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Abstract. Low-light images often suffer from poor quality and low vis-
ibility. Improving the quality of low-light image is becoming a highly
desired subject in both computational photography and computer vision
applications. This paper proposes an effective method to constrain the
illumination map t by estimating the norm and constructing the con-
straint coefficients, which called LieCNE. More specifically, we estimate
the initial illumination map by finding the maximum value of R, G and
B channels and optimize it by norm estimation. We propose a function
tγ to contain the exponential power γ in order to optimize the enhance-
ment effect under different illumination conditions. Finally, a new eval-
uation criterion is also proposed. We use the similarity with the true
value to determine the enhanced effect. Experimental results show that
LieCNE exhibits better performance under a variety of lighting condi-
tions in enhancement results and image spillover prevention.
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1 Introduction

The visibility of the image as an important criterion for evaluating the quality
of the images reflects the detail, clarity and contrast of the image. Some natural
scenes such as sunny days, rainy days or night scenes always lack light or external
light conditions. The quality and illumination of images taken from these scenes
will be reduced. Improving the quality of images has critical positions in the field
of image fusion [1], feature extraction [2] and machine recognition [3].
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For low-light image, the key to improving image quality is improving contrast
and resolution. A number of methods have been developed to address visibil-
ity enhancement for low-light scenes from a single image. The simplest way is
increasing the brightness of images directly. But the brighter area will overflow.
Image gray scale dynamic range can be balanced with histograms, but the details
will be lost [4–7]. The multi-scale retinex algorithm with color restoration will
reduce the image contrast and keep the edge detail unsatisfactory [8,9].

Fig. 1. Algorithm general block diagram.

Building the geometric relationship between the original image and recon-
structed image can be constructed recovery function. Fu et al. establishes a color
estimation model for transforming the image from night to day [10]. In [11], the
observed image can be decomposed into the product of the desired scene and



370 T. Zhao et al.

the illumination image. Dong et al. applies an enhancement method based on
dark channel prior algorithm [12,13].

Based on the dark channel a prior algorithm, Zhang et al. gives the weight to
each illumination component on the dark channel to optimize the illumination
map [14]. In [15], the illumination map is estimated by using the illumination
component in the HSI space, but it will bring color distortion. Recent years,
scholars applied convolution neural networks into the dehaze algorithm, estimat-
ing illumination map by training samples [16]. Although the treatment results
are improved, it also bringing new problems with high time costs.

This paper proposes a low-light image enhancement algorithm based on the
atmospheric physical model with a constrained norm estimation so as to adapt
to different illumination images. The initial illumination map is estimated by
finding the maximum value of R, G and B channels and refinement by norm
estimation. Considering the robustness of the algorithm, we introduce the para-
meter γ into the power exponent tγ to constrain the brightness map t. We use
quadtree algorithm to estimate the ambient light A, which has a faster processing
effect than the dark channel proposed by He. We also propose a new evaluation
criteria to verify the effectiveness of our approach.

To this end, we present the whole algorithm flow in Fig. 1, including image
reversal, image inversion, illumination map estimation and constraint, ambient
light estimation and image reconstruction.

First of all, we reverse the picture. Secondly we extracte the maximum in
RGB channel as the illumitation map and use the norm estimation to optimize
the propagation map. Then the atmospheric light is estimated by the quadtree
algorithm. Finally, the image is reconstructed by using the atmospheric physical
model to obtain the enhanced image. In the following sections, we will discuss
in detail the algorithm details and performance.

2 Our Approach

With statistics supporting in [12], the inverted low-light image on the RGB
channel is similar to the haze image:

I(x) = 1 − L(x) (1)

where I indicates inverted image which looks like haze image, L represents the
input low-light image. The model as follows is widely used in haze removing
[13,20]:

R(x) =
I(x) − A(1 − t(x))

t(x)
(2)

where R represents the reconstructed haze image, I is the haze image, A is the
global atmospheric light in haze image, but it is also called ambient light in low-
light image. t represents the medium transmission. Reconstructing the inverted
low illumination image as a haze image, we substitute Eq. (1) into Eq. (2):

J(x) =
L(x) − A

t(x)
+ A + 1 (3)
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where J = 1 − R is the enhanced image, L and represents the input low-light
image. A is the ambient light and t indicates illumination map.

For preventing oversaturation, Eq. (4) is introduced as:

J(x) =
L(x) − A

t(x) + ε0
+ A + 1 (4)

where ε0 approaches zero infinity. Figure 2 provides an example, we can see input
image and the corresponding inverted image as well as enhanced image.

Fig. 2. The enhanced results by our approach. (a) Input low-light image. (b) Inverted
image. (c) Image after enhance by our approach.

2.1 Initial Illumination Map Estimation

The medium transmission map t* describes the light portion that attenuate with
the increase of depth of field. t* is defined as:

t∗(x) = e−βd(x) (5)

where β is the scattering coefficient of the atmosphere and d(x) is scene depth.
In low-light image, the illumination map does not attenuate with the increase of
depth of field. Therefore, the method of defogging to estimating the illumination
map may not be applicable. This paper estimates the initial illumination map
by finding the maximum value of R, G and B channels [11]:

t̂(x) = max
c∈{R,G,B}

Lc(x) (6)

Initial illumination map t̂ contains the luminance information of the image but
does not contain the texture information of the image.
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2.2 Illumination Map Optimization by Norm Estimation

Initial estimation can promote the global illumination. But the enhancement
processing is required to preserve more structures. In order to solve this problem,
we use the following refinement method for propagation maps [19]:

min
t

∥
∥t̂ − t

∥
∥
2

F
+ η‖W · |(∂ht)x + (∂vt)x|‖1 (7)

where t is the optimization illumination map, ‖‖F is the Frobenious-norm and
‖‖1 represents the l1-norm respectively. The first term takes into account the
degree of fusion and smoothness between the initial map t̂ and the refined map
t while the second one squares up the structure and texture information. η
(the experience value is 0.2) designates a coefficient that balances the weights
between two terms. x indexes 2D pixels. ∂x and ∂y are the partial derivatives in
two directions. Further, W is the weight matrix, we defined it as:

W =
∑

y∈Ω(x)

Gσ(x, y)
∣
∣
∣
∑

y∈Ω(x) Gσ(x, y) ∗ (∂ht̂)y

∣
∣
∣ + ε0

(8)

where Gσ (x, y) is a Gaussion filter with standard deviation σ and ∗ is the con-
volution operator. W can be estimated by the known t̂ rather than through the
iteration of t, thus reducing the calculation time. We transform the nonlinear
part in Eq. (7) into a linear equation for calculation:

min
t

∥
∥t̂ − t

∥
∥
2

F
+ η

∑

x

Wh(x) · (∂ht(x))2
∣
∣∂ht̂(x)

∣
∣ + ε0

+
Wv(x) · (∂vt(x))2

∣
∣∂v t̂(x)

∣
∣ + ε0

(9)

After simplifying the equation and resolving the quadratic term, we get the
optimization illumination map t. The different illumination maps are shown in
the top row of Fig. 3 and the bottom row is reconstructed images with different
illumination maps. We can see the advance of our method. The reconstructed
image has more details and more suitable brightness.

2.3 Constraint Illumination Map by Exponential Power

We have discussed the method of estimating the propagation pattern with the
norm in Sect. 2.2. Furthermore, the concentration of fog images have the different
in thick-fog and light-fog. Similarly, the illumination intensity of the low-light
images are not stable.

We propose a new method called LieCNE to accommodate a wider range
of illumination conditions. The estimation of propagation map t needs to be
constrained. We propose the parameter γ to make the constraint of t by:

T = tγ (10)

γ is defined as:

γ = min(

√

K

Δ
,μ) (11)
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Fig. 3. Comparison of different illumination maps and corresponding enhanced results.
(a) Initial. (b) Xu [18]. (c) RTA [19]. (d) LIME [11]. (e) With norm estimation.

where K is a threshold (empirical value of 80), when the image illumination is
low, K may take a smaller value, and when the image illumination is high, K
may take a larger value. μ ∈ (0, 1] is a given constant (0.8 by experience). Δ is
given by the following equation:

Δ =
∣
∣
∣min

c
Ic(x) − min

c
Ac

∣
∣
∣ (12)

where A is the ambient light and we will discuss in Sect. 2.4. We obtain a more
adaptable illumination map T , Eq. (4) can be written as:

J(x) =
L(x) − A

T (x) + ε0
+ A + 1 (13)

2.4 Quadtree Algorithm for Estimating Ambient Light

In this paper, the quadtree algorithm is used to estimate the value of ambient
light. The quadtree algorithm and the algorithm [13] have almost the same effect
on the atmospheric light estimation, but the quadtree algorithm has a faster
processing speed. Quadtree algorithm to estimate the process of atmospheric
light are shown in Fig. 4.

The channel minimum map of image is firstly computed, which aims to avoid
the local image in a channel while there is a maximum value of the atmospheric
light caused by the error estimates.

D(x) = min
c∈{r,g,b}

Ic(x) (14)

Secondly, the image is divided into four blocks. We calculate the average of
each block image and take the mean of the largest block to four equal parts
thirdly. The iterations are repeated until the resulting image block size is less
than a given threshold. The maximum value of the pixels in the resulting image
block is taken as the value of the ambient light.

A(x) = max
y∈Ω(x)

(Dc
1(x),Dc

2(x),Dc
3(x),Dc

4(x)) (15)
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Fig. 4. Schematic figure of quad-tree algorithm.

3 Experimental Results

3.1 Algorithm Performance Comparison

The proposed method was tested on several 816 × 612 pixel images with various
degrees of darkness and noise levels. In order to further verify the enhancement
effect of the proposed algorithm, we compare the algorithm with LIME [11],
Dong et al. [12], Hu et al. [15] and Ren et al. [17] in Fig. 5. Moreover, all the
codes are carried out on the MATLAB2014a platform to ensure the algorithm
fairness and time results based on Windows 10 OS with 8 G RAM and 3.2 GHz
CPU.

Fig. 5. Comparison of different method. (a) input. (b) Hu [15]. (c) Dong [12]. (d) LIME
[11]. (e) Ren [17]. (f) LieCNE.
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[12,15] reduce the fidelity of the image. Our method recovers the structures
without sacrificing the fidelity of the colors. In order to further prove the per-
formance of our algorithm, we compare the proposed algorithm with the state-
of-the-art using the Mean Squared Error (MSE), Peak Signal-to-Noise Ratio
(PSNR), Entropy, Absolute Mean Brightness Error (AMBE) and Lightness order
Error (LOE) metrics. (image size is 816 × 612).

Table 1. The average results of MSE, PSNP, E, AMBE, LOE, times on the
reconstructed.

Metric Hu et al. Dong et al. LIME Ren et al. LieCNE

MSE 0.067 0.049 0.026 0.014 0.016

PSNP 59.882 61.220 63.910 66.568 65.988

E 7.169 6.005 6.778 6.972 6.650

AMBE 0.186 0.154 0.134 0.091 0.090

LOE (10−3) 573.49 606.36 582.53 516.89 527.34

Time (s) 2.79 10.5 1.78 5.71 1.64

In Table 1, LieCNE works well on several objective indicators. Although the
entropy of LieCNE and Ren’s entropy has a difference of 0.32, the remaining
indicators are better than other algorithms. It is worth mentioning that, although
the Rens method and LieCNE are close to most of the indicators, our method
just using 1.64 s, runs 3.48 times faster than the Rens.

3.2 A New Evaluation Criteria

When dealing with low-light images, it is necessary not only to enhance the
brightness of the image as much as possible, but also to avoid the image pixel
value of the overflow phenomenon, especially with a strong light source of low-
light images. The enhancement effect needs to consider from two aspects: one
is the enhanced intensity that is the degree of improvement of the brightness
contrast, and the other is the statistics of the spillover intensity near the bright
spot or the local strong light source. So the principle of enhancement is trying
to avoid too much overflow while enhancing the lower part of the brightness.

Figure 6(a) shows RGB weight contrast between different algorithms which
reflects the overall enhanced strength. In Fig. 6(b), the degree of spillover of the
image after reconstruction by several algorithms can be seen more intuitively.
Gray level of 256 is considered as overflow and the more pixels gather in this
gray-scale the more overflow appear in the image. LieCNE has the better overall
enhancement effect and also has advantages in suppressing spillover result. Due
to the lack of true values, we collected images of different lighting scenes in the
same scene as samples. We fixed the camera on a tripod to ensure the reliability
of the experimental data and take the images in the same scene in 14:00, 16:00,
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Fig. 6. Comparison of intensity enhancement among different algorithms. (a) RGB
weight contrast between different algorithms. (b) Color histogram distribution curve.
(c) The image under normal light (filmed at 14:00) (Color figure online).

Fig. 7. Comparison of enhancement effects of several algorithms in different brightness
of the same scene. (a) Input. (b) Hu [15]. (c) Dong [12]. (d) LIME [11]. (e) Ren [17].
(f) LieCNE

17:00, 17:30, 18:00 respectively. We take at 14:00 as the true value of the data
comparison, as shown in Fig. 6(c).

Figure 7 shows the enhancement effects of several algorithms for the same
scene at different light intensities. Row (1)–(4) are the original images filmed
at 16:00, 17:00, 17:30 and 18:00 and their correspond enhanced images respec-
tively. Furthermore, we propose a new evaluation method, which contrasts the
enhancement effect of the algorithm under different illumination intensities. The
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image enhancement effect was evaluated by computing the structural similarity
(SSIM) between the reconstructed low image and the normal illumination.

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(16)

Table 2. The SSIM with normal image under several illuminations.

SSIM Original Hu et al. Dong et al. LIME Ren et al. LieCNE

14:00 0.8298 0.5942 0.6242 0.6716 0.7206 0.7058

16:00 0.6672 0.6779 0.6875 0.7131 0.6987 0.7422

17:00 0.3182 0.5937 0.6458 0.7278 0.7549 0.7579

18:00 0.2375 0.3625 0.4216 0.4792 0.5182 0.5542

In Table 2, the SSIM enhanced by LieCNE under different lighting condi-
tions is closer than other methods to the normal light of the image. Figure 8
shows the line graph.

Fig. 8. The comparison of SSIM between enhanced image and original image under
different brightness.

Figure 8 reflects the comparison results more directly. First, as the decreasing
of image brightness, SSIM with normal light is also reduced. Second, LieCNE
exhibits better SSIM to the original image in each illumination. Finally, it
is found that the enhancement of image photographed at 17:00 has a higher
SSIM with the original image. As described in Sect. 2.2, it is necessary to vary
the estimates of the illumination map appropriately for different light intensities.
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4 Discussions and Conclusions

This paper has presented an effective approach to enhance low-light images for
boosting the visual quality. Inspired by the existing atmospheric haze imaging
model and low illumination image enhancement algorithms, the illumination map
can be estimated from the image color channel and optimized using the norm,
ambient light is determined by the quadtree algorithm. In addition, this paper
proposes a method of constraining the illumination map for different illumination
images as well as a new evaluation method, that is, determining the enhancement
effect of the algorithm by comparing the quality of the image under different light
intensity. The experimental results reveal that LieCNE achieves higher efficiency
and better enhancing effects a variety of light intensity. But some problems
still exist. Low-light images have a lot of noise and it will be amplified during
enhancement processing. Filtering noise while ensuring the image enhancement
effect is not affected is the next issue of concern.
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