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Abstract. With the development of consumer light field cameras, the
light field imaging has become an extensively used method for captur-
ing the 3D appearance of a scene. The depth estimation often require
a dense sampled light field in the angular domain. However, there is an
inherent trade-off between the angular and spatial resolution of the light
field. Recently, some studies for novel view synthesis or angular super-
resolution from a sparse set of have been introduced. Rather than the
conventional approaches that optimize the depth maps, these approaches
focus on maximizing the quality of synthetic views. In this paper, we
investigate how the depth estimation can benefit from these angular
super-resolution methods. Specifically, we compare the qualities of the
estimated depth using the original sparse sampled light fields and the
reconstructed dense sampled light fields. Experiment results evaluate the
enhanced depth maps using different view synthesis approaches.
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1 Introduction

Light field imaging [4,6] has emerged as a technology allowing to capture richer
information from our world. Rather than a limited collection of 2D image, the
light field camera is able to collect not only the accumulated intensity at each
pixel but light rays from different directions. Recently, with the introduction of
commercial and industrial light field cameras such as Lytro [1] and RayTrix [2],
light field imaging has been one of a most extensively used method to capture
3D information of a scene.

However, due to restricted sensor resolution, light field cameras suffer from
a trade-off between spatial and angular resolution. To mitigate this problem,
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researchers have focused on novel view synthesis or angular super-resolution
using a small set of views [7,8,10,15,16] with high spatial resolution. Typical
view synthesis or angular super-resolution approaches first estimate the depth
information, and then warp the existing images to the novel view based on the
depth [12,16]. However, the depth-based view synthesis approaches rely heavily
on the estimated depth, which is sensitive to noise, textureless and occluded
regions. In recent years, some studies based on convolutional neural network
(CNN) aiming at maximizing the quality of the synthetic views have been pre-
sented [5,14].

In this paper, we investigate how the depth estimation can benefit from these
angular super-resolution methods. Specifically, we compare the qualities of the
estimated depth using the original sparse sampled light fields and the recon-
structed dense sampled light fields. Experiment results evaluate the enhanced
depth maps using different view synthesis approaches.

2 Depth Estimation Using Angular Super-Resolved Light
Fields

In this section, we describe the idea that uses super-resolved light fields in
angular domain for depth estimation. We first investigate several angular
super-resolution and view synthesis approaches. Then several depth estimation
approaches are introduced using the super-resolved light field.

2.1 Angular Super-Resolution for Light Fields

Two angular super-resolution (view synthesis) approaches are investigated in the
paper, which were proposed by Kalantari et al. [5] and Wu et al. [14]. Kalantari
et al. [5] proposed a learning-based approach to synthesize novel views using
a sparse set of input views. Specifically, they break down the process of view
synthesis into disparity and color estimation and used two sequential CNNs to
model them. In the disparity CNN (see Fig. 1), all the input views are first
warped (backwarped) to the novel view with disparity range of [−21, 21] and
level of 100. Then the mean and standard deviation of all the warped input
images are computed at each disparity level to form a feature vector of 200
channels.

In the color CNN, the feature vector is consisted of warped images, the
estimated disparity and the position of the novel view, where the disparity is
applied to occlusion boundaries detection and information collection from the
adjacent regions, and the position of the novel view is used to assign the warped
images with appropriate weights. The networks contain 4 convolutional layers
with kernel sizes decreased from 7 × 7 to 1 × 1, where each layer is followed
by a rectified linear unit (ReLU); the networks were trained simultaneously by
minimizing the error between synthetic and ground truth views.

Unlike Kalantari et al. [5] that super-resolves light fields directly using
images, Wu et al. [14] super-resolve light fields using EPIs. They indicated that
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Fig. 1. The disparity CNN consists of four convolutional layers with decreasing kernel
sizes. All the layers are followed by a rectified linear unit (ReLU). The color CNN has
a similar architecture with different number of input and output channels.

the sparse sampled light field super-resolution involves information asymmetry
between the spatial and angular dimensions, in which the high frequencies in
angular dimensions are damaged by under-sampling. Therefore, they model the
light field super-resolution as a learning-based angular high frequencies restora-
tion on EPI.

Specifically, they first balance the information between the spatial and angu-
lar dimension by extracting the spatial low frequencies information. This is
implemented by convolving the EPI with a Gaussian kernel. It should be noted
that the kernel is defined in 1D space because only the low frequencies infor-
mation in the spatial dimension are needed to be extracted. The EPI is then
up-sampled to the desired resolution using bicubic interpolation in the angu-
lar dimension. Then a residual CNN is employed, which they called “detail
restoration network” (see Fig. 2), to restore the high frequencies in the angu-
lar dimension. Different with the CNN proposed by Kalantari et al. [5], the
detail restoration network is trained specifically to restore the high frequency
portion in the angular dimension, rather than the entire information. Finally,
a non-blind deblur is applied to recover the high frequencies depressed by EPI
blur. Compared with the approach by Kalantari et al., Wu et al.’s approach
has more flexible super-resolution factor; moreover, because of the depth-free
framework, their approach achieves higher performance especially in occluded
and transparent regions and non-Lambertian surfaces.

The architecture of the detail restoration network of Wu et al. is outlined in
Fig. 2. Consider an EPI that is convolved with the blur kernel and up-sampled
to the desired angular resolution, denoted as E′

L for short, the desired output
EPI f(E′

L) is then the sum of the input E′
L and the predicted residual R(E′

L):

f(E′
L) = E′

L + R(E′
L). (1)

The network for the residual prediction comprises three convolution layers. The
first layer contains 64 filters of size 1 × 9 × 9, where each filter operates on 9 × 9
spatial region across 64 channels (feature maps) and used for feature extraction.
The second layer contains 32 filters of size 64×5×5 used for non-linear mapping.
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The last layer contains 1 filter of size 32×5×5 used for detail reconstruction. Both
the first and the second layers are followed by a rectified linear unit (ReLU). Due
to the limited angular information of the light field used as the training dataset,
we pad the data with zeros before every convolution operations to maintain the
input and output at the same size.

The desired residuals are r = e′ − e′
L, where e′

L are the blurred and interpo-
lated low angular resolution sub-EPIs. The goal is to minimize the mean squared
error 1

2 ||e′−f(e′
L)||2. However, due to the residual network we use, the loss func-

tion is now formulated as follows:

L =
1
n

n∑

i=1

||r(i) − R(e′(i)
L )||2, (2)

where n is the number of training sub-EPIs. The output of the network R(e′
L)

represents the restored detail, which must be added back to the input sub-EPI
e′

L to obtain the final high angular resolution sub-EPI f(e′
L).

They apply this residual learning method for the following reasons. First,
the undersampling in the angular domain damages the high frequency portion
(detail) of the EPIs; thus, only that detail needs to be restored. Second, extract-
ing this detail prevents the network from having to consider the low frequency
part, which would be a waste of time and result in less accuracy.

Compared with the approach by Kalantari et al., Wu et al.’s approach has
more flexible super-resolution factor; moreover, because of the depth-free frame-
work, their approach achieves higher performance especially in occluded and
transparent regions and non-Lambertian surfaces.

Fig. 2. Detail restoration network proposed by Wu et al. [14] is composed of three
layers. The first and the second layers are followed by a ReLU. The final output of the
network is the sum of the predicted residual (detail) and the input.

2.2 Depth Estimation for Light Fields

The Approach for Depth Measurement. In this subsection, we investigate
several depth estimation approaches for light field data.

Tao et al. [9] proposed a depth estimation approach that combines depth
cues from both defocus and correspondence using EPIs extracted from a light
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field. Since the slope of a line in an EPI is equivalent to a depth of a point in the
scene [12], the EPIs are sheared to several possible depth values for computing
defocus and correspondence cues responses. For a shear value α, a contrast-based
measurement L̄α is performed at each pixel by averaging the intensity values in
the angular dimension of the EPI. Then the defocus response Dα is measured by
weighting the contrast-based measurements in a window in spatial dimension of
the EPI. For the correspondence cue of a shear value α, the variance of each pixel
in spatial dimension σα is computed, then the correspondence response Cα is
the average of the variance values in a patch. After the computations of defocus
and correspondence cue, a MRF global optimization is performed to obtain the
final depth map.

Wang et al. [11] developed a depth estimation approach that treats occlusion
explicitly. Their key insight is that the edge separating occluder and correct
depth in the angular patch correspond to the same edge of occluder in the
spatial domain. With this indication, the edges in the spatial image can be
used to predict the edge orientations in the angular domain. First, the edges
on the central pinhole image are detected using Canny operation. Based on
the work by Tao et al. [9] and the occlusion theory described above, the initial
local depth estimation is performed on the two regions in the angular patch of
the sheared light field. In addition, a color consistency constraint is applied to
prevent obtaining a reversed patch which will lead to incorrect depth estimation.
Finally, the initial depth is refined with global regularization.

The Approach for 3D Measurement. In this subsection, we’re going to focus
on the 3D measurement of the light field imaging refocus: (a) We propose a novel
digital refocusing algorithm to realize the refocus of the light field imaging. (b)
We choose and refine the clarity-evaluation-function and interpolation method
to establish the system of the evaluation and the refinement about light field
imaging. (c) We take the corrected arithmetic mean filtering to refine the results
of the 3D measurement.

(a) Refocus of the light field: Light fields transfer one plane to the other, the
position coordinate can be defined as

[u′, v′, s′, t′] =

⎡

⎢⎢⎣

1 0 d 0
0 1 0 d
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ · [u, v, s, t]T , (3)

where, Tc =

⎡

⎢⎢⎣

1 0 d 0
0 1 0 d
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦, [u, v] represents the plane position of the camera array,

[s, t] represents the direction information.
First, we transform the light field information to the standard description

of the light field. pix is the size of the pixel, and fm is the focal length of the
camera. We can get:
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[
s
t

]
=

pix

fm

[
px

py

]
, (4)

[
u
v

]
= pix

[
gridx

gridy

]
, (5)

where, [gridx, gridy]T is the center of the camera pixel coordinate.

(b) Principle of focus ranging: Light field camera still follow the principle of
optical imaging. On the contrary, if the object deviating from the ideal image
plane, beyonding the scope of the depth of field, which can cause the focal and
imaging blur.

1
f

= − 1
u

+
1
v
, (6)

where, f represents the focal length of the light field camera. u represents the
object distance. v represents the image distance. Here we use virtual image for
distance measurement, so the value of the object distance is negative. Since light
field camera focal length is known, and therefore is obtained by heavy focus on
clear imaging like distance, which can calculate the distance. The above is the
basic principle of focusing range.

(c) Corrected arithmetic mean filtering: Due to the light distribution or upheaval
gaussian noise image gradient, so we choose the adjusted arithmetic average
filtering processing.

f(x, y) =
1√

m2 + n2

∑

(s,t)∈sxy

g (s, t), (7)

where, sxy represents rectangular window in the coordinate (x, y), which size is
m × n. g(x, y) represents the jamming image.

3 Experimental Result

In this section, the proposed idea is evaluated on synthetic scenes and real-world
scenes. We evaluate the quality of super-resolved light fields by measuring the
PSNR values of synthetic views against ground truth images. And the quality of
estimated depth maps using super-resolved light fields is compared with those
using low angular resolution light fields. For synthetic scenes, ground truth depth
maps are further applied for numerical evaluations.

3.1 Synthetic Scenes

The synthetic light fields in HCI datasets [13] are used for the evaluations. The
input light fields have 3× 3 views, where each view has a resolution of 768× 768
(same as the original dataset); and the output angular resolution is 9 × 9 for
comparison with the ground truth images.
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Fig. 3. Comparison of synthetic views produced by Kalantari et al.’s approach [5] and
Wu et al.’s approach [14] on synthetic scenes. The ground truth views are shown on
the left column, and the right columns show the close-up versions of the ground truth
views, views produced by Kalantari et al.’s approach [5] and by Wu et al.’s approach
[14], respectively.

Table 1. Quantitative results of reconstructed light fields on the synthetic scenes of
the HCI datasets. The angular resolutions of input light fields are set to 3× 3, and the
output angular resolutions are 9 × 9.

Buddha Mona Papillon

Kalantari [5] 34.05 32.53 28.26

Wu [14] 43.20 44.37 48.55

Table 1 shows a quantitative evaluation of the super-resolution approaches
on synthetic scenes. The approach by Wu et al. [14] produces light fields of
higher quality than those yielded by Kalantari et al. [5], because the CNNs in
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the latter approach are specifically trained on real-world scenes. Figure 3 shows
the synthetic images in a certain viewpoint. The approach by Wu et al. [14]
has better performance especially in the occluded regions, e.g., the board in the
Buddha case, the leaves in the Mona case and the antenna in the Papillon case.

The numerical results of depth maps using the approaches by Tao et al.
[9] and Wang et al. [11] are tabulated in Table 2. And Fig. 4 demonstrates the
depth maps estimated by Wang et al.’s approach [11] on the Buddha using input
low angular resolution (3 × 3) light field, ground truth high resolution (9 × 9)
light field and super-resolved light fields (9 × 9) by Kalantari et al. [5] and Wu
et al. [14], respectively. The depth estimation using super-resolved light fields
show prominent improvement when compared with the results using input low
resolution light fields. In addition, due to the better quality of synthetic views

Fig. 4. Comparison of depth maps estimated by Wang et al.’s approach [11] using light
fields of different angular resolutions on the Buddha.

Table 2. RMSE values of the estimated depth using the approaches by Tao et al.
[9]/Wang et al. [11] on synthetic scenes of HCI datasets.

Buddha Mona Papillon

Input views 0.2642/0.2926 0.2115/0.2541 0.1871/0.1533

Kalantari [5] 0.1721/0.1576 0.0876/0.0829 0.1665/0.1430

Wu [14] 0.0550/0.0401 0.0678/0.0517 0.0610/0.0532

GT Light Fields 0.0543/0.0393 0.0652/0.0529 0.0583/0.0455
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5 14

Fig. 5. Comparison of synthetic views produced by Kalantari et al.’s approach [5] and
Wu et al.’s approach [14] on real-world scenes.

produced by Wu et al.’s approach [14], especially in the occluded regions, the
estimated depth maps are more accurate than those using super-resolved light
fields by Kalantari et al.’s approach [5].

3.2 Real-World Scenes

The Stanford Lytro Light Field Achieve [3] is used for the evaluation on real-
world scenes. The dataset is divided into several categories including occlusions,
and refractive and reflective surfaces, which are challenge cases to test the robust-
ness of the approaches. We use 3 × 3 views to reconstruct 7 × 7 light fields.

Table 3 lists the numerical results of the super-resolution approaches on the
real-world scenes. The approach by Wu et al. [14] shows better performance
in terms of PSNR. Figure 5 shows some representative cases that contains com-
plex occlusions or non-Lambertian surfaces. The networks proposed by Kalantari
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Fig. 6. Comparison of depth maps estimated by Tao et al. [9] and Wang et al. [11]
using light fields of different angular resolutions on the Reflective surfaces 29.

et al. [5] were specifically trained for Lambertian regions, thus tend to fail in the
reflective surfaces, such as the pot and pan in the Reflective 29 case. In addition,
due to the depth estimation-based framework, the synthetic views have ghost-
ing and tearing artifacts in the occlusion boundaries, such as the branches in
the Occlusion 16 case and the boundary between air-condition and grass in the
Flowers & plants 7 case.

Figure 6 shows the depth maps estimated by Tao et al.’s approach [9] and
Wang et al.’s approach [11] using input low angular resolution (3 × 3) light
field, super-resolved light fields (7 × 7) by Wu et al. [14] and ground truth high
resolution (7 × 7) light field, respectively. The quality of estimated depth maps
are significantly improved using super-resolved light fields.

Table 3. Quantitative results of reconstructed light fields on the real-world scenes.

Kalantari [5] Wu [14]

Occlusions 2 28.90 38.12

Occlusions 16 32.24 38.86

Flowers & plants 7 26.70 38.70

Flowers & plants 12 34.97 42.27

Reflective surfaces 17 28.84 42.28

Reflective surfaces 29 37.70 46.10



516 M. Zhao et al.

4 Discussion and Future Work

There are several limitations of this idea. First, existing algorithms cannot handle
the large parallax. They may occur the tearing artifacts when the parallax is too
large. Second, light field super-resolution in the spatial domain is not considered.
We believe that we can get the better results in depth estimation when jointing
the spatial super-resolution. Finally, the computational efficiency of these app-
roach is unsatisfactory. In the future work, we consider the super-resolution in
the spatial domain and focus on the computational efficiency.

5 Conclusions and Discussion

We have presented an idea that uses an angular super-resolved light field to
improve the quality of depth estimation. A straightforward way is to estimate a
depth map using input low angular resolution light field, and render novel views
using DIBR techniques. However, this approach always leads to error accumula-
tion when recompute depth map using synthetic views. We therefore investigate
approaches that directly minimize the quality of super-resolved light fields rather
than depth maps. We evaluate this idea on synthetic scenes as well as real-world
scenes, which contains non-Lambertian and reflective surfaces. The experimen-
tal results demonstrate that the quality of depth map is significantly improved
using angular super-resolved light field.
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