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Abstract. Scene parsing is a challenging task in computer vision field.
The work of scene parsing is labeling every pixel in an image with its
semantic category to which it belongs. In this paper, we solve this prob-
lem by proposing an approach that combines the multi-context deep
convolutional features with exemplar-SVMs for scene parsing. A con-
volutional neural network is employed to learn the multi-context deep
features which include image global features and local features. In con-
trast to hand-crafted feature extraction approaches, the convolutional
neural network learns features automatically and the features can better
describe images on the task. In order to obtain a high class recognition
accuracy, our system consists of the exemplar-SVMs which is training a
linear SVM classifier for every exemplar in the training set for classifica-
tion. Finally, multiple cues are integrated into a Markov Random Field
framework to infer the parsing result. We apply our system to two chal-
lenging datasets, SIFT Flow dataset and the dataset which is collected
by ourselves. The experimental results demonstrate that our method can
achieve good performance.
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1 Introduction

In the computer vision field, scene parsing is one of the core problems. This
paper researches the problem of scene parsing. Scene parsing aims at assigning
a label to each pixel in images with the semantic category it belongs to. This
work is very challenging, and it involves all kinds of problems, e.g., detecting
object categories problems, segmentation problems, and multi-label recognition
problems of the image, and so on. In the last decade, scene parsing had been
comprehensive studied by several researchers.
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For lots of problems in computer vision field including scene parsing, it is nec-
essary to extract features for each image. Features are the expressions of images
for easy calculation and classification easily. Hence extracting good features is
the key of computer vision tasks. For image representation, the conventional
approaches use hand-crafted features by designing carefully, e.g., HOG [3], SIFT
[14], GIST [16], etc. Since the introduction by LeCun [11], deep CNN has been
applied to a wide range of computer vision tasks such as hand-written digit
classification and face detection. Recently, the latest generation of CNNs have
substantially outperformed traditional approaches in many recognition tasks
[2,5,10,17,18]. Deep learning is advantageous for large image regions with com-
plex variations, because its deep architectures can automatically learn the hier-
archies of features representation.

The issue of scene parsing is improving the recognition rate of the object
classes. Some of the previous methods [4,12,21] had low recognition rate for
small objects which occupied only a few pixels. To increase the accuracy rate of
thing samples, Tighe and Lazebnik [22] proposed using per-exemplar detector
which is training a linear SVM classifier for every exemplar in the training set. In
addition, Yang et al. [23] expanded the retrieval set using rare class exemplars
to achieve more balanced superpixel classification results and combined both
global and local semantic context information to boost the performance of their
system. Our approach is inspired by the work of [22], so we use exemplar-SVMs
[15] which are identical to Tighe and Lazebnik [22] for improving the accuracy
rate of rare classes.

In this work, we present a scene parsing approach which combines the multi-
context deep convolutional features with exemplar-SVMs. This method can
improve the overall accuracy and recognize the rare classes better. Our sys-
tem has the following steps. We first retrieves the most similar images to query
images, as shown in Fig.1, in an annotated dataset using the global features
which are obtained from the convolutional neural network of the GoogLeNet
[20]. Then, we segment the images into superpixels and compute the likelihood
scores of superpixels of the query images using local features, which incorporate
the exemplar Support Vector Machine for classification. Finally, our system inte-
grates multiple cues into a Markov Random Field framework to infer the parsing
result.

The rest of this paper is organized as follows. In Sect. 2, we review some rele-
vant works for scene parsing. Section 3 presents our approach which combines the
multi-context deep convolutional features with exemplar-SVMs for scene pars-
ing. Section 4 provides the experimental results and compares the performance
with other approaches, followed by a conclusion in Sect. 5.

2 Related Work

Most recently, as the development of artificial intelligence, many researchers use
the deep learning approach which is one of the machine learning algorithms
to solve a lot of issues in computer vision field, including object recognition,
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(c) (d)

Fig. 1. For a query image (a), our system retrieves the most similar images (c) (three
images are shown here) from training set using the global features which are obtained
from the convolutional neural network. The ground-truth annotation of (a) and (c) are
shown in (b) and (d), respectively.

object detection, simultaneous image segmentation and labeling. The studies
have shown that convolution neural network has achieved good results in these
works. In recent years, a lot of methods for scene parsing had been proposed.
The goal of this work is to assign each pixel of the image a semantic label.
Grangier et al. [8] presented a method that did not use any graphical model
for scene parsing. The deep convolutional network was used for this paper to
model the complex scene label structures, depending on a supervised greedy
learning approach. Farabet et al. [5] learned the different levels features apply-
ing a multi-scale convolutional neural network handling on original pixels. Their
system depended on those features representation to think about context for
each decision. Another innovation point of this paper was that they employed
the optimal cover to obtain the most consistent region from the tree, taking
the place of graph cuts and other inference approaches. Pinheiro and Collobert
[17] applied the recurrent convolutional neural networks to scene labeling. The
advantage of this paper was that it was no need segmentation and task-specific
features compared to other approaches. It was trained in an end-to-end way over
raw pixels, and the inference cost was low. In order to improve the overall perfor-
mance, Bu et al. [2] combined the convolutional neural network architecture with
a graphical model. The neural network can learn the hybrid features which could
provide the hierarchical information and the spatial relationship information.
From what has been discussed above, the deep learning method was applied
to the scene parsing work had achieved impressive results. But training net-
work model of deep learning need a lot of data. The following will introduce
some other methods that they were the traditional and did not apply deep
learning. For instance, Liu et al. [12] proposed a nonparametric approach for
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scene parsing using a dense scene alignment to label transfer. The SIFT flow
algorithm was used to match the structures within two images. This system
did not require any training, but inference via the SIFT flow was very com-
plex and computationally expensive. With the consideration of these, Tighe and
Lazebnik [21] presented a scalable nonparametric image parsing with superpix-
els. This method also required no training and it was easy to implement. It
established a new benchmark for scene parsing. The system in Zhang et al.
[24] proposed an ANN bilateral matching scheme to match the test images and
retrieved the training images. Eigen and Fergus [4] used per-descriptor weights to
minimize the classification error and to improve performance on rare classes, the
paper used a context-driven adaptation of the training set for each query image.
Different from other paper, this system did not use SVMs for classification.
Tighe and Lazebnik [22] incorporated region-level features with per-exemplar
sliding window detectors outputs for image parsing to achieve broad coverage
across hundreds of object categories. Yang et al. [23] used thing class exemplars
extending the retrieval set, to obtain more balanced superpixel classifications
and combined the global with local semantic context information for refining
the image retrieval and superpixel matching. The experimental results compared
with previous methods have improved. To boost the label likelihood estimates
at superpixels George [6] integrated the likelihood scores forming different prob-
abilistic classifiers and in the parsing process incorporated the semantic context
through global label costs. The newest paper, a large and open vocabulary was
presented by Zhao et al. [25] for scene parsing, which aimed at parsing images in
the wild. Image pixels and word concepts connecting with semantic relations were
merged to the parsing framework. To parse a 2D image and recover the 3D scene
structures, Liu et al. [13] presented an attribute grammar, which contained a set
of production rules, each of which described a series of spatial relation among
planar surfaces in 3D scenes.

3 Approach

In this section, we propose an overview of our scene parsing system which
combines the convolutional neural network with exemplar-SVMs. Our approach
builds on the framework of [22]. Firstly, the GoogLeNet [20] is used to extract
the global image features for computing the similar images of training set to
the query image. Then we divide the image into superpixels. The features of
superpixels are extracted to obtain the probability of class labels for each query
image. Finally, we incorporate the superpixel parsing results with exemplar-
SVMs parsing results and integrate them to the Markov Random Field frame-
work for obtaining the final parsing. The common architecture of the system
which our presented is shown in Fig. 2.

3.1 Feature Extraction with CNIN

The deep Convolutional Neural Network (CNN) [11], which showed its pow-
erfulness in extracting high-level feature representations [7] recently, can solve
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Fig. 2. The general framework of our system. Given a query image, we extract super-
pixels using the SLIC method. Then, we use the multi-context deep convolutional
features including global and local deep features to describe superpixels and compute
the superpixel likelihood ratio scores to obtain the superpixel parsing. We use exemplar
detectors to obtain the exemplar parsing. Finally, in order to obtain the final parsing,
we combine the exemplar parsing results with superpixel parsing results into the MRF
framework.

previous some problems well. Deep CNN aims to mimic the functions of neo-
cortex in human brain as a hierarchy of filters and nonlinear operations. The
major goal of deep learning is learning the feature representations. The good
network structure types should be selected to study features. In this paper, we
choose the convolutional neural network of GoogLeNet [20]. The multi-context
deep convolutional features which are introduced in this paper refer to the global
features and the local features.

Global Features. For each query image I, we extract the 1024-dimensional
feature vector of GoogLeNet [20] the pool5 layer output for computing similar
images which include similar classes and spatial layouts of the training dataset.
Then we rank all the training images in increasing order according to the Euclid-
ean distance between training images and the query image. It is similar to the
previous works. We select the top K similar images to constitute the retrieval
set. The number of images in retrieval set is less than that in training dataset.
So we process images in retrieval set instead of those in training set for reduc-
ing the computational cost. The process of extracting image features using the
convolutional neural network of GoogLeNet is presented in Fig. 3.

Local Features. According to the computer vision applications, superpixels
are becoming increasingly popular for use. To reduce the problem space and
complexity, we also use superpixels as computing element, which can provide
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Fig. 3. The process of extracting image features using the convolutional neural network
of GoogLeNet. For a query image, the input size of the network is 224 x 224 x 3. Though
convolution and pooling operation, the visualization results of some layers are shown in
the figure. We extract the poolb layer output of GoogLeNet as our deep global features
which are 1024-dimensional.

better spatial support for aggregating image features that may pertain to a
single object than pixels. The image superpixels are extracted by the SLIC [1]
method which is easy to implement. For each superpixel, we use the convolutional
network of GoogLeNet to extract features for describing it. For each query image,
we pad the image and select a superpixel-centered context window. The input
of the local-context network is the superpixel-centered context window which is
upsample to 224 x 224 x 3. The local feature shares the same deep structure with
the global feature. Other deep structures can also be used to extract the local
image features. The process is shown in Fig.4. Those local features produce a
log-likelihood ratio score L (r;, ¢) for class label ¢ at superpixel r;:

P(rile P (ffle
L(ri,c) = 1ogPETi:C§ = ZIOgPEkag 1)
k %

where fF is the feature; P ( fk |c) (resp. P ( ff|E)) is the likelihood of feature type
k for region r; given class ¢ (resp. all classes but ¢) and here k = 1.

3.2 Exemplar-SVMs

In order to improve the rare class recognition rate, we incorporate the per-
exemplar framework of [15], which is similar to the previous work [22]. In our
dataset, the per-exemplar detector is trained for each labeled class instance. As
the same with the detector training procedure of [15], all objects which include
“thing” classes and “stuff” classes are trained. Each exemplar-SVMs creates
the detection windows in a sliding fashion, and an exemplar co-occurence-based
mechanism is applied for suppressing the redundant responses.

The leave-one-out method is employed to train SVM classifier on the training
set. Each feature dimension is normalized by its standard deviation and the
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Fig. 4. Process of extracting local features using GoogLeNet. For a query image, we
pad regions exceeding boundaries with mean pixel value. Then a superpixel-centered
large context window is selected, and warped to 224 x 224 x 3 as input. We extract the
poolb layer output of GoogleNet as our deep local features.

regularization constant is computed using fivefold cross validation. The RBF
kernel is applied for SVM training. At each pixel, the output results of SVMs
produce Y responses. The Dgy s (¢;,7;) is defined to denote the response of the
SVM for class ¢; at superpixel r;.

3.3 Inference

To assign labels to all of superpixels r; in the query image I, the Markov Ran-
dom Field model is incorporated into our system. The scene parsing problem is
formulated as minimization of a standard MRF energy function, which combines
the unary term with the smoothness term to obtain the final parsing result. We
define the MRF energy function of the superpixel class labels c as:

E(c) = Z D (r;,c) + Z max [0, M — Dgy s (¢i,73)] + A Z ¥ (erys0ry)

ri€ly ri€l, (ri,mj)EN
(2)

where D (r;,c) is the data term; once we obtain the likelihood L (74, ¢),
D (r;,¢) = —w;logL (r;,c¢); M is the highest expected value of SVM response;
N is the set of adjacent pixels; The smoothing constant is A. The smoothness
term ¢ is similar with which defined in [21,23] according to the probabilities of
label ¢; and ¢; co-occurring in the training images:

(0 (Criacrj) = —log [(P (CTiICTj) +P (er |C'I'i)) /2] 4 [Cn- # er] (3)
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where P (c” |ch) is the conditional probability of class label ¢, of the pixel r;,
and its adjacent pixel r; has class label c,,. We use the a-expansion algorithm
[9] to optimize the MRF energy function.

4 Experiments

4.1 Dataset

The system results are reported on two datasets: the SIFT Flow dataset [12]
containing 2688 images which were divided into 2488 training images, 200 test
images, and 33 classes, and the per-pixel frequency counts of object categories
in test images are presented in the left of Fig. 5. Another is video images dataset
collected from the actual video surveillance scene, which included 500 images,
among 450 training images, 50 test images, and 20 classes, and the per-pixel
frequency counts of object categories are presented in the right of Fig. 5. As can
be seen from the graph, some classes do not exist in the test set.
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Fig.5. The per-pixel frequency counts of the object categories on the SIFT Flow
dataset (left) and video images dataset of we gathering in the actual video surveillance
scene (right).

4.2 The Experimental Results

There are two measurement function for evaluating our scene parsing system:
the per-pixel classification accuracy rate (the percentage of pixels that were
correctly labeled of test images) and per-class classification rate (the average of
all classes recognition rates). For SIFT Flow dataset, the size of the retrieval
set is set as 200, namely K = 200. For the video images which are collected by
ourselves, the size of the retrieval set is set as 50. The smoothing constant A
is 1. The highest expected value of SVM response M is approximately 10. The
per-class recognition rates of SIFT Flow dataset and our collected video images
dataset are presented in the left and right of Fig. 6, respectively. On the SIFT
Flow dataset, the top five categories of recognition rate are sun, sky, building,
sea and mountain.
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Fig. 6. Left: the per-class recognition rate on the SIFT Flow dataset. Right: the per-
class recognition rate on the video images dataset of we gathering in the actual video
surveillance scene.

Table 1 shows that the results of our system in contrast to the state-of-the
art methods about per-pixel and per-class recognition rate on the SIFT Flow
dataset. Although the recognition rate of presenting method is not the high-
est, the per-pixel accuracy increases by around 4% and the per-class accuracy
increase about 17% over the method of [21]. The per-pixel accuracy of our app-
roach is less than George [6] about 6% and the per-class recognition rate is less
approximately 3%.

(a)Test image (b)Ground truth (c¢)Super parsing  (d)Detector  (e)Final parsing

82.8% 83.1% 84.4%

Fig. 7. The visual results of our approach on the SIFT Flow dataset. Column (a) is
the test images; the ground truth of (a) is shown in (b); (c) is the superpixel parsing
results; the exemplar parsing results are displayed in (d) and (e) is the final parsing
result, which combines (¢) with (d).
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Table 1. A comparison of our system to the state-of-the-art methods about per-pixel
and per-class classification accuracy rate (%) on the SIFT Flow dataset.

Approach Per-pixel | Per-class
Liu et al. [12] 7475 | N/A
Tighe and Lazebnick [21] | 76.90 30.10
Farabet et al. [5] 78.50 29.50
Tighe and Lazebnick [22] | 78.60 39.20
Yang et al. [23] 79.80 48.70
Bu et al. [2] 8040 | 35.80
Shuai et al. [19] 81.20 45.50
George [6] 81.70 50.10
Our approach 81.16 47.91

(a)Tesl image (b)Ground truth (c)Super parsing  (d)Detector

2, s, 2
e ts [
I e
0 e
S ke e i

Fig. 8. The visual results of our approach on the video images. Column (a) is the test
images; the ground truth of (a) is shown in (b); (¢) is the superpixel parsing results; the
exemplar parsing results are displayed in (d) and (e) is the final parsing result, which
combines (c) with (d).

(e)final parsing
o

The part of visual samples results of our method on the SIFT Flow dataset
and the video images are shown on Figs.7 and 8, respectively. In Fig.7, (a)
expresses the test images; The ground truth of (a) is shown in (b); (¢) is super-
pixel parsing results and the recognition rates are displayed under the images.
The exemplar parsing results are shown in (d). The final parsing results are
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displayed in (e). The Fig. 8 is similar to Fig.7, but does not have the accuracy
of images. As can be seen from Fig.8, the parsing results of video images are
impressive.

The computing environment of our system is MATLAB 2012b and on a four-
core 3.4 GHz CPU with Intel Core i7-6700 and 8G of RAM. Training time and
parsing time are influenced by feature dimension. The higher the dimension and
amount of features are, the longer the training time costs.

5 Conclusions

This paper has proposed a method for scene parsing to improve the quality of
retrieval sets and the class recognition rate of combining the deep convolutional
features with exemplar-SVMs. Our approach takes advantage of a retrieval set
of similar objects and scenes for reducing computational complexity. The deep
features we extracted can express the image well. Furthermore, multiple cues
are integrated into a MRF framework to segment and parse the test image. On
the SIFT Flow dataset, the experimental results show that the method achieve
promising results. This system is used to actual scene images and obtained the
ideal parsing results.
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