut along the i(i = 1, 2, ..., m) line to
obtain a new image xi;
step2. Image xi is rearranged along the inclination angle θ of the stripes to
obtain a vectorized vertical stripe image x̂i;
step3. Constructs the SRM as the measurement matrix Φi of the image
x̂i,where R ∈ R

n×n is the random permutation matrix, F ∈ R
n×n is the

transformation matrix,D ∈ F
M×N is the M row subsampling of the random

selection matrix FR;

step4. Judging whether ̂I(i) is satisfies the termination condition: ‖D(i) −
D(i−1)‖ ≤ ε, if the termination condition is satisfied, output image I∗

(i) , oth-

erwise return to step 3 to continue execution, where D(i) =‖ ̂I(i) − ̂I(0) ‖2;

step5. The image sequence ̂I(i) is synthesized into a three-dimensional im-
age matrix I , k images with a size of n × n is extracted to complete the
reconstruction of the light field image.

4 Experiments

In order to compare the performance of SRM-DCS algorithm with other com-
pressive sensing image reconstruction algorithms, the light field image (Fig. 5)
Lego Knights provided by Stanford University Computer Graphics Laboratory
[17] was selected to experiment. The experimental hardware equipment is a com-
puter that has Intel i5-4590 CPU (3.30 GHz) and memory for 8 GB. The exper-
iments were conducted using MATLAB 2014b on Windows.
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Fig. 5. 5 × 5 Lego Knights light field images

NSRM-DCS (Gaussian) in the experiment represents that the image is recon-
structed with a random Gaussian measurement matrix, NSRM-DCS (Bernoulli)
represents the use of random Bernoulli measurement matrix for image recon-
struction, and NSRM-DCS (PartHadamard) represents the use of part of the
Hadamard measurement matrix for image reconstruction. These three methods
are commonly used algorithm implementation to do the measurement matrix
compression sensing (NSRM-DCS) with non-structured measurement matrix
(NSRM). SRM-DCS (FFT) represents a fast Fourier transform (FFT) as an
orthogonal matrix F in a structured random matrix, SRM-DCS (DCT) denotes
a discrete cosine transform (DCT) as an orthogonal matrix F in a structured
random matrix, SRM-DCS (WHT) represents the use of the Walsh Hadamard
transform (WHT) as the orthogonal matrix F in the structured random matrix.
And these three methods are commonly used algorithm implementation to do the
measurement matrix compression sensing (NSRM-DCS) with structured mea-
surement matrix (SRM).

Equation 6 shows with the increase in sample volume, the relationship
between the sampling volume and the reconstruction success rate using NSRM-
DCS and SRM-DCS. The number of experimental iterations is 200 times, the
image quality is excel-lent if the general image SNR is higher than 60 dB, the
reconstructed image whose SNR greater than 60 dB is called reconstruction suc-
cessful image in the experiment. X in this experiment is the original image, Xr

the reconstructed image, and the SNR can be expressed as:

SNR = 20 lg(‖X‖2/‖X − Xr‖2) (6)

Figure 6 represented that the success rate using SRM is better than using
NSRM acted as a measurement matrix, and the former algorithm has earlier con-
vergence. The success rate of SRR-DCS is lower than that of SRM-DCS, which
has a close to the success rate using the SRM acted as the measurement matrix
only when using the Part Hadamard acted as measurement matrix and the sam-
pling volume is less than 90. In the sampling volume of 130, the use of SRM has
higher success rate of about 20% compared with NSRM. The convergence time
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of SRM-DCS is earlier than NSRM-DCS, and Fig. 6 shows the measurement
matrix algorithm using SRM start-ed convergence when the sampling volume
reaches 110, but the measurement matrix algorithm using NSRM don’t begin to
converge when the sampling volume is 130.

Fig. 6. The Relationship between the Sampling Volume and the reconstruction success
rate using NSRM-DCS and SRM-DCS

Table 2 shows the PSNR values of the Lego Knights field images sequence,
when use NSRM-DCS and SRM-DCS to reconstruct the light field image. Among
them, the sampling rate of R increases from 0.1 to 0.9, and the result represented
that the quality of image reconstruction using SRM-DCS is better than that of
NSRM-DCS. SRM acted as the measurement matrix reconstructed more effi-
ciently than the NSRM measurement matrix, with the average quality increase
by 2.01 dB, which can further show that the reconstruction accuracy of SRM-
DCS algorithm is better than the NSRM-DCS algorithm.

Table 2. PSNR value (dB) of reconstructed images using NSRM-DCS and SRM-DCS

Sampling rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

NSRM-DCS (Gaussian) 23.13 24.32 26.63 29.52 30.95 34.26 36.30 39.54 44.59

NSRM-DCS (Bernoulli) 22.96 24.19 26.30 29.50 30.95 33.44 36.44 39.72 44.58

NSRM-DCS (PartHadamard) 23.43 24.12 26.70 29.34 31.07 34.56 36.46 40.40 44.53

SRM-DCS (DCT) 24.46 27.68 29.76 31.89 33.96 36.02 37.86 41.08 45.22

SRM-DCS (FFT) 24.31 27.88 29.84 31.81 33.56 35.47 38.33 41.05 45.23

SRM-DCS (WHT) 24.34 27.69 29.90 31.49 33.26 35.56 38.33 41.10 45.20
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5 Conclusion

In this paper, a distributed compressive sensing field reconstruction method
(SRM-DCS) using structured measurement matrix was proposed. In the light
field image acquisition stage, the K-SVD algorithm was selected to train the
adaptive light field dictionary. In the light field reconstruction phase, since the
slices of the 3D image matrix formed by the light field images sequence have
the characteristics of the stepped stripes, slices were rearranged according to
the inclination angle to obtain a 2D vertical stripe image, and the light field
images sequence is reconstructed in combination with the structured measure-
ment matrix (SRM), the experimental results indicated that the algorithm has
faster reconstruction precision and reconstruction efficiency. However, the recon-
structed light field images using DCS did not make full use of the a prior infor-
mation of the light field images sequence, so it needs to be optimized in the
reconstruction method. In the future, we can spend more attention to the recon-
struction of the light field by using the prior information of the compressive
sensing combined with the images sequence.
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