FPGA Architecture for Real-Time Ultra-High
Definition Glasses-Free 3D System

Ran Liu’2®) Mingming Liu', Dehao Li', Yanzhen Zhang?,
and Yangting Zheng!

1 College of Computer Science, Chongqing University, Chongqing 400044, China
Ran.liu_cqu@qq.com
2 College of Communication Engineering, Chongqing University,
Chongging 400044, China

Abstract. This paper presents an FPGA architecture for real-time
ultra-high definition (UHD) glasses-free 3D system by solving high band-
width requirement and high complexity of the system problems. Video
+ Depth (V 4+ D) video format and the depth-image-based rendering
(DIBR) technique are supported by the system to reduce the require-
ment of bandwidth. In addition, an asymmetric shift-sensor camera setup
is introduced to reduce the hardware cost as well as the complexity of
the system. We also simplify the microlens array weight equations so as
to reduce the complexity of subpixel rearrangement coefficients calcula-
tion for glasses-free 3D image creation. Experiments results show that
the proposed architecture can support the resolution of 4K for real-time
UHD glasses-free 3D display.

Keywords: Ultra high definition - Glasses-free 3D display
Depth-image-based rendering - Multiview rendering - FPGA

1 Introduction

In recent years, Glasses-free 3D technology has gradually entered the public view.
However, the lack of glasses-free 3D content and the shortage of transmission
bandwidth for this content hinder the popularity of the glasses-free 3D system.
To overcome these obstacles, the V 4+ D video format begins to be applied to
the system. Each frame in this video format consists of a 2D color image with
a depth map, where the depth map is a gray image with the value varying from
0 to 255, which is usually obtained by depth estimation algorithm or depth
camera. In addition, only one channel of video and its depth map are needed to
transmit for this format, hence it requires lower bandwidth in comparison with
the traditional 3D video. Once each frame has been received and decoded, the
color and depth image are recovered and rescaled, and the virtual multiviews
required for glasses-free 3D display can be generated from color and depth images
by depth-image-based rendering (DIBR) technique [1,2]. Finally, each display
view is synthesized by image fusion method, and then the synthesized view is

© Springer Nature Singapore Pte Ltd. 2017
J. Yang et al. (Eds.): CCCV 2017, Part I, CCIS 771, pp. 380-392, 2017.
https://doi.org/10.1007/978-981-10-7299-4_31

Real-Time Ultra-High Definition Glasses-Free 3D System 381

displayed in a set of subpixels, each of which is viewable from a specific angle
through a fine lenticular overlay placed over the LCD display [3].

However, this video format has some defects when it is used in a glasses-free
3D system. First, big holes may appear in the generated virtual view (destina-
tion image) after DIBR; hence high-performance hole-filling algorithm should
be applied to fix these holes. Second, implementation of DIBR and hole-filling
algorithm by software is time-consuming and cannot meet the requirement of
real-time processing of video stream. In virtue of the power of field program-
mable gate array (FPGA) in real-time video processing [4], using FPGA to
implement real-time glasses-free 3D system has become the consensus of current
research. Until now, only a few studies focus on FPGA implementation of the
real-time glasses-free 3D system. Most of them only discussed the traditional 3D
video format, and the resolution of the 3D system is lower than ultra-high def-
inition resolution, which cannot meet the requirement of the newest ultra-high
definition display.

In this paper, we propose an FPGA architecture for real-time ultra-high
definition glasses-free 3D system. We present the asymmetric shift-sensor camera
setup to simplify the hardware implementation of multiview rendering module of
the system. In addition, as this camera setup is applied, no DDR is needed for our
FPGA architecture, hence the traditional scheme of using DDR for pipelining
is avoided [5]. We also proposed a view fusion method which can rearrange the
subpixels from the generated views to form a single glasses-free 3D image. The
proposed architecture is implemented by Verilog HDL on the Xilinx Virtex-7
platform and simulated with ModelSim 10.2.

2 Asymmetric Shift-Sensor Camera Setup

As mentioned above, a glasses-free 3D system needs multiple views of the same
scene to form a 3D image. In our system, these views are generated by DIBR tech-
nique using specified parameters in multiview rendering module. Note that the
V + D video used in this paper has no camera calibration parameters, so it is
necessary to modify the 3D image warping equations to adapt to the case with-
out camera calibration parameters [6]. In this paper, a scheme of “fusing” 8 views
into a glasses-free 3D image is adopted. Positions of these 8 viewpoints/virtual
cameras determine the effect of glasses-free 3D display. As shown in Fig. 1, I, is
a reference image, U, is a point on the reference image, U, = [u,,v,,1]T € I,.
The view of the same scene captured at different viewpoints is labeled as
I,(1 < n < 7); point U; = [u;,v;,1]7 € I,. Point U = [Xy, Y, Zuw, 1]T
(expressed in normalized homogeneous coordinates in the world coordinate sys-
tem) is the intersection of u, and u; when they are mapped to the scene using the
prejection matrices of I,. and I,,. B represents the length of the baseline between
two adjacent virtual cameras (units: millimeter), Plane z. (2, > 0) is the zero-
parallax setting (ZPS) plane. By setting the plane z., we can generate a virtual
with positive or negative parallax. Note that I, is taken as one of the 8 views
and placed on the rightmost. We call this camera setup asymmetric shift-sensor
camera setup. Plane z. is determined by (1).

382 R. Liu et al.

-8y - B
where S, is the number of pixels per unit length in the x axis, f is the focal length
of the camera, B,, represents the length between the camera corresponding to I,
and I,,, B, = n x B. h,, denotes the horizontal sensor shift (measured in pixels)
of I, when setting the ZPS plane.
Note that the seven virtual views correspond to the same ZPS plane (plane
zc), and their 3D image warping equations can be written as follows [2].

w; —up = (—1)* |2h,, — —f'sjfn}
1<n<T. (2)
Vi = Uy

where is defined as follows: if I,, is located on the right side of I., a = 0;
otherwise, a = 1. As for our camera setup, all virtual views are located on the
left side of I, hence = 1. Parameter z,, is the depth value of point w,; it is

determined by:
1

D(ur,vr) 1 1 1
) x (A — 2 o

Zw —

(3)

Zmin Zmazx Zmaz
where D(u,, v,.) is the depth value of the point (u,, v,) in depth map, D(ur,vr) €
[0,225]. Zpmin is the near clipping plane, zpq. is the far clipping plane.

In the case of no camera calibration parameters, in order to simplify the
calculation, the near shear plane z,,;, is usually set to 1, and the far shear plane
Zmaz 1S set to infinity [6]. Therefore, Eq. (3) can be simplified as follows.

255

D(up,v,) @)

Zw =
Putting Eq. (1) into Eq. (2) yields the following equation:

— 1 1
ui—ur——n-f~sw-B(Z—c—z)

1<n<T. (5)

Vi = Uy

Usually, the depth map stores depth information as 8-bit gray values with the
gray level 0 specifying z,q, and the gray level 255 defining 2., [7]. According
to (4), (5) can be simplified to the following (6).

U —Up = —N D (DZPS - D(Umvr))
1<n<T. (6)

V; = Uy

where p = f-s,-B/255 is the scaling factor, D,ps = 255/2¢, D(uy, v,) = 255/ 2.
D.,,s are depth value of ZPS plane, D,,s € [0,255]. According to [7,8], the
maximum horizontal sensor parallax d(u; —u,.) which is comfortable for viewing
is approximately 5% of the width of an image. Hence we have:

Id] < W x 5% (7)

Real-Time Ultra-High Definition Glasses-Free 3D System 383

where W is the width of I,., and both the units of d and W are pixels. Eq. (7) is
applied to (6) to get (8).

0<p-n-|D.ps — D(u,v,)| <W/20 1<n<T7. (8)

0 <|D.ps — D(ur, vy)| < 255 (9)

Therefore, the range of p value can be deduced from (8) and (9): 0 < p <
W /35700.

2= fse B/ (2h)
A

7B

Fig. 1. Asymmetric shift-sensor camera setup

To facilitate hardware implementation, we introduce the integer arguments
p,p =px 2. Thus, Eq. (6) becomes as follows.

Ui — Upr = —N - 575 (szs - D(UJT’?UT’))
1<n<T. (10)
Uy = Up

Note the resolution of the ultra-high definition image is 3840 x 2160, hence
W = 3840, the maximum possible value of p is |3840 x 32768/35700] = 3524.
When p is the maximum, the maximum absolute value of parallax d is [7 x
3524 x 255/32768] = 192, hence d € [—192,192], which satisfies the requirement
of Eq. (7).

3 Hardware Architecture

Our hardware architecture is based on Xilinx Virtex-7 FPGA development plat-
form (XC7V585T). The overall system architecture is illustrated in Fig. 2. The
system consists of 4 modules: video input, multiview rendering, view fusion and
video output. Each module can be divided into several submodules. In multi-
view rendering module, the current row should be initialized before their parallax
values are calculated. So the clock frequency of the system is chosen to reach
more than twice the pixel clock frequency of 4K video. In order to reduce the

384 R. Liu et al.

=) Synchronization signal

:D data signal
B[4:0] —
q V. 8vi " i " —
video Multiview == view == Video s 7 >
input | rendering —— fusion output
" L JL n
=~ v ~ ~ &
V4D video 'GA Virtex®-7
L | - -
buffer color and B
depth image 7 views fusion image display image

Fig. 2. Hardware architecture of the system

transmission bandwidth of the video, V + D video format begins is applied to
the system. Each frame in V 4+ D video is split, stretched and buffered in video
input module. Video input module output a color image and its corresponding
depth map whose resolutions are both 3840 x 2160. Multiview rendering module
is composed of seven DIBR submodules that are responsible for generating seven
different virtual views. View fusion module receives the reference image and the
generated virtual views and synthesizes a glasses-free 3D image [9]. Video out-
put module buffers the glasses-free 3D images and output them to the HDMI
interface for display.

3.1 Video Input Module

The horizontal resolution of each frame in V + D format video is converted
from 3840 to 7680 by video input module using column copy mode. Then, the
reference image of each frame and its corresponding depth map is stored into
different Block RAMs. In this way, the resolution of the reference image and
depth map is expanded to 3840 x 2160. The architecture of video input module
is shown in Fig. 3, which can be divided into system boot, stretching, splitting
and buffer module.

Note that stretching module extends the input image data to twice the width
of the original image using column replication, and then stores the data correctly
into buff_ram. Splitting module contains three Block RAMs: buff_ram, col_ram
and dep_ram, where buff_ram’s data input port and data output port bit width is
60 bits and 480 bits respectively. The width of data selected here should ensure
that the output of data is expected to be completed when the data valid signal
is negative. In addition, buff_ram’s input clock is the pixel clock, while its output
clock is internal working clock of the system, so that the switch of clock domain
is realized. Col_ram and dep_ram’s input data bit width is 480 bits and its output
data bit width is 30 bits and 8 bits respectively, which main function is to achieve
the splitting of reference image and depth map. The data buffer module consists
of four Block RAMs. By using three Block RAMs, the color data are delayed two
lines by ping-pong operation and then entered into the subsequent DIBR module.

Real-Time Ultra-High Definition Glasses-Free 3D System 385

system boot =
splitting buffer

color_valid olor_yalid ol en

col_ram col buff
video_data[479:0] JM$ - col {lata[29:0]

= Synchronization signal
== Data signal
= Control signal

video_data[59:0]

Rig0)
| | Stretching buff_ram
data_valid
L d |depth_valid dbp cn
p_rac dep_buff]| g

depth_valid deptny7:01 | |) data[7:0]

Fig. 3. Hardware architecture of video input module

3.2 Multiview Rendering Module

The multiview rendering module consists of 7 DIBR submodules, which are in
charge of generating seven virtual views with different viewing angles. Therefore,
this section will focus on DIBR working principle and its mainly design, as shown
in Fig.4. The DIBR module implements two algorithms: 3D image warping and
hole filling algorithm mentioned in [10]. An asymmetric shift-sensor camera setup
is achieved in 3D image warping. The reason for data valid signal extension is to
complete the output of the last two rows of the disparity map after buffering. Small
holes of virtual depth map are filtered by median filter in filter module. After hole
filling, depth map without hole is used to generate novel view in pixel copy module.
3D image warping and hole-filling submodules are described in detail later.

i I U
M M M

h 3D warping
data valid [0S depthTo median i i
a vali epthT == hole filling == pixel copy
expand disparity filter
== [Block RAM |=| = —
11

= Sync signal
=) Data signal

Block RAM (D,)

Fig. 4. Hardware architecture of DIBR

3D Image Warping Submodule. As shown in Fig.5, the 3D image warp-
ing submodule receives depth value D outputted by data valid signal extension
submodule, calculates the parallax value M of each pixel in the reference image
according to D, and outputs M to disparity map filtering submodule. As three
rows of parallax value are needed for median filtering, the 3D image warping sub-
module will buffer these data in the Block RAM (see Fig.5), and output three
parallax values in each clock to the median filter mask in disparity map filtering
submodule. Three parallax values are read from the three rows respectively.

386 R. Liu et al.

3D image warping
D
. 3D image warping
datczjalﬁ function JL

Block RAM | et Read/Write dispatch] v
of Block RAMS data_valid
Block RAM | ket >

Read/Write control

™ :ﬂza 3
W H of Block RAMS J[

Fig. 5. Hardware architecture of 3D image warping submodule

Note that the destination image generated by 3D image warping may contain
holes. In this paper, the parallax of a hole pixel is set to —256 (the parallax
cannot achieve at —256 in order to avoid visual fatigue). In 3D image warping
submodule, Block RAM is used to store parallax values which is initialized to
—256 before processing a depth map. Hence, the subsequent submodules will be
able to distinguish which pixels are holes.

In 3D image warping submodule, the Look-Up-Table (LUT) depth2disparity
is used to realize the depth-to-disparity conversion and it is implemented by
ROM. The size of the LUT is 256 x 9 bits, and the values stored in it are
calculated in advance outside the system. These values are loaded by parameter
setting submodule during the Vertical Blanking Interval (VBI). By this way, the
function of (10) can be realized by the LUT depth2disparity. In addition, the
depth adjustment can be achieved by changing the values in the depth2disparity.
Another important aspect of the submodule is that the input sequence of the
depth map is from right to left, top to bottom. In this way, occlusion-compatible
results can be obtained with this sequence, therefore the folds can be eliminated
without any extra hardware resources [11].

Hole-Filling Submodule. The hole-filling submodule receives the parallax
value RX_M from disparity map filtering submodule, fills the holes in the dis-
parity map, and then outputs it to the pixel-copy submodule. The hole-filling
is implemented by modifying the parallax value of hole point (i.e. —256) in
the disparity map. According to the algorithm mentioned in [10], the hardware
architecture of hole-filling submodule is implemented in Fig. 6. It is shown that
hole-filling submodule consists of four function modules: detect_hop, mark_holes,
fill_holes and dilate_big_holes module.

The responsibility of detect_hop module is distinguished from foreground and
background. Then, the background parallax value of mutation is output. The
mark_holes module marks the different categories of holes in the data stream for
the subsequent module to fill holes. At last, different methods are used to fill
small and big holes in the fill_holes and dilate_big_holes modules, respectively.
The small holes are filled with adjacent pixels. After dilation, the big holes
are filled with the background parallax value which comes from mutation of
detect_hop outputting.

Real-Time Ultra-High Definition Glasses-Free 3D System 387

noholes M

RX M - :
data_valid_i detect_hop |dis_fore_back_pixel
foreground M
[fill_hol . dilate_big_hols
i oles i ilate_big_holes
| _big

X M
= n
data_valid_qut
_—

= Sync signal L v W J
==) Data signal mark_holes =
") hole_num

Fig. 6. Hardware architecture of hole-filling submodule

3.3 View Fusion Module

The view fusion module is responsible for subpixels rearrangement of the eight
views. Then, subpixels in accordance with arrangement rules of the cylindrical
lens glasses-free 3D displays are arranged to generate a stereoscopic image and
sent to the HDMI interface [12]. In different glasses-free 3D displays, the subpixel
arrangement requirements are different, even if the size of the screen is same.
The subpixel arrangement of grating can be divided into integer arrangement
and floating-point arrangement. In particular, the integer arrangement can be
seen as a special case of floating-point arrangement. The model used in this paper
support 4K floating-point cylindrical lens gratings. In addition, lenticular screens
are typically slanted at a small angle to reduce a vertical banding effect known as
the “picket fence” (an artifact of the microlenses magnifying the underlying LCD
mask). This tilt angle is usually divided into two cases, counterclockwise and
clockwise. This paper uses an anticlockwise tilt angle. Here we use the floating-
point arrangement and counterclockwise tilt angle as an example to introduce
the realization of view fusion module. Figure7 illustrates a slanted lenticular
layout with RGB stripe subpixels. According to the physical characteristics of 4K
glasses-free displays, the RGB pixel values of the composite image are calculated
using the formula (11), and the microlens array weights are calculated using (12)
and (13). Note that (13) is further optimized on the basis of previous method
in [9].

N N N
R;; = E Fi' <o Gi,j = § Fi' < g5 B;; = E Fi' < by (11)
n=1 n=1 n=1

1= (kij— kig] if n=lki;]

Fily = ki — iy if n=lki;]+1 (12)
0 otherwise
Kij = (i —iopy — 37 X tana)%opitch Y N (13)

pitch
where 7 and j denote the horizontal and vertical coordinates, i, is the hori-
zontal offset, 1,5 =0, ¢ € [0,3840 x 3) and j € [0,2160), because of RGB three
channel. N denote the number of views (N = 8), pitch denote the ratio of pixels
per inch and per inch, which is a constant (pitch = 8.01). Each pixel coefficient

388 R. Liu et al.

Fig. 7. Slanted lenticular layout with RGB stripe subpixels: two different numbers in
one rectangle denote the two participating subpixels from which viewpoint

of the composite image is calculated directly by (13), which greatly consumes
hardware resources and increases the complexity of the hardware implementa-
tion. Therefore, we make an equivalent transformation to get (14), which has
been verified by computer.

i —doff — 3] Xt N
Ki,j:(z loff — 3j X tana) x

pitch N (14)

By observing (14), it can be seen that once the RGB subpixel coefficients
of the first pixel are determined, the subsequent subpixel coefficients can be
obtained by adding or subtracting the constant from the previous subpixel coef-
ficients. The subpixel coefficients calculation equation in the horizontal and ver-
tical direction can be obtained respectively by (14).

Kits; = (Kij +3p)%N p = N/pitch (15)

K; j+1 = (K j — 3ptanc) N p = N/pitch (16)

According to the above deduction, the coefficient K can be obtained by sim-
ple addition or subtraction and one modular operation, which greatly saves the
resource consumption and reduces the technical difficulty of the implementation.
In the design of this module, the first subpixel coefficients of each image are fixed
constants, which can be stored in registers, such as Koo = 0, K7, = 0.9988,
Koo = 1.9975, tana = 0.2344, p = 0.9988. In addition, we adopted IEEE 754
to governs binary floating-point arithmetic, which can greatly guarantee the

Real-Time Ultra-High Definition Glasses-Free 3D System 389

accuracy of floating-point calculation. The view fusion module consist of three
submodules: buffer module, coefficients calculate module and subpixel rearrange-
ment module, and among which the most difficult is coefficients calculate module.
Figure 8 demonstrates the coefficients calculation module at the circuit-level.

e
e e

—

Kol

Kiis,)

New line begin|

KI,(I

Kiss

Kiss,)

Koo
New frame begin|

Fig. 8. Subpixel coefficients calculation circuit

4 System Implementation

We used Verilog HDL to implement the design module of system. A proof-of-
concept implementation was synthesized and simulated for a Xilinx XC7VX330T
FPGA using Xilinx Vivado 2014 toolset and ModelSim 10.2. According to the
HDMI 1.4, the 4K ultra-high definition video has a transmission rate of 297 MHz
on the HDMI interface. Therefore, in view of the performance of the hardware
platform and the processing efficiency of whole system, 666 MHz clock frequency
was adopted in the system.

The timing sequence of video input module is shown in Fig. 9(a). We can see
that the module implemented the splitting, stretching, and buffering of input
image correctly. The reference image and depth map are output by 30 bits and
8 bits respectively.

Timing simulation of multiview rendering module is shown in Fig. 9(b). From
this figure, we can see that the module has instantiated 7 DIBR submodules and
produced expected timing.

Until now, few studies focus on 8 viewpoints real-time UHD glasses-free 3D
system. Hence it is difficult for us to find an appropriate design for comparison.
In this paper, we compared the symmetrical shift-sensor camera setup, which
was proposed in our previous study [13], with asymmetric shift-sensor camera
setup for multiview rendering module. Table 1 summarizes the detailed device
utilization results. Compared with a previous design, our innovative architecture
saves 1799 slice registers and 1526 slice LUTs for 4K@30 Hz video.

390 R. Liu et al.

S Y S— Y S— Y S—Y
——me_——we 1

(b) Multiview rendering simulation

Fig. 9. Timing simulation of main submodules;

Table 1. FPGA utilization summary™

Resource utilization Symmetrical shift-sensor | Asymmetrical shift-sensor | Saved
Used | Utilization Used | Utilization

Slice registers 13424 | 3% 11625 | 2% 1799
Slice LUTs 12690 | 6% 11164 | 5% 1526
Fully used LUT-FF pairs | 8441 | 47% 7461 | 42% 980
Bonded IOBs 283 | 47% 252 | 42% 31
Block RAM/FIFO 121 | 16% 113 | 15%

BUFG/BUFCTRLs 3 % 31 9%

*Does not include the recourse consumption of the image fusion module.

Figure 10 shows the original view and the seven virtual views generated by
the multiview rendering module. The viewing angles (viewpoints) of those views
are slightly different from each other, hence the contents are slightly different.
The difference is marked with a red vertical line in the same position of each view
in Fig.10. Go through the red vertical lines from Fig. 10(a) to (h) we can see
that the foreground object (man) shifted gradually towards the right side, which
indicates that the multiview rendering module can generate correct virtual views.
Figure 10(i) shows the fused glasses-free 3D image, which has a good stereoscopic
effect when displayed on a 4K glasses-free 3D display (Fig. 10(j)).

As for view fusion, a real-time system that supports view fusion functionality
was presented in [9]. The system in [9] supports 1080p@60 Hz and 4k@30 Hz for
4/6/8/16-viewpoint lenticular-based 3DTV displays. Comparing the design in
[9], our design implements a lightweight view fusion module that only supports

Real-Time Ultra-High Definition Glasses-Free 3D System 391

(a) (b) (c) (d)
(e) (f) (8) (h)

(i)

Fig. 10. Eight different views and the glasses-free 3D image fused from them. (a)
Reference image I,; From (b) to (h): I1—I7; (i) Glasses-free 3D image; (j) Stereo effect
when (i) was displayed in a 4K glasses-free 3D display.

8-viewpoint fusion for 4k display, hence hardware cost is reduced significantly. In
addition, the hardware cost is further reduced since some floating-point multiply
operations are avoided in the sub-pixel rearrangement coefficients calculation in
comparison with the method in [9].

5 Conclusion

This paper presented an FPGA architecture for real-time ultra-high definition
glasses-free 3D system. The main contributions of this study are:

e a hardware architecture that supports the V + D format. As the V + D
video format is used, the system can generate multiviews that required for
glasses-free 3D display using DIBR technique. As a result, only one channel
of video and its depth map are needed to transmit for this format, hence it
requires lower bandwidth in comparison with the traditional 3D video.

e an asymmetric shift-sensor model. With this camera setup, the multiview
rendering module in the system can generate 7 virtual views line by line with
a few of Block RAMs. Hence the traditional scheme of using DDR for pipelin-
ing is avoided. As a result, the hardware cost, as well as the complexity of the
system, is greatly reduced. In addition, as the system with the proposed cam-
era setup can generate glasses-free 3D images, it helps to solve the problem
of 3D content shortage.

392 R. Liu et al.

Our proof-of-concept FPGA implementation supports 4K@30Hz for real-time
UHD glasses-free 3D display. A further extension to support 16-viewpoint (or
more) autostereoscopic view synthesis can be easily achieved by duplicating the
proposed design.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (No. 61201347) and the Chongqing foundation & advanced research
project (cstc2016jcyjA0103).

References

1. Liu, R., Tan, W., Wu, Y., Tan, Y., Li, B., Xie, H., Tai, G., Xu, X.: Deinterlacing
of depth-image-based three-dimensional video for a depth-image-based rendering
system. J. Electron. Imaging 22(3) (2013)

2. Fehn. C.: Depth-image-based rendering (DIBR), compression and transmission for

anew approach on 3D-TV. In: 2004 SPIE Stereoscopic Displays and Virtual Reality

Systems XI, 19 January—21 January 2004, San Jose, CA, United States, pp. 93-104

(2004)

Neil, A.: Autostereoscopic 3D displays. Computer 8, 32-36 (2005)

4. Jin, L., Liang, C., Ying, L., Xie, Y.: Design of spaceborne SAR imaging processing
and fast verification based on FPGA. In: IET International Radar Conference 2013,
pp- 1-5 (2013)

5. Li, Z., Ye, X.S., Zhang, H., Lu, L., Lu, C., Cheng, L.C.: Real-time 3D video system
based on FPGA. In: International Conference on Consumer Electronics, Commu-
nications and Networks, pp. 469-472 (2014)

6. Lin, T.-C., Huang, H.-C., Huang, Y.-M.: Preserving depth resolution of synthe-
sized images using parallax-map-based DIBR for 3D-TV. IEEE Trans. Consum.
Electron. 56(Compendex), 720-727 (2010)

7. Liu, R., Xie, H., Tai, G., Tan, Y., Guo, R., Luo, W., Xu, X., Liu, J.: Depth
adjustment for depth-image-based rendering in 3D TV system. J. Inf. Comput.
Sci. 8(16), 4233-4240 (2011)

8. Zhang, L., Tam, W.J.: Stereoscopic image generation based on depth images for
3D TV. IEEE Trans. Broadcast. 51(2), 191-199 (2005)

9. Ren, P., Zhang, X., Bi, H., Sun, H., Zheng, N.: Towards an efficient multiview
display processing architecture for 3D TV. IEEE Trans. Circuits Syst. II Express
Briefs PP(99), 1 (2016)

10. Liu, R., Deng, Z., Yi, L., Huang, Z., Cao, D., Xu, M., Jia, R.: Hole-filling based
on disparity map and inpainting for depth-image-based rendering. Int. J. Hybrid
Inf. Technol. 9(5), 145-164 (2016)

11. Liu, R., Xie, H., Tai, G., Tan, Y.: A DIBR view judgment-based fold-elimination
approach. J. Tongji Univ. 41(1), 142-147 (2013)

12. Zhao, W.X., Wang, Q.H., Li, D.H., Tao, Y.H., Wang, F.N.: Sub-pixel arrangement
for multi-view autostereoscopic display based on step parallax barrier. Sichuan
Daxue Xuebao 41(6), 216-218+236 (2011)

13. Tan, W.: Research on key technologies of glasses-free 3D display. Chongqing
University (2014)

w

	FPGA Architecture for Real-Time Ultra-High Definition Glasses-Free 3D System
	1 Introduction
	2 Asymmetric Shift-Sensor Camera Setup
	3 Hardware Architecture
	3.1 Video Input Module
	3.2 Multiview Rendering Module
	3.3 View Fusion Module

	4 System Implementation
	5 Conclusion
	References

