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Abstract. Convolutional networks have been successfully applied to
visual tracking to extract some useful feature. However, deep networks
are time-consuming to offline training and usually extract the feature
from raw pixels. In this paper, we propose a two-layer convolutional net-
work based on oriented gradient. The first layer is constructed by the
convolution of the filter and an input image of oriented gradient, which
is robust to the illumination variation and motion blur. Then, all of the
feature maps of the simple layer are stacked to a complex feature map as
the target representation. The complex feature map can encode the local
structure feature which is robust to occlusion. The proposed approach is
tested on nine challenging sequences in comparison with nine state-of-art
trackers, and the result show that the proposed tracker achieves mean
overlap rate of 0.75, which outperforms the secondary tracker by 26%.

1 Introduction

Visual Tracking is a major issue in computer vision with lots of applications,
such as automatic supervision, human computer interaction and vehicle tracking.
Given the true position of the first frame, the purpose of visual tracking is to find
the position of the target in the successive frames. There are still some challenges
because of occlusions, plane rotation, motion blur, illumination variation, etc.

The main influence factors of tracking include feature extractor, observation
model, model update and motion model. Recently, lots of state-of-the-art algo-
rithms are proposed, like LOT [1], Struck [2], SCM [3] and ASLA [4], and these
methods focus on exploiting hand-crafted features. Although these algorithms
perform well in the past, the hand-crafted features are not suitable for all generic
objects.

Convolutional neural network (CNN) can exploit some useful features from
raw data, so it has extensive applications, such as image classification [5] and
object recognition [6] and segmentation [7]. However, traditional CNNs need too
much time and samples to offline training for visual tracking. To solve these
problems, Fan et al. [8] trained CNN by some auxiliary picture; Zhou et al. [9]
proposed a tracking system using various CNNs; Li et al. [10,11] used multiple
image cues to design a lightweight CNN; Zhang et al. [12] exploited a CNN with
lightweight structure, which is fully feed-forward and achieves fast tracking even
on a CPU.
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All of above-mentioned CNN tracking methods pay particular attention to
raw pixels for extracting features, and ignore some inherent features like ori-
ented gradient. Gradient mainly exist in the brim of the target and some parts
whose pixels change sharply. And oriented gradient is the most change rate of
image gray value, which can reflect the salience of the target. The result of the
convolution of a function and unit impulse is similar to copying the function in
the position of the unit impulse, so only the value of the parts with similar ori-
ented gradient is much larger when filters extracted from the oriented gradient
convolve around the input image. Based on this observation, in this paper, we
propose an oriented gradient convolutional network (COG) formulated within
a particle filtering framework for object tracking. To build it, we first warp the
image to a fixed size and get some patches by sliding windows. Each patch con-
sists of oriented gradient about the object. Then, a overcomplete dictionary is
studied from the image patches as a filter. Motivated by the work in [12], we
propose tracking system using full feed-forward convolutional network, such that
convolutional network is only simple two-layer. The first layer is simple layer,
which is constructed by the convolution of the filter and image patches. And the
complex layer consists of complex cell feature map that is a tensor, which stacks
simple cell feature maps.

2 Particle Filter

Particle filter is an algorithm which could estimate the posterior distribution
of state based on the Bayesian sequential importance sampling technique and
Monte Carlo simulation. Because of estimating the state by some samples, it is
applicable for non-linear system. And it has been widely used in visual tracking
[3,4]. The process of particle filter includes two steps: predicting and updat-
ing. The predicting distribution p(z¢|z1.t—1) which is given by all observations
z1:4-1 = {21, %2, ..., 2zt—1} up to time t — 1, can be computed as

p(@e]z10o1) = / p(@e|e1)p(e1] 11 )dzs s (1)

where z; denotes the state variable which describe the affine motion parameters
at time t. When the observation z,; is available at time t, the state vector can be
updated

p(ze|e)p(ze|21:0-1) @)
p(zt|21:t71)

where p(z;|z;) denotes the observation likelihood, and p(zg|2z1.5—1) is a normal-

ized constant which could be computed as

p(xe]21:) =

p(2t)|z1:0-1) = /P(2t|$t)p(9€t|21:t71)d$t (3)

Considering that the integrals above-mentioned are difficult to be computed,
the Monte Carlo simulation and importance sampling are utilized to approximate
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the p(z¢|21.¢) by N samples which denote {21}V . The weights of samples denoted
w; are updated as ‘ o
i i p(z)ei)p(zi|zi_y)
' T g(wilzie-, 1)

(4)

where ¢(z¢|z1.4-1,21.¢) denotes importance distribution. Because of sample
degenerating, the samples are resampled to duplicate the particles with high
weight and abandon the low ones.

In this paper, the importance distribution is set to g(zt|zi.t-1,214) =
p(z¢|zi—1) and the weights become the observation likelihood p(z:|x:). We also
warp the input image to a fixed size with m x m pixels. Then, the state vari-
able could be set to x; = (tz,1ty, a1, a2, 3, ), where {tm,ty} are translation
parameters and {aq, a2, a3, ay} are the deformation parameters.

3 Oriented Gradient Convolutional Network

3.1 Preprocessing

After the input image is warped to a fixed size, the gradient of each pixel can
be computed as

Gao(z,y) =T Q) Lo, Gy(z,y) = ™" R)I] (5)

where I™ ™ is the wrapped image, which is preprocessed by gamma cor-
rection that is correspond to local brightness and contrast moralization, and
Iy =[-1,0,1]. Then the oriented gradient can be formulated as

Gy(z,y)
G.(z,y)

Therefore, a given fixed input image is constructed by the oriented gradient.
We sample (m —n + 1) x (m —n + 1) patches centered at each pixel location

oz, y) = tan™*

(6)

inside the I ™" by sliding a window with n xn. Finally, in each patch, we divide
the oriented gradient into R sections, and get a feature vector of R dimensions
denoted as Y% -, K = (m—n-+1) through counting the number of each section.

3.2 Design Filter

Inspired by the spare representation [13]: the most likely representation of the
image can be achieved by over-complete sparse representation, which also can
obtain higher resolution information than traditional non adaptive methods. So
we use the overcomplete dictionary to represent the target region adaptively.
Then, the filter can be formulated as

Frew = Y2 o Xgxw (7)
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where X is a coefficient matrix, which should be as sparse as possible. The
Eq. (7) can be rewritten as

wind| Xi o) st || Y- FX J3<e (8)

To solve the above Equation, supposing the dictionary F' is fixed, a method
called Orthogonal Matching Pursuit is used to achieve sparse coding

min{|| Y; — FX; |3} st.| Y —FX |[p<e 9)
T

where X is a sparse parameter. Then, F X can be computed as

w
FX =Y fa] (10)

i=1

where f, is the i-th column in the F and 2! is the i-th row in the X. Then
we need update the dictionary through several iterations. When the k-th col-
umn is updated, the others are supposed to be fixed. Then, the Eq. (9) can be
rewritten as

ming || ¥ - FX [=miny, | ¥ - S fal 3
=ming | (Y =2, fizi) — fume 15 (11)
= ming, || By - fizy |7
where FE is a fixed error matrix. Then, two vectors should be found in F; to

update f; and zI'. In [14], author used the Singular Value Decomposition (SVD)
method to solve this problem,

E,=UAVT (12)

where U and V are orthogonal basis, and A is a diagonal matrix. The vector
of U which corresponds to the maximum value of A is accepted as f,. However,
the sparsity of X may be corrupted if we choose the corresponding vector in V'
to update :BZT The solution is to construct a new matrix 2« which consists
of the nonzero element in z!

E, = ExQxr, &, = of Qxxr (13)

Then, a sparse z can be obtained when using SVD to E,.

3.3 Object Tracking

After getting the filter F', the region of each particle is preprocessed, denoted as
P. Then, the simple layer can be defined as

S=FQP (14)
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Fig. 1. The simple cell feature map can preserve the local structure of the target.

The simple layer S enhances the outline and structure of object region, which
can be remained while illumination variation and motion blur So the position of
the object can be discriminated according to the geometric layout information of
the simple layer. To further strengthen the effect of representation, a 3D tensor
is used to construct a complex feature map in [12],

C e RN (15)

which can enhance the strength of local structural. So the complex cell feature
map C is robust to occlusion and deemed as the candidate template. In this
paper, the state transition distribution was model by a Gaussian distribution,
and observation results are independent which could be computed as

Platle) = e~ leeeill (16)

where ¢; and ¢! are the target template and i-th candidate template respectively
at frame t.

3.4 Model Update

Filter and target template ¢ should be updated incrementally to accommodate
appearance changes. The target template can be update as

ci=(1—p)ei—1 +pei (17)

where p is fixed parameter which is set to 0.05in our experiments, ¢; represent
the target template at frame t, and ¢;_; is the sparse representation of the target
template at frame t — 1, which can be easily achieved by a soft shrinkage function

¢ = sign(vec(C')) max(0, abs(vec(C) — median(vec(C)) (18)
The filter is updated as
Fii1 = AFo + AF; + (1 - 20)F,_, (19)

where F', is the filter in first frame, A is a fixed parameter which is set to 0.15in
our experiments, F'; is the filter at frame t, and F';_4 is the filter at frame t — 1.
To improve the speed, we update the filter every other 5 frames.
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4 Experience and Discussion

4.1 Experimental Setup

Our tracker was implemented in matlab2016 on a PC with Intel Core i7-7700
CPU@ 3.5 GHz, and run at approximately 1 frame per second. To compare the
robustness of our algorithm, we use the Visual Tracking Benchmark dataset [15]
and its outstanding code library, including IVT [16], LIAPG [17], ASLA [4],
LOT [1], MTT [18] and SCM [3]. Furthermore, we also add the CNT algorithm,
which could be downloaded on authors homepage. Nine challenging sequences
from visual tracking benchmark are used for comparison, including blurcarl,
boy, david3, fleetface, jumping, jogging-1, singer2, suv and trellis.

Several parameters are used in COG tracker. The variance of particle filter is
set to Ay =4+ (v4—1 + vr—2 + v:—3)/3, where v;_1, v:_2 and v;_3 are the targets
movement speed at frame t, t —1 and t — 2 respectively. Deformation parameters
{ay, ag, as, as} are set to {0.02,0.005,0.005,0}. The size of the warped image is
set to m = 32, and the size of sliding window is set to n = 6.
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Fig. 2. Tracking results in terms of center error (in pixel). The COG is compared with
9 state-of-the-art algorithms on 9 challenging image sequences
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Table 1. Average overlap rate of 10 algorithm. The best and second results are shown
in bold-font and italic-font.

Sequences | COG | CNT | Struck | ASLA | SCM | CSK | LOT | IVT | LIAPG | MTT
blurcarl |0.81 [0.11 |0.79 |0.06 |0.05 |0.01 |0.67 |0.04|0.49 0.36
boy 0.81 |0.40 |0.78 |0.38 |0.39 |0.68 |0.55 |0.27|0.74 0.51
david3 0.73 |0.56 |0.30 0.43 0.40 |0.50 | 0.67 | 0.48 | 0.38 0.10
fleetface |0.64 [0.58 |0.61 |0.57 |0.60 | 0.59 |0.57 |0.46 |0.46 0.51
jumping |0.64 0.08 |0.62 0.23 |0.12 |0.05 |0.58 |0.12|0.15 0.10
jogging-1 |0.78 | 0.19 |0.17 | 0.18 |0.18 |0.18 0.09 0.18 0.17 | 0.18
singer2 0.74 |0.04 [0.04 |0.04 |0.17 |0.04 | 0.26 |0.04 | 0.04 0.04
suv 0.83  0.80 |0.52 0.49 0.75 10.52 |0.65 |0.41|0.48 0.45
trellis 0.7 10.42 |0.61 0.80 |0.67 |0.48 [0.31 |0.26 |0.20 0.22
average 0.75 |0.35 | 0.49 |0.35 |0.37 |0.34 |0.48 |0.25/0.35 0.28

Table 2. Successful rate based on Fig.3. The best and second results are shown in
bold-font and italic-font.

Sequences | COG | CNT | Struck | ASLA | SCM | CSK | LOT | IVT | LIAPG | MTT
blurcarl |1 0.05 [0.98 [0.05 |0.03 [0.01 |0.78 |0.04 |0.61 0.49
boy 1 0.45 |1 0.45 0.45 |0.88 |0.68 [0.34 |0.91 0.50
david3 1 0.68 |0.33 0.51 0.48 10.62 | 0.93 |0.63 |0.45 0.11
fleetface |0.91 |0.69 |0.69 0.63 0.77 10.68 10.60 |0.53 |0.62 0.62
jumping |0.91 0.11 |0.80 0.16 0.12 1 0.05 |0.78 |0.09 | 0.12 0.09
jogging-1 | 0.98 | 0.22 |0.22 0.22 0.21 |0.22 |0.06 |0.22|0.22 0.22
singer2 0.95 [ 0.04 |0.04 0.04 0.17 10.04 10.16 |0.04 |0.04 0.04
suv 0.98 | 0.70 |0.57 0.58 0.97 10.57 |0.78 |0.44 | 0.53 0.53
trellis 0.98 [0.24 |0.78 0.86 10.85 [0.59 [0.31 |0.30/0.15 0.19
average 0.97 (0.35 |0.60 |0.39 |0.45 |0.40 0.56 |0.29 0.40 0.31

4.2 Qualitative Comparisons

Motion Blur: Target region would become blurred due to the motion of target
or camera. In blurcarl sequences (Fig.4(a)), camera moves so swift that target
is blurred. Only the COG and Struck perform well in the entire sequence. As
show in Fig.4(e), The motion blur caused by drastic appearance change in the
jumping sequence that only COG, Stuck and LOT is not failed after frame 16.
The main reason that proposed COG successfully keeps track of the target with
motion blur is that the simple feature map is based on oriented gradient, which
is robust to motion blur (see. Fig. 1).

Plane Rotation: The target may be deformable while rotating in or out of the
image plane. It also led to motion blur if its speed of rotation is too high. For the
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Fig. 3. Tracking results in terms of center error (in pixel). The COG is compared with
9 state-of-the-art algorithms on 9 challenging image sequences

boy sequence (Fig.4(b)), the boy rotates both in and out of plane. Only COG
and Stuck perform well in all sequence. In the fleetface sequence (Fig. 4(d)), there
are both in-plane and out-of-plane rotations after frame 375. Except for COG
and Stuck algorithms, the others all drift. The COG deals with plane rotation
well because its online updated scheme is suit for appearance variation.

Illumination Variation: The reasons for illumination variation include differ-
ent col-our and varying levels of light. In singer2 sequence (Fig. 4(g)), the colour
of back-ground illumination change so drastic that only the COG algorithm can
track the target stably in the entire sequence. In trellis sequences (Fig. 4(i)), only
the COG and ASLA algorithms perform well while the strength of illumination
is varied. The proposed COG algorithm well handles the situation with illumina-
tion variations as the feature is extracted from the normalized local filters with
gamma correction and local brightness normalization.

Occlusion: The target may be partially or fully occluded by other object. In
david3 sequence (Fig.4(c)), only the COG and LOT algorithm perform well
when the target is partially occluded by the tree (e.g., frame 84, frame 190). In
jogging-1 sequences (Fig. 4(f)), the target is completely occluded by a lamppost
(e.g., frame 74, frame 78). Only the COG is able to detect the person when the
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Fig. 4. Tracking results in terms of center error (in pixel). The COG is compared with
9 state-of-the-art algorithms on 9 challenging image sequences (Color figure online)
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target appears again in the screen (e.g., frame 80). Our COG tracker achieves
stable performance for occlusion due to employing the local features in complex
feature maps.

4.3 Quantitative Comparisons

For quantitative comparison, the center position error plot and overlap rate plot
are employed. The center position error is defined as

€= \/(mt - $8)2 + (yt - ys)2 (20)

where x; with y; is the center position of the tracking result, and zs with y, is
the ones of the true state. The overlap rate is defined as

g Area(R: [ Rs)
~ Area(R:JR,)

where R; represent the area of tracking bounding box, and R, represent the
area of true state. The tracking result is successful if the value of overlap rate
is greater than 0.5 in current frame. And the successful rate is defined as the
number of success frames divided by the number of all frames.

Figure 2 illustrates the center position error of each frame in terms of the
results of 10 algorithms, while Fig. 3 shows the corresponding overlap rate plot.
The results indicate that the center position errors of COG keep the value at
relatively low level and the corresponding overlap rate keep higher level in all
sequence. Table 1 shows the average overlap rate of each algorithm. Overall, the
proposed COG achieves mean overlap rate of 0.75, which outperforms LOT by
26%. Meanwhile, in the success rate which shows in Table?2, its score is 0.97,
outperforms significantly Struck by 37%.

(21)

5 Conclusion

In this paper, we have proposed and demonstrated an effective and robust track-
ing method based on the oriented gradient convolutional networks. The tracker is
constructed by a simple two-layer convolutional network and formulated within
a particle filtering framework. First, we warp the input images to a fixed size
and extract a set of normalized patches of oriented gradient by sliding window,
which can handle illumination variation. To obtain a spare representation of the
target, we exploit the overcomplete dictionary from the normalized patches as
filters. Then, the first layer is constructed from the convolution of filters and
input images, which is robust to motion blur. Finally, we stack all the simple
feature maps to construct the complex feature map as the representation of the
target which can overcome drifts and occlusions. Furthermore, both the latest
observations and the original filter are considered in our update scheme, which
can deal with appearance change and the drift problem well. Compared with
other nine state-of-the-art algorithms, the experimental results of quantitative
and qualitative comparisons on 9 challenging image sequences show the robust-
ness of proposed tracking algorithm.
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