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Abstract. Considering the problems that camera imaging model is
complex and operation is complicated, a binocular camera calibration
method of RBF neural network based on k-means and gradient method
is proposed in this paper. The data center selection method based on
the law of clustering error function can obtain hidden nodes and data
centers of RBF network accurately. Dynamic learning of data centers,
spread constants and weight values based on gradient method can con-
tribute to improving the precision. Experimental results show that the
proposed method has high precision and can be well applied in machine
vision.
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1 Introduction

Machine vision is becoming more and more widely applied in many fields, such as
robot vision navigation and positioning, 3-D reconstruction, etc., while camera
calibration is the most important part of machine vision. Traditional camera cal-
ibration methods are generally based on precision machined 2-D or 3-D targets.
Direct linear transformation (DLT) calibration method [1] proposes the relation-
ship between the two-dimensional plane image and the actual object coordinates
in the three-dimensional space. This method is based on the ideal pinhole model.
The parameters involved are relatively few and the calculation process is sim-
ple and fast, but the nonlinear distortion caused by the imaging process is not
taken into account, so the precision is poor. Tsai proposed a two-step method
based on radial constraint [2], combining the traditional linear method and non-
linear optimization method, but the highprecision three-dimensional calibration
block is difficult to process and maintain in practice. In the literature [3], Kruppa
equation is established based on the epipolar geometry and curvilinear geometry
theory which is used in camera self-calibration technology and the calibration
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speed is fast. It is suitable for onsite calibration, but the precision is low and
the stability is poor. Zhang proposed a flexible calibration method [4] accord-
ing to the plane target images shot by camera from different locations to solve
the camera parameter model. This method is widely used, but it also needs to
establish a complex mathematical model.

Considering the problems that mathematical model constructed is complex,
operation is complicated and precision is poor in traditional camera calibration
methods, this paper proposes a camera calibration method based on improved
RBF neural network, which has high precision and strong real-time, and the
method can be applied to more complex environments.

2 Camera Imaging Model

The projection of three-dimension spatial point D on camera imaging plane is
usually obtained by ideal pinhole model, which can be written as
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where X = (XT
w , 1)T is the homogeneous coordinate of the three-dimensional

spatial point D in the world coordinate system. (u, v, 1) is the homogeneous
coordinate of the projection point on the image plane. R and T are the rotation
matrix and the translation vector that the world coordinate system transforms
into the camera coordinate system. (u0, v0) is the optical center of the camera.
fu and fv are the scale factors in u and v axis directions. With the impact of the
camera lens optical distortion, as shown in Fig. 1, the actual imaging point is not
the intersection of the image plane and the joint line between three-dimensional
point and the optical center, but with a certain offset (Δu,Δv). The distortion
of the camera mainly includes radial distortion and tangential distortion.

Binocular stereo vision imaging principle is shown in Fig. 2. The binocular
camera imaging equation is expressed as
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where s is the scale factor. Subscript l and r represent left camera and right
camera, respectively. For binocular camera calibration, in addition to calibrating
the internal parameters of the cameras, the rotation matrix and the translation
matrix between two cameras are also needed.

Above the mentioned, the traditional calibration method based on the camera
imaging mathematical model involves a large number of unknown parameters,
which takes many factors into account and constructs complexly. While the
calibration method based on neural network calibration is able to overcome
these problems [5,6].
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Fig. 1. Camera imaging model of monocular vision

Fig. 2. Camera imaging model of binocular vision

3 RBF Neural Network Based on K-means and Gradient
Method

3.1 The Structure of RBF Neural Network

RBF neural network is generally three-tier structure. As shown in Fig. 3, the RBF
neural network structure is n − h − m, that means, the network has n inputs,
h hidden nodes and m outputs. x = (x1, x2, · · · , xn)T ∈ Rn is the network
input vector. ω ∈ Rh×m is the output weight matrix. y = [y1, y2, · · · , ym]T is
the network out-put vector. φ(•) is the activation function of the i-th hidden
node. In this paper, the Euclidean distance function is used as the basis function
represented as ‖•‖ and the Gauss function is used as the activation function,
which is as follow
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Fig. 3. The structure of RBF neural network

φ(u) = e− u2

δ2 (3)

where the spread constant of RBF δ > 0. The smaller δ is, the smaller the width
of the RBF is and more selective it becomes. In Fig. 3, the j-th output of the
RBF neural network can be given as

yj =
h∑

i=1

ωijφi(‖x − ci‖), 1 ≤ j ≤ m (4)

3.2 The Learning Algorithm of RBF Neural Network

Clustering method is the most classic RBF neural network learning algorithm
[7,8]. The idea is to use the unsupervised learning method to obtain the data
centers of the hidden nodes in RBF neural network, and to determine the spread
constants according to the distance between the data centers. Then we can use
the supervised learning method to train the output weight values of the hidden
nodes.

In this paper, we propose a novel method of clustering number selection
based on k-means clustering error law to obtain the number of hidden nodes
and data centers. In the training, we construct the objective function based on
multi-output error and calculate the gradient to update the data centers, the
spread constants and the weight values dynamically.

The basis of the k-means algorithm is error sum of squares [9]. If Ni repre-
sents the sample size of the i-th class Γi, mi is the mean value of the samples
in Γi, as follow mi = 1

Ni

∑
y∈Γi

y. The error sum of squares for each class Γi

is calculated and the error sum of squares for all classes are added, as follow

Je =
c∑

i=1

∑
y∈Γi

‖y − mi‖2. Je is called the clustering criteria based on error sum of
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Fig. 4. The law of clustering error

squares. The basic premise of the k-means algorithm is that the clustering num-
ber is given in advance, which is not satisfied in unsupervised learning problems
such as camera calibration.

For the initial partitioning after a given clustering number, we can get good
results by dividing according to the natural order of the samples (the order of
the feature points on the calibration board).

Obviously, the clustering error function decreases monotonically with the
clustering number increasing. When the clustering number is equal to the size of
all samples, we can obtain Je(c) = 0. Thus, each sample itself becomes a class.
If there are c∗ much clustered classes in the data, will decrease rap-idly when
increases from 1 to c∗. But the rate of decreasing will be significantly slower
when outnumbers c∗, because the original intensive samples will be separated
[10]. Figure 4 shows the curve that represents the change of Je(c) following c.
Based on this law, in order to obtain a better clustering number, we can start
from 1 until we select a preferable number. Formula (5) is given below as a
criterion of judgment

|Je(c∗) − Je(c∗ − 1)| ≤ α • Je(c∗ − 1), c∗ = 2, · · · , c (5)

where α is the convergence factor, the range is α = 0.2 − 0.3. When the formula
(5) is satisfied, the constructed neural network can achieve the fitting accuracy,
and there will be not too many nodes in the hidden layer that lead to overfitting
and affect generalization ability.

By using k-means clustering algorithm which selects the number of clusters
automatically, the hidden nodes and data centers of RBF neural networks can be
determined. The spread constants of RBF neural network can be determined by
δ = d√

2h
, where d is the maximum distance of all classes and h is the clustering

number of RBF neural network.
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When hidden nodes, data centers and the spread constants are initially deter-
mined, the gradient method is adopted to train the output weight values of hid-
den nodes [11]. The gradient method used in this paper not only updates the
output weight values, but also updates the data centers and the spread con-
stants dynamically on the basis of the k-means method to ensure the global
optimization of the parameters.

We construct an objective function based on the errors of multiple output
nodes. The objective function is defined as

ε =
1
2

N∑
n=1

‖en‖22 (6)

where N is the number of training samples of the learning process. en is the
error signal corresponding to the J output nodes and J × 1 is the vector of n
dimension.

The j-th component of the error vector (that is the error of the j-th output
node) is established as

jen = jdn − j

[
I∑

i=1

ωijφi(‖Xn − ci‖)

]
(7)

where I is the number of hidden nodes. d represents the expected output. The
left subscript represents the component of the vector.

We aim at finding the parameters ωij , ci and δi that minimize ε. For the
Gauss activation function used in this paper, the gradient of the objective func-
tion to each parameter is given as
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The update law is given as
⎧
⎪⎨
⎪⎩

ωij(m + 1) = ωij(m) + η1
∂ε(m)

∂ωij(m)

ci(m + 1) = ci(m) + η2
∂ε(m)
∂ci(m)

δi(m + 1) = δi(m) + η3
∂ε(m)
∂δi(m)

(9)

where m represents the number of iterations. η1, η2 and η3 are different conver-
gence factors.

In the camera calibration experiment based on improved RBF neutral
network, we let the image coordinates of the feature points, (ul, vl) and
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(ur, vr), as inputs and the spatial coordinates in the world coordinate system,
(XW , YW , ZW ), as outputs. A RBF neural network with 4 input nodes and
3 output nodes is constructed. The hidden nodes and data centers are deter-
mined automatically and the data centers, spread constants and weight values
are updated dynamic until the parameters satisfy the precision requirement.

4 Experiment and Analysis

The calibration experiment utilizes a binocular vision system as shown in Fig. 5.
The camera in measuring experiment is from EoSensR© 3CL series of Mikrotron
company, whose model number is MC3010 and resolution is 1280 1024 pixel.
The pixel size is 0.008 mm/pixel and the lens model number is AF Zoom-Nikkor
24–85 mm/1:2.8–4D.

Fig. 5. Binocular vision system

A flat plate with round feature points is used as a calibration board and the
points on the calibration board are 10 × 9, which arrange in a certain order.
We place the calibration board vertically on the linear motion platform and
establish the X-axis, Y-axis of the world coordinate system on the plane of
the calibration board, with Z-axis perpendicular to the plane of the calibration
board. The calibration board moves along Z-axis 30 mm, 60 mm, 90 mm and
120 mm. We use two cameras to capture simultaneously 5 pairs of images at 0,
30 mm, 60 mm, 90 mm and 120 mm. When Z is 0, the images acquired by the
left camera and right camera are shown in Fig. 6.

Zernike moments algorithm [12] is used to extract feature points, and 370
sets of data are obtained. These sets of data were divided into two groups, of
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Fig. 6. The images acquired by left camera and right camera

which 280 sets of data were used as training data for the network, and the other
80 groups were used for testing.

RBF network with 4-10-3 structure is trained according to 370 sets of data.
The formula for calculating the error of each spatial point is given as

e =

√
(

∼
XW − XW )

2

+ (
∼
Y W − YW )

2

+ (
∼
ZW − ZW )

2

(10)

where (
∼
XW ,

∼
Y W ,

∼
ZW ) expresses the reconstructed coordinates of the spatial

points according to the trained RBF neural network. The results of the recon-
struction of some points are shown in Table 1.

Table 1. The test result of some points (Unit: mm)

Spatial points Reconstructed coordinates Error

XW YW ZW

∼
XW

∼
Y W

∼
ZW

125 0 0 124.9691 0.0112 0.1913 0.1940

25 50 30 25.0415 50.0821 30.1745 0.2151

200 50 30 200.0829 50.0475 30.0988 0.1375

125 100 60 124.9302 100.0949 60.1935 0.2265

50 150 60 49.9193 148.0450 60.1221 0.1531

200 175 90 200.0505 175.1134 90.1213 0.1735

75 175 90 75.0387 175.0554 90.0869 0.1101

100 50 120 100.0984 50.0955 120.1154 0.1792

The average of the errors of all 80 testing points is 0.1719 mm. It can be seen
from Table 1 that the precision of reconstruction in direction X and Y direction
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is higher than that in direction Z, because there is an error in the installation
of the calibration board on motion platform and the precision of the motion
platform is less than that of the calibration board.

The precision of our method is verified by measuring the length of the segment
between the two feature points as shown in Fig. 7.

Fig. 7. Three segments that need to be measured

We place the calibration board in any position within the range of the field
of view, and take the average of the actual length of the segment between five
measurements. Zhang method [4] is used as a comparison. The results are shown
in Table 2. It can be seen that the precision of our new method is better than
that of Zhang method.

Table 2. Comparision of two methods (Unit: mm)

No. Actual length Measurement result Error

Our method Zhang Our method Zhang

1 90.1388 90.3712 90.5723 0.2324 0.4335

2 100 100.2918 100.3652 0.2918 0.3652

3 70.7107 70.8991 71.1634 0.1884 0.4527

5 Conclusion

The camera calibration method based on improved RBF neural network do not
need to consider the impact of the lens distortion and environmental factors.
Our method can reduce the error caused by the imperfect mathematical model
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of the traditional calibration method and contribute to improving measurement
precision. The reconstruction error of spatial points is 0.1719 mm in this paper.
Measuring experiment shows that the precision of our new method is better than
that of Zhang method. The data center selection method and dynamic learning
of data centers, spread constants and weight values based on the gradient method
further can improve the precision.
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