
Learning Local Feature Descriptors
with Quadruplet Ranking Loss

Dalong Zhang, Lei Zhao(B), Duanqing Xu, and Dongming Lu

College of Computer Science and Technology, Zhejiang University,
Hangzhou 310027, China

{dalongz,cszhl,xdq,ldm}@zju.edu.cn

Abstract. In this work, we propose a novel deep convolutional neural
network (CNN) with quadruplet ranking loss to learn local feature
descriptors. The proposed model receives quadruplets of two correspond-
ing patches and two non-corresponding patches, and then outputs fea-
tures measured by L2 norm with dimension (256d) close to that of
SIFT, which thus can be easily applied to practical vision tasks by
plug-in replacing SIFT-like features. Moreover, the proposed model mit-
igates the problem that the margin separating corresponding and non-
corresponding pairs varies with samples caused by commonly used triplet
loss, and improves the capacity of utilizing the limited training data.
Experiments show that our model outperforms some state-of-the-art
methods like TN-TG and PN-Net.
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1 Introduction

Feature representation for local image patches is the problem of mapping raw
image patches to descriptors in certain feature spaces to discriminate the corre-
spondence of patches, which is one of major research topics in various computer
vision tasks, such as structure from motion [17], multi-view stereo reconstruction
[18], image stitching and alignment [21], etc. Recently, the field has witnessed
the trend that traditional hand-crafted image features [2,14], are evolving into
current data-driven and learning-based image feature descriptors [3,20,22], espe-
cially CNN-based features [6,19,26].

In this work, we aim to exploit the deep CNNs [4,7,8,12] to learn good local
feature descriptors which can be used as plug-in replacement for popular descrip-
tors like SIFT [14]. To that end, the metric measurement and feature dimension
are restricted: the feature dimension should be close to that of SIFT while the
distance is measured by L2 norm. Many efforts has been made to move in this
direction, but Siamese based methods [6,19,26,27] may not make full use of the
relation between patch pairs while commonly used triplet loss [1,13] may lead to
the problem that the margin separating corresponding and non-corresponding
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pairs varies with samples [23]. Learning a robust and discriminative descriptor
that is competent for various patch-based computer vision tasks is still an open
problem.

Inspired by the success of recent works [1,13,19,26], we propose a novel
quadruplet CNN model to learn local feature descriptors. First, we construct
our network with four branches sharing tied weights, receiving two corresponding
patches and two non-corresponding patches simultaneously. Then, we minimize
a quadruplet ranking loss to ensure that the distance between corresponding
patches should be smaller than that between non-corresponding patches. At
last, our model outputs a 256d feature descriptor measured by L2 norm which
can be easily used in a plug-in way to replace traditional descriptors. The pro-
posed model enforces an interval between corresponding and non-corresponding
patch pairs, which is helpful to distinguish the correspondence of them. Also we
abrogate the ‘anchor’ used in triplet loss and design a online sampler to ensure
any combination of positive pairs and negative pairs could contribute gradients
in optimization process, which, as a result, pushes non-corresponding pairs far
away from corresponding pairs without considering whether they refer to the
same patch.

Overall, our main contributions are as follows: (1), we propose a novel quadru-
plet model to learn local feature descriptors and achieve better embedding results
compared with some state-of-the-art methods; (2), we propose a way to improve
the capacity of utilizing the limited data by online sampling and abrogating the
‘anchor’ when using quadruplet loss; (3), we apply our model to image matching
task and it shows good generalization properties.

2 Related Work

Pretty a lot of works have been done to propose local feature descriptors and
reached a practically applicable level of performance. Benefit from the growing
availability of labeled data and increasing computational resources, data-driven
methods for local descriptors have been a trend and already outperformed classic
hand-crafted descriptors to some degree. Various techniques have been borrowed
in carrying out such descriptors, including Linear Discriminant Analysis [3],
boosting [22], convex optimization [20], and deep learning [10]. In this section, we
will explore works based on deep CNNs, mainly organized by their architectures.

Siamese is one of the most frequently used architectures in learning local
feature descriptors. Networks with Siamese architecture often has two branches
sharing tied weights guided by pairwise loss. Works like [6,19,26] exploit this
architecture to learn local feature representation. Simo-Serra et al. [19] trained
a network outputting features measured by L2 norm while [6,26] added a deci-
sion network to learn descriptors and metric simultaneously. Zagoruyko and
Komodakis [26] also tried several variants of Siamese architecture like 2-channel
model and pesudo-siam model and so on. Works with such architecture achieve
significant improvement compared with their predecessor works [20,22]. But
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some works like [19] mainly focus on classifying corresponding pairs and non-
corresponding pairs without ensuring reasonable variation between them, which
may lead to sub-optimal problem [1] when used for different tasks.

Triplet is born with the advantage of ensuring an interval between corre-
sponding pairs and non-corresponding pairs, and once applied to this field, it
becomes one of the most successful architectures. Works like [1,13] achieve the
state-of-the-art performance on the Multi-view Stereo Correspondence dataset
(MVS) [3], proving the effectiveness of this architecture. Kumar et al. [13] tried to
combine the Siamese and Triplet architecture with global loss, while [1] trained
a quite simple network but achieved epic performance and extraction efficiency.
However, triplets of training set is formed based on the ‘anchor’, which may
vary according to samples. Unfortunately, the margin separating correspond-
ing pairs and non-corresponding pairs is depending on the position of ‘anchor’
and thus also varies with samples. The margin varying problem prevents the
triplet architecture from enlarging variation between corresponding pairs and
non-corresponding pairs and increases the risk of overfitting.

Inspired by these works, we propose a novel quadruplet model to learn feature
descriptors. The model increases the capacity of utilizing the limited training
data and also mitigates the margin varying problem. Experiments show that
our method leads to significant improvements in performance.

3 The Proposed Approach

The overall methodology of the proposed approach is utilizing the power of
deep convolution neural network to extract features from image patches to dis-
criminate the correspondence of patches. But to get good features, we not only
need a powerful network, but also a good loss function to guide the network. In
this section, we will first explain our loss function and then detail the network
structure.

3.1 Loss Function

Our loss is mainly inspired by triplet loss [1,13], which is successful exploited
in learning feature descriptors. We will analysis the triplet loss first and then
introduce our quadruplet ranking loss.

Triplet Loss. Triplet loss is based on triplet (a, p, n), where a is the ‘anchor’
(reference patch) while p and n represent positive and negative patch refer to
the anchor respectively. Such loss enforces that the distance between positive
pairs should be smaller than that between negative pairs:

D(f(a), f(p)) + I < D(f(a), f(n)) (1)

where f(·) is the neural network mapping the raw image to certain feature space
and I is used to ensure an interval between positive pairs and negative pairs to
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Fig. 1. Separating the positive and negative pairs with triplet and quadruplet loss.
Left: Triplet loss enforces an interval between positive and negative pairs, but the mar-
gin varies with samples; Right: With quadruplet loss, the interval is ensured between
any positive and negative pairs, thus even the minimum distance between them should
be larger than the given interval, which works like support vectors in SVM [16].

separate them. D(·, ·) means a distance metric, and is often set to L2 distance
in this field. To satisfy the Eq. 1, triplet loss is formed as:

L(a, p, n) = max(0, I + ‖f(a) − f(p)‖2 − ‖f(a) − f(n)‖2) (2)

The loss is efficient to push negative pairs away from positive pairs as the
optimization process won’t stop until the distance I between positive and neg-
ative pairs is confirmed. The interval I increases the average distance between
positive and negative ‘class’ and thus makes them more different from each other,
which is helpful to discriminate them.

However, according to Eqs. 1 and 2, the loss will confirm a margin between
positive and negative pairs with reference to the ‘anchor’, which means the
margin is depending on the position of ‘anchor’. During optimization process,
although the training samples can be content to Eq. 1 and the interval between
positive and negative pairs can be confirmed, the position of the interval (sepa-
rating hyperplane or say margin) may be distorted with different samples (shown
in Fig. 1). The varying margin increases the risk that the distance between some
positive pairs is larger than that between negative pairs, which will damage the
performance when discriminating the correspondence of patch pairs. Moreover,
the margin varying problem prevents the triplet loss from enlarging variation
between corresponding pairs and non-corresponding pairs, and thus becomes a
bottleneck to improve performance. What’s worse, if the margin is highly nonlin-
ear, it may increase the risk of overfitting. Hard negative mining can be helpful,
but it’s unclear to define the hard negative samples and it’s quite time-consuming
to find the proper hard negative samples.
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Quadruplet Ranking Loss. To mitigate the problem mentioned above, we
design a quadruplet ranking loss enforcing that the distance between arbitrary
positive pairs should be smaller than that between negative pairs with given
interval I:

‖f(p1) − f(p2)‖2 + I < ‖f(n1) − f(n2)‖2
s.t. ∀(p1, p2) ∈ P, ∀(n1, n2) ∈ N

(3)

where (p1, p2) and (n1, n2) represent the positive pair and negative pair and
they together form a quadruplet (p1, p2, n1, n2). P and N mean the whole set of
positive pairs and negative pairs. The constraint Eq. 3 pushes any negative pairs
away from positive pairs and implies that even the minimum distance between
them should be larger than the given interval I:

max
(p1,p2)∈P

‖f(p1) − f(p2)‖2 + I < min
(n1,n2)∈N

‖f(n1) − f(n2)‖2 (4)

which is illustrated in Fig. 1. According to Eqs. 3 and 4, we design a quadruplet
ranking loss:

L(p1, p2, n1, n2) = max(0, I + ‖f(p1) − f(p2)‖2 − ‖f(n1) − f(n2)‖2) (5)

We use SGD to minimize the loss Eq. 5, and the gradient can be derived as:

∂L
∂f(p1)

= 2(f(p1) − f(p2))
∂L

∂f(p2)
= −2(f(p1) − f(p2))

∂L
∂f(n1)

= −2(f(n1) − f(n2))
∂L

∂f(n2)
= 2(f(n1) − f(n2))

(6)

The proposed quadruplet loss holds some appealing properties: (1), the mar-
gin now depends on the position of max(p1,p2)∈P ‖f(p1)−f(p2)‖2 rather than the
‘anchor’, thus the margin varying problem is mitigated to some degree (shown
in Fig. 1). (2), the loss is flexible to handle any combinations of positive and
negative pairs as we abrogate the ‘anchor’ when forming quadruplets. The loss
is degraded to triplet loss if p1 = n1; otherwise, it represents the added con-
straint on distance between positive and negative pair with different ‘anchor’.
As a result, we can make full use of any combinations of positive and negative
pairs to optimize the target function, which improves the capacity to utilize the
limited training data. We also propose a online sampling method to provide
sufficient quadruplets, which will introduce in the next section.

3.2 Network Structure

We build a quadruplet deep convolution network subject to Eq. 5 to learn local
feature descriptors.

The overall network consists of four branches with tied weights as shown
in Fig. 2. In consistent with recently proposed methods, our network receives
quadruplets of gray-scale patches with size 64 × 64 as input (one patch each
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for the four branches). As the quadruplets is constructed with equal number of
positive and negative patch pairs, we don’t need to balance them to prevent the
model from swing to one side during training. Moreover, each branch outputs a
256d vector measured by L2 norm as learned feature descriptor, which is similar
to the traditional local feature descriptors (such as SIFT). It’s worth noting
that, during inference, we just forward one branch to get the features as all
these branches share the same weights.

Fig. 2. Network Structure. The left shows the whole network with four branches shar-
ing the same weights. The right part shows the structure of a single branch and the
detail of layer parameters is reported in Table 1.

The single branch is designed referring to ResNet [7,8]. Each branch consists
of two residual blocks along with other layers. We detail the structure of the single
branch in Fig. 2 (the right part) and the parameters for each layer are listed in
Table 1. Note that every convolution layer is followed with Batch Normalization
layer [9] and ReLU activation [5] except for the last one, which are not shown
in Fig. 2 and Table 1.

We also design a online sampler layer to enlarge training set. The sampler
works as follows: (1), receive offline quadruplets (p1,i, p2,i, n1,i, n2,i) of train-
ing samples, where i implies the i-th quadruplet in current batch. (2), randomly
select positive pair (p1,m, p2,m) and negative pair (n1,k, n2,k) from offline quadru-
plets to form a new quadruplet (p1,m, p2,m, n1,k, n2,k). (3), repeat the second step
for certain times and add these new quadruplets to original quadruplets batch,
then feed the expanded batch to the network. During training, we use the online
sampler to double the offline quadruplets. The online sampler layer not only
helps enlarge the training set, but also provides sufficient combinations of pos-
itive and negative pairs, which is helpful to discriminate the correspondence of
patch pairs . Moreover, the sampling process is done within a batch, thus no
extra patches from outside is needed.
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We implement the work with caffe [11] and use SGD with learning rate
0.01 decreasing by a factor of 2 every 100,000 iterations, momentum 0.9 and
weight decay 0.0001 to train our model. Margin I in Eq. 5 is set to 0.8 as f(·) is
normalized. With NVIDIA GTX980Ti, it often takes about 2 hrs per epoch for
training with 2M offline quadruplets (doubled by online sampling).

Table 1. The parameters for a single branch. Note that in this table Res-Block1 and
Res-Block2 mean the two residual blocks in the single branch. The quadruple (f, s, p, o)
means the parameters of the corresponding layer, mainly for convolution layer and
pooling layer, representing filter size, stride size, padding size, and the num of the
output feature maps, respectively. For pooling layer, there’s no need to set the last
parameter ‘o’, and we use ‘−’ instead, like (2, 2, 0,−).

Layer name Output dimension Detail

Conv1 96 × 58 × 58 (7, 1, 0, 96)

Max-Pooling 96 × 29 × 29 (2, 2, 0,−)

(5, 1, 0, 192)

Res-Block1 192 × 12 × 12 (3, 2, 0, 192) (1, 3, 0, 192)

(1, 1, 0, 192)

(5, 1, 0, 256)

Res-Block2 256 × 6 × 6 (3, 1, 0, 256) (1, 2, 0, 256)

(1, 1, 0, 256)

Conv2 128 × 4 × 4 (3, 1, 0, 128)

Conv3 256 × 1 × 1 (4, 1, 0, 256)

4 Experiments

In this section, we will first introduce the dataset used for assessing our model,
and then present the result with standard evaluation protocol. Also, we apply
our model to image matching task.

4.1 Dataset and Evaluation Protocol

For training, we use the Multi-view Stereo Correspondence dataset (MVS) [3],
which is collected by Winder et al. for learning descriptors. The dataset consists
of three subsets, Liberty (LY), Notre Dame (ND), and Yosemite (YO), which
were sampled from 3D recontructions of the statue of Liberty (New York), Notre
Dame (Paris) and Half Dome (Yosemite). Patches were extracted around each
interest point that generated by Difference of Gaussian detector (DoG) or Harris
interest points detector. Each of the three subsets contains more than 450k
grayscale image patches (64 × 64 pixels) with pre-generated label to form patch
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pairs, all with equal number of match and dismatch patch pairs. In our work,
we use the DoG set and make data augmentation by rotating the pair of patches
by 90, 180, and 270 degrees, and flipping the images horizontally and vertically.

To evaluate the performance of our model, we follow the evaluation protocol
of [3]. We train the model on one subset and test on the other two subsets.
And then We report the false positive rate at 95% recall (FPR95) on each of
the six combinations of training and testing sets, as well as the mean across all
combinations. Following [13,20,26], our test is done on the 100,000 patch-pair
Liberty, Notre Dame, and Yosemite sets.

4.2 Results

Following the evaluation protocol mentioned above, we evaluate our model and
some recently proposed methods with normalized SIFT as baseline. Meanwhile,
we indicate the memory footprint for each of the descriptors by specifying their
dimension, as summarized in Table 2. Moreover, we draw ROC curves to show
the result of triplet and quadruplet with same network structure.

Table 2. The MVS matching result. Numbers are false positive rate at 95% recall, and
the smaller the better. Bold numbers are the best results on the dataset.

Train Dim. ND YO LY YO LY ND Mean

Test LY ND YO

SIFT (no training) [14] 128d 29.84 22.53 27.29 26.55

Simonyan et al. (2014) [20] PR <640d 16.56 17.23 9.88 9.49 11.89 11.11 12.69

Simonyan et al. (2014) [20] PR-proj <80d 12.42 14.58 7.22 6.82 11.18 10.08 10.38

Zagoruyko et al. (2015) [26] siaml2 192d 13.24 17.25 6.01 8.38 19.91 12.64 12.90

Zagoruyko et al. (2015) [26] 2streaml2 256d 8.79 12.84 4.54 5.58 13.24 13.02 9.67

Simo-Serra et al. (2015) [19] 128d 8.50 4.59 14.59 9.22

Kumar et al. (2016) [13] TN-TG 256d 9.91 13.45 3.91 5.43 10.65 9.47 8.80

Balntas et al. (2016) [1] PN-Net 128d 8.27 9.76 3.81 4.45 9.55 7.74 7.26

Balntas et al. (2016) [1] PN-Net 256d 8.13 9.65 3.71 4.23 8.99 7.21 6.98

ours (Triplet ≈ 50 epoches) 128d 8.43 10.85 4.66 4.69 9.62 9.01 7.88

ours (Quadruplet ≈ 50 epoches) 128d 8.67 9.58 3.61 3.87 9.39 8.54 7.27

ours (Quadruplet) 256d 6.87 8.63 2.77 3.16 8.30 8.19 6.32

Our model show significant improvement in performance compared with the
baseline and recently proposed works [1,13,19,20,26]. We reduce the average
error rate from 26.5% (SIFT) to 6.32%, while win five out of all six combinations
in terms of FPR95 compared with the state-of-the-art methods [1,13]. Our best
model reduces the FPR95 by 2.48% and 0.66% compared with TN-TG [13] and
PN-Net [1] separately. The comparison between our model and these previous
works proves that it’s powerful for our model to discriminate correspondence of
patches.
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Fig. 3. ROC curves for model tested on ND subset. We draw the ROC curves of models
with triplet (128d) and quadruplet (128d,256d). Left: Model trained on LY subset and
tested on ND subset; Right: Model trained on YO subset and tested on ND subset.

We also train the model with triplet and quadruplet loss with same single
branch and training epoches (≈ 50 epoches), and results show that quadruplet
reduce the average error rate by 0.6% compared with triplet. We draw ROC
curves of models to show the performance of the triplet model and quadruplet
model, which is illustrated in Fig. 3. The comparison is done firstly with same
output feature dimension (128d), and then we add our best model with 256d
feature into competition. We present the result that tested on ND subset for
brief, and the ROC curves clearly show that the quadruplet model outperforms
the triplet one. The comparison between the 128d and 256d model also shows
that it’s helpful to improve performance by enlarging the feature dimension
with our model. Moreover, while [19,26] is based on siamese architecture and
[1,13] utilize triplet architecture to learn feature descriptors, our quadruplet
model achieve best result, which implies that it’s potential to use the proposed
quadruplet architecture to learn feature descriptors.

4.3 Application Examples

We also apply our model to practical image matching task. We extract the
features from raw image as follows: (1), detect the interest points with DoG; (2),
extract the patches according to the position, scale, and oriention of the interest
points; (3), resize the patches to 64 × 64 and feed the patches to the network
to get the final feature descriptors. These steps are very similar to that of the
most frequently used descriptors — SIFT. It’s also worth mentioning that, as
our feature is measured by L2 distance and the dimension (256d) is close to
that of SIFT, many well studied techniques (KNN search et al.) can be retained,
thus it’s quite easy to apply our descriptor to practical vision tasks by plug-in
replacing SIFT descriptors.

When compared with SIFT in image matching task, our model shows its
advantages. Following [15], we compute the number of false match points
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(according to the fixed overlap error 50%) on a group of images with blur, light
and viewpoint changes. As illustrated in Fig. 4, our descriptors are robust to
changes and reduce the false match points by about 40% compared with SIFT.
Note that, the images used in matching task is totally different from our training
set, which proves the good generalization properties of our model.

Left: Our Model Right: SIFT

Fig. 4. Image matching examples. The left is our result while right SIFT’s. Top Row:
‘bikes’ with blur. False matching points 58 vs. 112. Middle Row: ‘leuven’ with light
change. False matching points 40 vs. 72. Bottom Row: ‘graf’ with viewpoint change.
False matching points 59 vs. 82.

5 Conclusions

In this work, we proposed a quadruplet deep CNN model to learn local feature
descriptors from raw data. Together with quadruplet ranking loss, we also design
a sampler layer to make full use of limited training data. Our model achieves best
results compared with SIFT and some state-of-the-art approaches, and shows
good generalization properties when applied to practical image matching tasks.
Moreover, our descriptor is able to replace traditional descriptors like SIFT in
a plug-in way, thus many well studied techniques (KNN search et al.) can be
retained. The main drawback of our method is that the process of training and
inferring is time-consuming.

In future, we will simplify the network to accelerate the speed of feature
extracting [1]. Moreover, we will try integrating our method with keypoint detec-
tion methods [14,25] to build a unified end-to-end framework [24]. In this way, we
can learn keypoint detection and feature representation at the same time, which
is an interesting research direction to compete with current pipeline methods.
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