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Abstract. With the rapid development of light rail transit, tramway
detection based on video analysis is becoming the prerequisite and nec-
essary task in driver assistance system. The system should be capable of
automatically detecting the trackway using on-board camera in order to
determine the train driving limit. However, due to the diversification of
ground types, the diversity of weather conditions and the differences in
illumination situations, this goal is very challenging. This paper presents
a real-time tramway detection method that can effectively deal with var-
ious challenging scenarios in the real world of urban rail transit envi-
ronment. It first uses an adaptive multi-level threshold to segment the
ROI of the trolley track, where the local cumulative histogram model is
used to estimate the threshold parameters. And then use the regional
growth method to reduce the impact of environmental noise and predict
the trend of tramway. We have experimentally proved that the method
can correctly detect the tramway even in many undesirable situations
and use less computational time to meet real-time requirements.
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1 Introduction

In recent years, public transport has been greatly advocated due to the desire of
alleviating traffic congestion in metropolitan areas and the demand of reducing
air emissions that induce climate change. Among various public transport modes,
a tram is typically a light-rail public transport vehicle, which is faster than buses
and much cheaper than rapid transit systems [9]. The term “tram” is called in
Europe and also known as “streetcar” or “trolley-car” in North America. A tram
vehicle often runs on tracks along city streets, sometimes on segregated rights-of-
way (ROW) in public urban areas [16]. The kind of tram transport have a lot of
benefits over bus and other rapid transit trains, such as lower construction cost,
improving safety and reliability, better ridership and fewer carbon emissions etc.

Indeed, a tram transport system is technically different from bus systems and
other high-capacity rapid rail transit systems. These differences include: (i) the
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degree of separation of rail tracks, (ii) vehicle technology, and (iii) operating
practices [5,7]. As one of the key features, the degree of separation of rail tracks
shows the flexibility of rights-of-way. Most commonly, most of the trams travel
in the middle of street strips or at roadsides. On the one hand, although tram
routes are mixed with other traffic modes, tram vehicles still keep exclusive or
semi-exclusive rights-of-way, which allow them much faster than the buses. On
the other hand, the tram is different from a rapid transit line, which runs only on
fully grade-separated rights-of-way, such as in tunnels or on elevated structures.
A tram transport system often make use of hybrid rights-of-way . A usual
design is to permit a tram line with a partial grade-separated rights-of-way and
some grade crossings. For example, a tram running on the ground can over-pass
or under-pass at heavy-traffic regions or overcrowding intersections and stop only
at few street-level crossings. Such a design can reduce significantly construction
costs [7,8].

However, the mode of hybrid rights-of-way is unavoidably bringing potential
safety hazards to tram operating practices. Unlike other rapid rail transits, whose
rail lines are not accessible and have no interaction with road users, the tram
lines in certain areas, such as road crossings, are open and with potential dangers
by littering and causing obstructions to the tramway line [15]. In addition, on a
street-level crossing, a tram may collide with pedestrians, cyclists and drivers,
as it cannot stop so quickly or avoid them. Most commonly, a tram traveling at
just 40 kph needs around 50 m to stop. People may not fully realize the length of
the braking distance of trams, and so it often ends in tragedy [12,14]. There are
some other dangerous behaviors related to tram operations, such as crossing the
tramway line from non-designated areas, entering a restricted area, interfering
with the operation of the tramway or taking any action that would compromise
the safety of the tram, and crossing the red light at the junction with the tramway
and blocking the tramway without permission etc. [16].

Therefore, one of the key technical challenges for modern tram is to survey
the track along a tram line with respect to obstacles. The track operated by
a tram line is called tramway . Traditionally, a human tram driver uses visual
perception to observe the tramway and triggers prompt actions, like whistling
and braking, to avoid the occurrence of an accident. Recent studies and accident
analysis show that only such the manual survey is unreliable and inefficient [13,
14,18]. It is mainly due to the following two factors. One is that the nature of a
human tram driver’s attention is hard to concentrate for a long time. Another
is that human vision is limited under a narrow scale, especially in cases of bad
weather or weak illumination. Hence, it is urgent to establish a fully-automated
video-based surveillance system for modern tram.

Recently, driving assistance technologies in rapid rail transit have been paid
so many attentions for improving rail safety. There are various methods and
systems designed to help drivers for driving safety, but few publications are
published specifically for the detection of tramway using on-board camera. The
majority of such the papers been published used threshold segmentation or edge
detection to extract the railways. Some methods used the iterative threshold
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Fig. 1. A basic vision-based tramway detection model.

and Otsu method within the simple scenes, where two common edge detection
operators: Sobel and Canny were used to extract the edge of track [3,13]. These
methods are difficult to extract the edges correctly in the complex background
and are too parameter-sensitive to be estimated. Wohlfeil proposed a set of LLPD
operators and used a Hough transform to merge several short linear segments into
a continuous line [17]. The method based on Hough transform has an inhibitory
effect on the noise and environmental disturbance, and is also applied in the
situation when straight line breaks or part of pixels are lost [4,17]. Espino use a
sliding window approach to iteratively select local maxima in the gradient images
to extract railway tracks for rubber-tyre trains [2]. Qi computed HOG features,
constructed integral images and then extracted railway tracks by region-growing
algorithm [10].

In fact, the issue of using on-board machine vision to assist train drivers to
work and ensure safe operation of train, specially tram, is not easy to address.
A basic vision-based railway detection system can be seen in Fig. 1. The core of
the technical system in tram is tramway scene analysis. Tramway scene analysis
consists of tramway detection and obstacle detection . Tramway detection
is an essential and foregoing task, which includes the localization of tram rail
tracks and the determination of traffic safety limits. Normally, the video frames
acquisited by on-board camera often contain a large number of irrelevant entities,
which would cause bad accuracy and low efficiency of obstacle detection. The
region of interest (ROI) of obstacle detection is indeed around the tramways and
within its surrounding limited area. So accurate tramway detection is extremely
important. But a tram running in urban environment often has to be operated
in different traffic environment scenarios and under varying weather and illumi-
nation conditions, as shown in Fig. 9. At the time, tramway detection becomes
non trivial particularly with the presence of various ground types (e.g. Fig. 2(a),
(b), (c) and (d)), the effects of weather conditions (e.g. Fig. 2(e), (f) and (g)) and
the time of acquisition (e.g. Fig. 2(h), (i) and (j)) and the presence of obstacles
occurrence (e.g. Fig. 2(k) and (l)). Its difficulty gets further accentuated in cases
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(a) Straight, natural
grassland

(b) Straight, artifi-
cial grassland

(c) Bend, asphalt
road

(d) Bend, mixed
grassland

(e) In the haze (f) In the rain (g) In the snow (h) under the shad-
ow

(i) At dawn (j) At night (k) The pedestrian
crossing

(l) The street-level
crossing

Fig. 2. Different traffic environment scenarios and varying weather and illumination
conditions

of on-board camera movements, blur effects, and abrupt or unexpected actions
of drivers, which are likely to distort the result of detection.

Aiming at these challenging situations, this paper proposed a real-time
tramway detection method that deals with various challenging situations in real-
world urban rail traffic scenarios. By efficiently using a on-board long-distance
camera, our perception system figures out the tramway and its corresponding
optimal safety limits. Our real-time tramway detection system is distinguished
from related researches at the following points.

(i) Our approach can reliably deal with challenging urban environments, includ-
ing various ground types, different weather and illumination conditions as
well as varying time of acquisition.

(ii) An adaptive multilevel thresholding method is proposed for segmenting the
ROIs of tramway, in which threshold parameters are estimated using local
accumulated histogram.

(iii) The proposed method extracts the optimal tramway in front of the tram
vehicle using region growing, instead of recognizing every pixel on every
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video frame, which is believe to be time-consuming and infeasible for
autonomous driving assistance system.

The methods we presented here can work potentially as a cost-effective tram-
driving assistance system. We use a simple setup with a surveillance camera plus
adaptive algorithm since we don’t want to rely on expensive equipment.

The remainder of the paper is organized as follows. In Sect. 2, we give a
detailed introduction of recognition method, including track region segmentation
based on multilevel thresholding, adaptive threshold parameters design based
on local accumulation histogram, and feature points extraction based on pixel
tracing. In Sect. 3, we evaluate our method using various challenging scenarios in
real urban traffic environment and analyze some experimental results. Finally,
in Sect. 4, we summarize the conclusions and give an outlook on future work.

2 Hybrid Tramway Detection Using Multilevel
Thresholding and Region Growing

Tramway detection is mainly divided into two parts, tramway ROI segmenta-
tion and tramway feature points extraction. For tramway ROI segmentation, we
present a method for ROI segmentation of tramway based on multilevel thresh-
olding and a corresponding algorithm for adaptive threshold parameters using
local accumulation histogram. It can extract the grey image of the tramway
accurately and effectively. For tramway feature points extraction, we propose
a pixel tracing and region growing method, which has strong anti-interference
ability. The method then chooses the appropriate curve model to establish the
tram equation, which can extract the tramway accurately and quickly.

2.1 Tramway ROI Segmentation Based on Multilevel Thresholding

The tramway in Suzhou are typically constructed with girder rails. Tram vehicle
wheels ride on the rail surface and are held in place by a concave rail with the
larger diameter, as shown in Fig. 3(a). The concave rail is called flangeway. In
girder rails, the flangeway is part of the cast steel rail, as shown in Fig. 3(c) and
(d), which is laid in the street concrete. The characteristics of the tramway we
observe the images (e.g. Fig. 3(b)) are as follows:

(i) The inside of tramway is darker, the outside is lighter, and the difference of
gray level is obvious;

(ii) The darker region is adjacent to the lighter region, and the boundary is
clear and smooth.

Figure 3(e) is a flangeway segment that are sampled from the starting positions of
left rail on the bottom of Fig. 3(b). Figure 3(f) is its corresponding gray histogram
of Fig. 3(e). In these two figures, we can easily observe that the high-end in the
range of grey values about [150–200] and low-end in about [0–50] have the obvious
peaks.
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(a) Tram wheels held in the flange-
ways [14].

(b) Example of how the flangeway is in-
stalled along a tram line.

(c) Profile of flangeway cast in steel
rail [14].

(d) Sample of actual flangeway.

(e) Sample of flingerway segment in real-
world image
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(f) Grey histogram of the sample seg-
ment.

Fig. 3. Flangeway and its gray histogram

According to the above characteristics, it is feasible to make use of the darker
and the lighter gray values to segment the original image respectively and further
extracts the ROIs of potential tramway using distance metric. The specific steps
are as follows:

(i) Image preprocessing. The step includes gray scale processing and
smoothing filtering. We define the original image after preprocessing as
I(x, y);
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Fig. 4. Multilevel thresholding-based tramway ROI segmentation

(ii) Multilevel thresholding. We determine two sets of threshold values Tdark

and Tlight to deal with the darker and lighter regions, respectively. Tdark

consists of the minimum threshold value TL
dark and the maximum threshold

value TH
dark of the darker region, which can divide pixels into three groups:

G
(0)
D = {(x, y) ∈ I | 0 ≤ f(x, y) ≤ TL

dark − 1};
G

(1)
D = {(x, y) ∈ I | TL

dark ≤ f(x, y) ≤ TH
dark − 1};

G
(2)
D = {(x, y) ∈ I | TH

dark ≤ f(x, y) ≤ 255}.

(1)

Similarly, we also have three groups of the lighter region using TL
light and

TH
light:

G
(0)
L = {(x, y) ∈ I | 0 ≤ f(x, y) ≤ TL

light − 1};
G

(1)
L = {(x, y) ∈ I | TL

light ≤ f(x, y) ≤ TH
light − 1};

G
(2)
L = {(x, y) ∈ I | TH

light ≤ f(x, y) ≤ 255}.

(2)

where f(x, y) is the gray level of the point (x, y).
(iii) Binarization using multilevel thresholding. In the step, we obtain two

binary images using Tdark and Tlight for the darker region and the lighter
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region respectively, that is, Idark(x, y) and Ilight(x, y). They are constructed
by Eqs. 3 and 4:

Idark(x, y) =
{

0,
255,

(x, y) ∈ G
(0)
D

⋃
G

(2)
D

(x, y) ∈ G
(1)
D

(3)

Ilight(x, y) =
{

0,
255,

(x, y) ∈ G
(0)
L

⋃
G

(2)
L

(x, y) ∈ G
(1)
L

(4)

(iv) Morphological dilation. The step is to connect the fracture ROIs of
tramway and expand the width of potential tramway. I

(D)
dark(x, y) and

I
(D)
light(x, y) are the morphological dilation of Idark(x, y) and Ilight(x, y).

(v) Tramway ROI generation. We generate the ROI of potential tramway
through computing the intersection IROI(x, y) of these two binary images
after morphological dilation, I

(D)
dark(x, y) and I

(D)
light(x, y), as shown in Eq. 5.

IROI(x, y) = I
(D)
dark(x, y) ∩ I

(D)
light(x, y) (5)

A complete work flow about multilevel thresholding-based tramway ROI seg-
mentation is described in Fig. 4.

2.2 Adaptive Threshold Parameters Estimation Using Local
Accumulation Histogram

The difficulty of multilevel thresholding is to estimate the threshold parameters,
that is, TL

light, TH
light, TL

dark and TH
dark. As is known to all, the tram operating

environment is complex, traffic scenes are various and the intensity and angle
of light always change. Hence, the range of gray levels is not the same, and it
is hard to pre-assign a set of experienced thresholds to meet all the scenarios.
In this section, we present an adaptive mechanism to calculate these thresholds
using the statistic characteristic of local region. The specific steps are as follows:

(i) The starting points of tramway positioning. When the on-board cam-
era is fixed in front of the locomotive of the tram, its viewing hole is also
relatively fixed. The bottom pixels of the image acquisited by the camera
are the nearest points to the tram. If we neglect the effect of dead zone (In
fact, the length of dead zone (e.g. 30–50 m) can be neglected due to the
fast speed of the tram (e.g. 40 mph)), the starting points of tramway always
appear on several fixed pixels on the bottomline of the image. Hence, we
can determine manually the starting points of tramway.

(ii) Normalized histogram processing of local image. Given the starting
points of tramway, we can easily segment a tramway slice on the bottom of
the image according to flangeway edges. Figure 5 gives an ideal illustration
of tramway slice on pixel level. The height of local image is h, the widths of
flangeway outside and inside are m and n respectively. fg(x, y) is the local
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gray image with intensity levels in the range [0, L − 1]. The normalized
histogram of fg(x, y) is a discrete function of intensity level rk

p(rk) =
nk

L−1∑
l=0

nl

, (6)

where rk is the kth intensity and nk is the number of pixels of rk, for
k = 0, 1, 2, · · · , L − 1. p(rk) is an estimate of the probability of occurrence
of intensity level rk in the local image. Assume that the intensity levels of
flangeway inside and outside are rfi and rfo, we have the probabilities of
occurrence of rfi and rfo, that is,

p(rfi) =
n

n + m
, p(rfo) =

m

n + m
. (7)

(iii) Threshold parameters estimation. Threshold parameters can be esti-
mated using the normalized histogram of local image. Figure 6 gives an
illustration of normalized histogram. A typical normalized histogram of
local image has two peaks on the intensity levels of flangeway inside and
outside, that is rfi and rfo. Ideally, the probabilities at intensity levels of
flangeway inside and outside are exactly p(rfi) and p(rfo). Actually, the
value of intensity may fluctuate slightly due to the change of illumination
and other environmental factors. We hence accumulate the probabilities of
the neighboring intensities of rfi and rfo level by level till that Eqs. 8 and
9 are satisfied.

p(rfi) +
iT∑
i=1

(p(rfi − i) + p(rfi + i)) =
n

n + m
, (8)

p(rfo) +
jT∑
j=1

(p(rfo − j) + p(rfo + j)) =
m

n + m
, (9)

At the time, we obtain that

TL
dark = rfi − iT , TH

dark = rfi + iT , (10)

TL
light = rfo − jT , TH

light = rfo + jT . (11)

Compared with the traditional thresholding or edge detection methods
[4,6,10,12,17] background interference and environmental noise can be greatly
reduced when normalized histogram is locally accumulated in our approach.
Particularly speaking, we inter multilevel thresholding based on the statistic
characteristic of local accumulated histogram after normalization. It is the rea-
son why the method can meet real-world requirements and deal with various
challenging scenarios.
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Fig. 5. Illustration of tramway slice on pixel level

Fig. 6. Thresholds estimation on local normalized histogram.

2.3 Tramway Detection Using Region Growing

Given a binary image with potential tramway ROIs, the problem of tramway
detection turns to link iteratively different potential tramway segments from
some certain starting points. In each iteration, only the segments best to match
the required tramway structure based on a set of given criteria would be kept.
The region growing algorithm [1] is one of the commonly used methods for
solving such the problem. The basic idea of region growing is to use various
morphological gradient operators to extract the most approximate pixels in the
neighborhood, and predict the position of a following segment using that of
current segment [11].

In the section, we present our region growing method for tramway detec-
tion. The method starts from the binary image obtained by our tramway ROI
segmentation. The basis of region growing is some growing seeds. In practice,
the starting points in our local binary image are taken as growing seeds. At the
beginning, these seeds grow from their exact pixel locations to adjacent pixels
depending on a region detection criterion. Next, the detected adjacent pixels are
examined using a tracing criterion. If they are similar with their parent seed, we
classify them into the set of seeds. It is an iterative process until there are no
changes in two successive stages. Finally, interferential lines constructed by sets
of few seeds are removed according to prior knowledge.

The key of the method is to draw up a strong anti-interference detection and
tracing criterion. The detection criterion we provide is to use some prior knowl-
edge to search the region with potential seeds. The tracing criterion is to use the
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Fig. 7. Illustration of region growing for tramway detection

location and connectivity of the found points to determine their membership to
tramway.

The specific steps of region growing are as follows and Fig. 7 give an illustra-
tion in a sample binary image:

(i) Growing seeds determining. In a binary image of size N × M with
tramway points, we search from the bottom row of the image, that is, the
N − 1th row. The starting points of tramway on the row is known, denoted
by a range of pixel points [(N − 1, i), (N − 1, j)]. All the pixel points in the
range are taken as the growing seeds. If there is no starting point in the
N − 1th row, the search moves to the N − 2th row, and so on.

(ii) Search region determining for growing seeds of next gener-
ation. The growing seeds of next generation can be obtained from
every starting points using our tracing criterion. Taking a pixel (N −
1, k) as an example, its next generation can be found in the range of
[(N − 2, k − w), (N − 2, k + w)] of the N − 2th row, where w is the para-
meter of pixel continuation, as shown in Fig. 7(a). Further, if growing seeds
are in a transverse connected region [(N − 1, i), (N − 1, j)] of the N − 1th
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Fig. 8. Experiment validation

row, the next generation seeds in the N − 2th row can be searched in the
range of [(N − 2, i − w), (N − 2, j + w)], as shown in Fig. 7(b).

(iii) New generation of growing seeds. Once the pixel points in the range
[(N − 2, i − w), (N − 2, j + w)] are the edge points, it can be considered
as new growing seeds, and is also added to the set of trajectory points.
Figure 7(c) shows the evolution of growing seeds. If there is no point in the
N − 2th row, the search along current trajectory line is waived. We repeat
this step till all rows are traversed.

(iv) Interferential lines removing. After searching, several trajectory lines
may be constructed. We need to remove interferential lines and pick up the
optimal one as tramway. We consider the longest and most complete one
of all trajectory lines as the tramway.

(iv) Tramway equation establishing. Considering the complexity of algo-
rithm and real-time demand, least square piecewise polynomial fitting



254 C. Wu et al.

(a) The bent of natural grassland with ordinary illumination.

(b) The downhill of artificial grassland in rain and fog.

(c) The uphill of asphalt road in the evening.

Fig. 9. Experimental results in different challenging scenarios

method is used to establish the equation of tramway. The extracted feature
points are segmented in a sequence. The least square method is used to do
quadratic fitting with R points as a piece. When the starting point or the
ending point fails to meet the limits, the starting R points and the ending
R points, respectively, use least square method to do quadratic fitting and
extend until the limits. The specific values of R are as appropriate.

Our proposed region growing method can accurately predict the trend of
tramway, neglecting the influence of traffic environment, such as the bent, the
uphill and the downhill. It exhibits strong anti-interference, uses few calculation
and meets the real-time demand.

3 Experiment Validation and Results

Our experiment platform was installed at Tram Line #1 in High-Tech District,
Suzhou City, Jiangsu Province of China. The length of the tram line is 18.19 km,
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and the maximum operating speed of tram is 70 km/h. Our hardware used the
camera Hikvision DS-2CD6233F and Intel Core i7 2.5GHz Industrial computer
with 4 GB memory. The frame size of the camera is 1080 × 1920 pixels and its
frame rate is 10 fps. The scope of image collected by the camera is set in the
range of [25 m, 250 m]. Our software system was developed in Visual Studio 2010
platform with EmguCV 2.9.0 vision library. The video datasets of all scenarios
were collected in the field when the trams were actually running on the ground.

The original image, shown in Fig. 3(b), is taken as an example for exper-
iment validation. Its gray image can be obtained by preprocessing, shown in
Fig. 8(a). The preprocessing step consists of image gray-scale and Gaussian fil-
tering. Figure 3(f) is the local image of tramway slice at the starting position
of left rail. Its corresponding normalized histogram is obtained to execute our
adaptive threshold parameter estimation. We first observe two peaks on the
intensity levels of flangeway inside and outside from the normalized histogram,
having rfi = 15 and rfo = 165. The adaptive method does automatically search
and accumulate the neighbors of these two peaks level by level till the sum of
histogram bars are equal to the given p(rfi) and p(rfo). The values of p(rfi)
and p(rfo) can be induced using prior knowledge of flangeway structure. For
Suzhou Tram Line #1, the flangeway outside has a typical width at the top
of 37.5 mm plus 12.5 mm, and the flangeway inside has a width of 34 mm. We
hence set p(rfi) = 0.405 and p(rfo) = 0.595. Using the adaptive algorithm,
we get the thresholds: TL

dark = 9, TH
dark = 21, TL

light = 139 and TH
light = 181.

Figure 8(b) shows the normalized histogram of local image of tramway slice, and
the binarization results using Tdark and Tlight.

We then conduct the binarization process using multilevel thresholding. Fig-
ures 8(c) and (d) are the binary images using Tdark and Tlight for flangeway inside
and outside respectively. In order to connect the fracture ROIs of tramway and
expand the width of potential tramway, a morphological dilation operator is used.
Finally, we generate the image with the ROIs of potential tramway through com-
puting the intersection of these two dilated binary images, as shown in Fig. 8(e).
Given a binary image with potential tramway ROIs, our region growing method
is done for detecting the tramways. The initial growing seeds are picked up from
the binary image. The parameter of pixel continuation is set to 7, that is ω = 7.
The red line in Fig. 8(f) is the induced tramway model through region growing
and least square piecewise polynomial fitting.

To verify the effectiveness of the proposed method, we perform more experi-
ments in which we apply our algorithm to different challenging scenarios. Figure 9
shows the experimental results in different scenes, including original image,
binary image after multilevel thresholding segmentation and the region of inter-
est between railways. The scenarios of Fig. 9(a), (b) and (c) are the bent of nat-
ural grassland with ordinary illumination, the downhill of artificial grassland in
rain and fog, the uphill of asphalt road in the evening. The experimental results
show that the proposed method can not only accurately detect the straight
tramway, but also work for the curve, uphill and downhill. Further, it not only
can be applied to the general scenario in ordinary illumination, but also has
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Table 1. The comparison of computational time that tramway detection spends in
different scenes (ms)

Scenario
Track Region
Segmentation

Feature Points
Extraction

Total Time

The straightaway of asphalt road
in ordinary illumination

120.0 ± 6.4 25.9 ± 2.0 145.9 ± 4.1

The bent of natural grassland
in ordinary illumination

124.4 ± 5.7 30.8 ± 2.2 155.2 ± 10.8

The downhill of artificial grassland
in rain and fog

147.2 ± 5.9 56.8 ± 4.6 204.0 ± 8.3

The uphill of asphalt road
in the evening

154.6 ± 12.2 44.3 ± 3.7 198.9 ± 6.8

good sensitivity and accuracy for varying weather, for example, at night, in rain
and fog and on various ground types. We also investigate the performance on
time consuming for practical application. Table 1 gives the comparison of com-
putational time that our method spends in different scenarios. According to the
table, the scenarios in the night, in rain and fog, and under other special scenes
need more time to detect tramway. Thus it can be seen that accurate recognition
in challenging scenarios is at the expense of a slight increase in time, which is in
a controllable range. In the real-world system, we use the technique of dynamic
thread pool, which can flexibly increase or lessen threads to satisfy real-time.

These results prove that the method can effectively detect tramway, accu-
rately extract the ROI of tramway. The method shows good robustness, which
can deal with different scenes and meets the demand of practical application.

4 Conclusion

Tramway detection is important but difficult due to various challenging situ-
ations in real-world urban rail traffic scenarios. In this paper, we propose a
video-based tramway detection approach to address the issue. Our approach can
efficiently segment the ROIs of tramway using a multilevel thresholding method
with adaptive parameters estimation using local accumulated histogram. Instead
of recognizing pixel by pixel on every video frame, which is believe to be time-
consuming and infeasible for autonomous driving, our proposed method uses an
improved region growing scheme to extract the optimal tramway. In addition,
we use only a simple setup with a surveillance camera plus adaptive algorithm
without rely on expensive equipment. Our method has been successfully tested
in realistic urban environment, which proves that the accuracy and real-time
performance of tram track detection in different challenging scenarios.
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