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Abstract. Discriminatively learned correlation filters (DCF) have been
widely used in online visual tracking filed due to its simplicity and
efficiency. These methods utilize a periodic assumption of the training
samples to construct a circulant data matrix, which is also introduces
unwanted boundary effects. Spatially Regularized Correlation Filters
(SRDCF) solved this issue by introducing penalization on correlation
filter coefficients. However, which breaks the circulant structure used
in DCF. We propose Faster SRDCF (FSRDCF) via reintroduction of
circulant structure. The circulant structure of training samples in the
spatial domain is fully used, more importantly, we exploit the circulant
structure of regularization function in the Fourier domain, which allows
the problem to be solved more directly and efficiently. Our approach
demonstrates superior performance over other non-spatial-regularization
trackers on the OTB2013 and OTB2015.
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1 Introduction

Visual tracking is one of the core problems in the field of computer vision with a
variety of applications. Generic visual tracking is to estimate the trajectory of a
target in an image sequence, given only its initial state. It is difficult to design a
fast and robust tracker from a very limited set of training samples due to various
critical issues in visual tracking, such as occlusion, fast motion and deformation.

Recently, Discriminative Correlation Filter (DCF) [1] has been widely used
in visual tracking because of its simplicity and efficiency, and there are many
improvements [2,5-7,12] about DCF to address the above mentioned problems.
These methods learn a correlation filer from a set of training samples to encode
the targets appearance. Nearly all correlation filter based trackers utilize the cir-
culant structure of training samples proposed in work [10]. The circulant struc-
ture allows the correlation filter training and target detection computation effi-
ciently. However, this structure also introduces unwanted boundary effects that

© Springer Nature Singapore Pte Ltd. 2017
J. Yang et al. (Eds.): CCCV 2017, Part I, CCIS 771, pp. 551-562, 2017.
https://doi.org/10.1007/978-981-10-7299-4_46



552 X. Hu and Y. Yang

leads to an inaccurate appearance mode. To address the boundary effects prob-
lem, Danelljan et al. propose Spatially Regularized Correlation Filters (SRDCF)
[6]. The SRDCF introduces penalization to force the correlation filters to con-
centrate on center of the training patches. This penalization allows the tracker to
be trained on a larger area without the effect of background, so the SRDCF can
handle some challenging cases such as fast target motion. However, the penal-
ization makes the correlation filters complex to solve, which is unacceptable for
an online visual tracking situation. In this work, we revisit the SRDCF, in our
formulation, we make full use of the circulant structure to simplify the problem.

In this paper, we propose Faster Spatially Regularized Discriminative Cor-
relation Filters (FSRDCF) for tracking. The circulant structure of training data
matrix in the spatial domain is utilized, besides, we exploit the circulant struc-
ture of regularization matrix in the Fourier domain. Our approach more com-
putation efficient without any significant degradation in performance and more
suitable for online tracking problems. To validate our approach, we preform com-
prehensive experiments on the most popular benchmark datasets: OTB-2013
[18] with 50 sequences and OTB-2015 [19] with 100 sequences. Our approach
obtains a more than twice faster running speed and faster startup time than the
baseline tracker SRDCF and achieves state-of-the-art performance over other
non-spatial-regularization trackers.

2 Spatially Regularized DCF

After Bolme et al. [1] first introduced the MOSSE filter, lots of notable improve-
ments [5-7,12,13] are proposed from different aspects to strengthen the correla-
tion filter based trackers. New features have been widely used, such as HOG [4],
Color-Name [17] and deep features [13,15]; feature integration is also used [11].
To address occlusion, part-based trackers [12] are widely adapted. However, the
periodic assumption also produced unwanted boundary effects. Galoogahi et al.
[8] investigate the boundary effect issue, their method removes the boundary
effects by using a masking matrix to allow the size of training patches larger
than correlation filters. They use Alternative Direction Method of Multipliers
(ADMM) to solve their problem and have to make transitions between spatial
and Fourier domain in every ADMM iteration, which increasing the trackers
computational complexity. To get rid of those transitions, Danelljan et al. [6]
propose the spatially Regularized Correlation filters (SRDCF), they introduce a
spatial weight function to penalize the magnitude of the correlation filter coef-
ficients, and use Gauss-Seidel method to solve the filters, in this way, both the
boundary effects and the transitions in [8] are avoided. The work [3] also use a
spatial regularization like the SRDCF and derived a simplified inverse method
to get a closedform solution. However, these methods still have a relatively high
computational complexity. In our proposal, we apply a spatial regularization like
[3,6], by exploiting circulant structure of train samples in the spatial domain and
regularization matrix in the Fourier domain, our formulation has no problem
transition, correlation filters needed are solved directly.
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(a)Standard DCF (b)Our FSRDCF

Fig. 1. Visualization of the filter coefficients trained by the standard DCF (a) and our
FSRDCF (b). The top layer is the learned filter corresponding to the bottom layer
training patch. Target is outlined by the green rectangle. As we can see, our filter puts
more attention on the object than the standard DCF.

Standard SRDCF Training and Detection. The way to handle the bound-
ary effects in the SRDCFis most popular in literature. So we give some details
of the convolution filters training and Detection after introduced the regular-
ization. In this section, we use the term convolution, because the SRDCF are
modeled with convolution instead of correlation, we will give some key differ-
ences used in our proposal in Sects. 3 and 4. Convolution filters are learned from
a set of training samples {(z,yx)}:_,. Every training sample x), € RI>XM*N
consists of a d-channel feature map with spatial size of M x N extracted from a
training image patch. We use xéc to represent the [th feature layer of xy.yy, is the
optimal convolution output corresponding to training sample z;. The Spatially
Regularized Correlation Filters (SRDCF) is obtained from the convex problem,

t d
m}HZakIISf(évk) —yll? + D o £, (1)

k=1 =1

where the oy > 0 is the weight of every training sample xj, spatial regularization
is introduced by w, which is a Gaussian shaped function with smaller values
in center area and bigger values in marginal area, © denotes the element-wise
multiplication. Sy (z) is the convolution function,

d
Splar) =Y i+ f. (2)
=1

where % denotes the circular convolution. With the use of Parseval’s theorem
and convolution property, the Eq. 1 is transformed into Fourier domain,

t 24
min Z Qg + Z
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k=1
where the hat denotes Discrete Fourier Transformed (DFT) of a variable. For
convenience, all variables in Eq. 3 are vectorized, convolution is transformed into
matrix multiplication,
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Here, bold letters are the corresponding variables’ vectorization form, D(v)
is a diagonal matrix with the elements of the vector in its diagonal. C(W) is
a matrix with its rows consist of all of the shift of the vector. Equation4 is a
complex convex problem, because the DFT of a real-valued function is Hermitian
symmetric, so the convex problem (4) can transformed into a re-al-valued one
by a unitary matrix B € RMNXMN
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Here, D} = BD(x})BH, f! = Bf!, ), = By, and C = ﬁBC(W)BH, where
the M denotes the conjugate transpose of a matrix. Then concatenate all layers of
training data and convolution filters, in other words, f = ((f1)7,---, (fH)™)T
and Dy = (D}, -, D{), Eq.5 is simplified as,

¢ ~ 2 ~112
min Y ay HDk.f - QkH + HWfH : (6)
o=

where W € RIMNXAMN g 4 block diagonal matrix with its diagonal blocks being
equal to C. Letting the derivative of Eq. 6 with respected to f be zero,

t t
)~ DDy + WHW) £ = ax D}l ik (7)
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Due to the sparsity of Dy and W, problem (7) can be efficiently
solved by Gauss-Seidel method with the computational complexity of O((d +
K?%)dM N Nggs), where the K is the number of non-zero entries in @, the Ngg is
the number of Gauss-Seidel iterations.

Excluding the feature extraction, the total computational complexity of
SRDCEF tracker is O(dSM N log(M N)+SMN Nyg + (d+ K?)dM N Ngg). Here,
S denotes the number of scales in the scaling pool, Ny¢ is the number of Newton
iterations in sub-grid detection. It’s worth noting that the result takes none of
the transformations into consideration, especially from Egs. 4 to 5, which includ-
ing high dimensional matrix multiplication. In reality, those transformations are
time consuming. In our approach, all of them will be by-passed. We’ll directly
get the correlation filters in Eq. 8.

3 Faster SRDCF

We revisit spatially regularization correlation filters for tracking from Ridge
Regression viewpoint. In our proposal, problem is solved more directly by exploit-
ing both circulant structure in training data and regularization function.
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Our proposal is to find a function g(z) = %2 to minimizes the squared error
over all training samplesz (d-channel feature map) and their regression target

Yk,
2
mmZak Zkal —ui| + Z Ipw)f| (8)
k=1
For simplicity, we let y! = yi. In general Ridge Regression problem, each
row of X ,lc is a vectorized training sample, here, rows of X ,lc consist of all circular
shift of wfc,X,lcfl is the correlation between a:%C and f!, it’s worth noting that

XL # vee(ah, * f'), where vec(v) = v. Now we can directly take derivative of
Eq. 1 with respected to f and let the derivative be zero, then we get,

d

d
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Because all variables in Eq. 8 are real-valued, so we use (*)T and (*)! equiv-
alently. Due to the circulant structure of X ,lc, we have,

X} = FD(a})FH (10)

where F = F®F is two-dimensional DFT matrix for vectorized two-dimensional
signals, F is known as DFT matrix, ® denotes the Kronecker product. Both F
and F are constant matrix and unitary. We apply Egs. 10 to 9,

d t d
ZF( (@ © &) + FID(w)iD )FH:ZZFD SFHy (11)
=1
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We can see that because of the introduction of regularization w, a simple
closed-form solution can’t be obtained from Eq.11 like the way in work [10].
So far, we only use the circulant structure of training data matrix X ,i in the
spatial domain. From now on, we will further exploit the circlulant structure of
the regularization matrix D(w).

From Eq. 10, we can know that a spatially circulant matrix can be diagonal-
ized by the matrix of F in Fourier domain, however, from another point of view,
we can also get,

FEXLEF = D(a!) (12)

The first row of X}, is equal to F~1(&!), all other rows are the circular shifts

of F71(&}). So if we have a diagonal matrix, then we can transform it to a

circulant matrix by F In Eq. 11, D(w) is a real-valued diagonal matrix, so we
have

FED(w)"D(w)F = FD(w)"D(w)F? = RFR (13)

where R is circulant matrix constructed from F(w), where F denotes DFT. For
a real-valued function, unitary DFT and IDFT have the same results, here, we
treat D(w) as a spatial domain signal, so we use DFT instead of IDFT. If we
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choose a real-valued even regularization function w, therefore, F~!(w) is a real-
valued vector, then we will get a real-valued regularization matrix. Applying
Egs. 13 to 11, we have,

t

3 F<D(ﬁ:§€* © k) + RHR> FHf = Z ZFD OEMyL o (14)

k=11=1 k=11=1

Here, we call R the potential circulant structure of regularization function w
in the Fourier domain. By using the unitary property, we can further get,
t
3 3(Plaf e o W) ()" £ = 33 - 0tel 69 o (1

11=1 k=11=1

where FF = (F®F)(F®F) = (FF) ® (FF) is a permutation matrix. To simplify
Eq. 15, we define f = ((fl)T, e ,(fd)T)T, &, = (@7, (@)T)T, then the
Eq. 15 can be equivalently expressed as,

t t

> (Plai o0 + BB )P(f) = 3 a0 Plah) (16)
k=1 k=1

where B is dM N x dM N block diagonal matrix with each diagonal block being
equal to R, P(-) is a permutation function according to FF. In Sect.4, we will
find that we just need to find the solution of P(f) = fp instead of f, so what
we really used equation is,

t

Z(D(ﬁ;; © &) + BHB> fp= gfc; (17)

k=1

Because we use the same regression targets for all frames, we define gy =
((yl)T, ceey (yd)T)T. Equation 17 defines a dM N x dM N linear system of equa-
tions, its coefficients matrix is real-valued, so we can solve it directly. We can
see that for each frame what we need to do is element-wise multiplication. The
regularization part BHB and regression targets part P(g) is constant for all
frames.

In Eq. 17, if we choose B'B = AI, which is equivalent to choose a regular-
ization matrix w with all elements being equal to v/, we get a standard DCF.
In this paper, w is a real-valued even Gaussian shaped function, profiting from
its smooth property, we get a sparse coefficients matrix for Eq. 17, which makes
significant difference for optimization. The Gauss-Seidel method is used to solve
Eq. 17. Figure 1 shows the visualization of the filter solved from our proposal.

4 Our Tracking Framework

In this section, we describe our tracking framework according to the Faster
Spatially Regularized Discriminative Correlation Filters proposed in Sect. 3.
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4.1 Training

At the first frame, to give a better initial point for Gauss-Seidel methods, we
obtain a precise solution of Eq. 17 by,

f, = (D(x; ©%1) +B"B) ' (%] 0 P(®)) (18)

In the subsequent frames, the starting point in current frame (time ¢ ) is the
optimization results in last frame (time ¢ — 1). For simplicity, we define A; and

by as,
t

A=) (D(fc;; O xy) + BHB> (19)

k=1
Z X, OP(y (20)

Equation 17 can be rewrite as Atfp = by, we split A; into data part D; and
regularization part BYB, split by into d; and P(¥), then we update our model
by,

Ay = (1—7)Dy_1 +9D(X; ©@%;) + BB (21)

by = ((1 = y)di—1 +7%;) O P(¥) (22)

where D; = D(X} ® X1), d; = %x}. In Egs. 21 and 22, BEB, P(y) are constant
during model updating. We just need to precompute once for a sequence. To get

new correlation filters fp, a fixed Ngg numbers of Gauss-Seidel iterations are
conducted after model updating Eqs. 21 and 22.

4.2 Detection

At the detection stage, according Eq.8, the location of the target is estimated
by finding the peak correlation between correlation filters f, and new feature
maps,

d d
maxZXffl = maxz:xf5 * f! (23)
I=1 1=1

where x denotes the correlation operator. For the sake of computational effi-
ciency, we use convolution instead of correlation,

d d
maxei * fl = maxeé (= fh (24)
=1 =1

where — denotes 180° rotation operator. Both x; and f are real-valued, so their
DFT is Hermitian symmetric. Computing Eq. 24 in Fourier domain, finally we

get,
l

max F ! <Z %o f;,) (25)

=1
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So in Eq. 16, we directly solve P(f') = fp instead of f. At detection stage, we also
use the scaling pool technique in paper [16] and Fast Sub-grid Detection in work
[6].

5 Experiments

On benchmark datasets: OTB2013, OTB2015. To make a fair comparison with
the baseline tracker SRDCF [6], we use most of the parameters used in SRDCF
throughout all our experiments. Because we need to get real-valued DFT coef-
ficients of the regularization function w and use Matlab as our implementation
tool, so we reconstructed w from function w(m,n) = p+n(m/o1)? + n(n/o2)?,
where [01,02] = B[P, Q], P x Q is the size of target. m = [—(M/2) : (M —2)/2)],
n=[—(N/2): (N —2)/2)]. In our experiments, [ is set to 0.8. Our source code
is fully available at the githuab website!.

5.1 Baseline Comparison

We do comprehensive comparison between our approach and the baseline tracker
SRDCF [6]. Accuracy, robustness and speed are taken into consideration. In
this section, all experiments are performed on a standard desktop computer
with Intel Core i5-6400 processor. For the baseline tracker, we use the Matlab
implementation provided by authors.

Our comparison follows the protocol proposed in [18]. One-Pass Evaluation
(OPE), Temporal Robustness Evaluation (TRE) and Spatial Robustness Eval-
uation (SRE) are performed. TRE runs trackers on 20 different length sub-
sequences segmented from the original sequences, SRE run trackers with 12
different initializations constructed from shifted or scaled ground truth bound-
ing box. After running the trackers, we report the overall results using the area
under the curve (AUC) based on success plot and mean overlap precision (OP).
Besides, attribute-based evaluation results are also reported. The OP is cal-
culated as the percentage of frames where the intersection-over-union overlap
with the ground truth exceeds a threshold of 0.5. Attributes are including scale
variation (SV), occlusion (OCC), deformation (DEF), fast motion (FM), in-
plane-rotation (IPR), out-plane-rotation (OPR), background cluster (BC) and
low resolution (LR), illumination variation (IV), out of view (OV), motion blur
(MB).

In Table 1, our tracker runs at 11.4 fps, 11.1 fps on OTB-2013 and OTB-2015
datasets respectively, which are twice faster than the SRDCF on both datasets.
At the same time, our approach start up much faster which is very important
when tracker needs to be initialized frequently. Table2 shows OPE results on
OTB-2013 and OTB-2015, for clarity, we reported 9 attribute-based evaluation
results. For overall performance, our approach outperforms the baseline tracker
by 1.1%, 2.7% in AUC and OP respectively on OTB-2013 dataset and achieves

! https://github.com/KnockKnock13/FSRDCF .git.
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Table 1. The comparison of speed and start-up time on OTB-2013 and OTB-2015.
Our approach runs more than twice fast as the baseline tracker SRDCF and a faster
startup time.

OTB-2013 OTB-2015

Speed (fps) | Start-up (s) | Speed (fps) | Start-up (s)
SRDCF 5.7 1.27 5.3 1.36
FSRDCF | 11.4 0.51 11.1 0.50

Table 2. Robustness evaluation comparison on OTB-2013 and OTB-2015 datasets.
Both trackers achieve equivalent results in TRE on OTB-2015 dataset.

OTB-2013 Overall

SV |OCC |DEF OV |[IPR OPR BC LR |[IV |AUC | OP
OTB13 | SRDCF |59.5/62.7 63.5 |55.5|57.3|60.4 |58.7|42.6|57.6|63.0 789
FSRDCF 61.8 63.6 |65.4 |54.9/59.6/63.0 |61.9]42.1|58.6 64.4 |81.6
OTB15 | SRDCF |56.9 55.7 |54.7 |46.1|54.6|55.1 |58.4|48.1 60.9|59.9 |73.1
FSRDCF | 56.4 | 56.1 |54.3 |45.6|56.4|56.3 |59.0|46.8|60.859.5 |73.4

equivalent performance on OTB-2015 dataset. For attribute-based evaluation,
our method wins in most attribute sub-datasets on OTB- 2013 dataset. Both
trackers have no significant difference on OTB-2015 dataset. Table 3 shows the
robustness evaluation results. Except for our tracker is a little bit more sensitive
to the background due to bigger derivation parameters, we think two trackers
have the same robustness performance.

5.2 0OTB-2013 and OTB-2015 Datasets

Finally, we perform a comprehensive comparison with 9 recent state-of-art track-
ers: DLSSVM [16], SCT4 [2], MEEM [20], KCF [10], DSST [5], SAMF [11], LCT
[14], Struck [9] and the baseline tracker SRDCF [6].

State-of-the- Art Comparison. We show the results of comparison with state-
of-the-art trackers on OTB-2013 and OTB-2015 datasets over 100 videos in
Table 4, only the results for the top 8 trackers are reported in consideration of
space. The results are presented in OP and ranking according to performance
on OTB-2015 dataset. In Table4, we also give the running speed of trackers.
The best results on both datasets are obtained by our tracker with mean OP of
81.6%, and 73.4%, outperforming the best non-spatial regularization trackers by
8.4% and 6.3% respectively. From the perspective of running speed, our approach
runs at 11.1 frames per second, which is more than twice faster than the tracker
ranking the second. Our tracker gets a better balance between accuracy and
efficiency.
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Table 3. Comparison with baseline tracker on OTB-2013 and OTB-2015. The results
in the table are based on success plot and all reported in percent.

OTB-2013 | OTB-2015
SRE | TRE SRE |TRE
SRDCF | 0.569 | 0.647 | 0.542 | 0.613
FSRDCF | 0.557 | 0.650 | 0.522 | 0.607

Table 4. State-of-the-art trackers comparison on OTB-2013 and OTB-2015 datasets
in OP (in percent). The best two results are shown in red and blue respectively. Our
approach achieves the best results on both datasets and have a balanced perform on
accuracy and speed.

DSST | SCT4 | DLSSVM | MEEM | LCT | SAMF | SRDCF | FSRDCF
OTB-2013 |66.7 |73.9 |725 70.6 73.8 |73.2 78.9 81.6
OTB-2015 61.3 |62.0 |624 62.7 62.9 | 67.1 73.1 73.4
Speed (fps) |29.4 |32.2 9.5 8.2 20.3 |16.8 5.3 11.1

Figure 3 shows the success plots on OTB-2013 and OTB-2015 datasets. The
trackers are ranked according to the area under the curve (AUC) and displayed
in the legend. Our tracker ranks the first on OTB-2013 with a AUC of 64.4%,
outperforming the best non-spatial regularization tracker by 5.1%, and ranks the
second with a AUC of 59.5%, outperforming the best non-spatial-regularization
tracker by 4.3% on OTB-2015.

Robustness Comparison. Like in Sect.5.1, we perform SRE and TRE to
compare the robustness of our tracker to the state-of-the-art trackers. Figure 2
shows success plots for SRE and TRE on OTB-2015 dataset with 100 videos.
Our approach outperforms the best non-spatialregularization tracker 1% and 2%
in SRE and TRE respectively.

| Success plots of scale variation (65) | Success plots of in-plane rotation (51) , Success plots of background clutter (31) | Success plots of deformation (45)
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Fig. 2. Attribute-based evaluations of our approach on OTB-2015 dataset. Number in
bracket of each plot title is the videos in corresponding sub-dataset. Our tracker demon-
strates superior performance compared to other non-spatial regularization trackers.
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Success plots of OPE on OTB-2013 | Success plots of OPE on OTB-2015 ,, Success plots of SRE on OTB-2015 , Success plots of TRE on OTB-2015
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Fig. 3. Success plots showing a comparison with state-of-the-art trackers on OTB-2013
and OTB-2015 datasets. Our FSRDCF ranks the first on OTB-2013 and the second on
OTB-2015. Robustness to initialization comparison on the OTB-2015 dataset. Success
plots for both SRE and TRE are shown, our tracker achieves state-of-the-art perfor-
mance.

Attribute Based Comparison. We performed attribute-based evaluations
of our approach on OTB-2015 and compare to other state-of-the-art trackers.
Our approach wins on 10 attribute sub-datasets compared to other non-spatial-
regularization trackers, Fig.2 shows the success plots of 4 different attributes
on OTB-2015 dataset. Due to the using of spatial regularization, the spatially
regularized trackers can learn more discriminative filters and detect targets from
a larger area than standard DCF, so our tracker have big advantages in situations
such as occlusion, background cluster and fast motion over other non-spatial-
regularization trackers.

6 Conclusion

We introduce a new formulation of Spatially Regularized Discriminative Corre-
lation Filters (FSRDCF) to efficiently learn a spatially regularized correlation
filer. The use of circulant structure of data matrix in the spatial domain and
circulant structure of regularization function in the Fourier domain significantly
simplify the problem construction and solving. In our approach, both problem
construction and solving are in the spatial domain. Our approach validated on
the OTB-2013 and OTB-2015 datasets, and obtains a more than twice faster
running speed and much faster start-up time than the baseline tracker SRDCF
without any performance degradation. At the same time, our approach demon-
strates superior performance compared to other non-spatial-regularization track-
ers.
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