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Abstract. In this paper, we propose a new visibility model for scene
reconstruction. To yield out surface meshes with enough scene details,
we introduce a new visibility model, which keeps the relaxed visibility
constraints and takes the distribution of points into consideration, thus it
is efficient for preserving details. To strengthen the robustness to noise, a
new likelihood energy term is introduced to the binary labeling problem
of Delaunay tetrahedra, and its implementation is presented. The exper-
imental results show that our method performs well in terms of detail
preservation.

Keywords: Surface reconstruction · Visibility · Scene detail

1 Introduction

Scene reconstruction from images is a fundamental problem in Computer Vision.
It has many practical applications in entertainment industry, robotics, cultural
heritage digitalization and geographic systems. For decades, it has been stud-
ied due to its low cost of data acquisition and various usages. In recent years,
researchers have made tremendous progress in this field. For small objects under
controlled conditions, current scene reconstruction methods could achieve great
results [7,16]. However, when it comes to large scale scenes with multi-scale
objects, they would have some problems with the completeness and accuracy,
especially when dealing with scene fine details [18].

Scene details like small scale objects and object edges are essential part of
scene surfaces. However, preserving scene details in multi-scale scenes has been a
difficult problem. The existing surface reconstruction methods either ignore the
scene details or rely on further refinement to restore them. This is because firstly,
compared with noise, the supportive points in such areas are sparse, making it
difficult to distinguish true surface points from false ones; and secondly, the mod-
els and associated parameters employed in existing methods are not particularly
adept for large scale ranges, where scene details are usually compromised for
overall accuracy and completeness. While the above first case seems unsolvable
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due to the lack of sufficient information, we only focus on the second case in this
work. In particular, we propose a new visibility model along with a new energy
formulation for surface reconstruction. Our method follows the idea in [6,11],
with the visibility model and energy formulation replaced with ours. To make
our method adept for large scale ranges, we propose a new visibility model with
adaptive ends of lines of sight; in the meantime, a new likelihood energy term is
introduced to keep the proposed method robust for noise. Experimental result
shows that our visibility model is efficient for preserving scene details.

2 Related Work

Recently, a variety of works have been done to advance 3D scene reconstruction.
To deal with small objects, silhouette based methods [5,13] are proposed. The
silhouettes provide proper bounds for the objects, which helps to reduce the
computing cost and yield a good model for the scene. However, good silhouettes
rely on effective image segmentation, which remains a difficult task so far. Vol-
umetric methods like space carving [1,10,24], level sets [8,15] and volumetric
graph cut [14,20,22] often yield good results for small objects. But the compu-
tational and memory costs increase rapidly as scene scale grows, which makes
them unsuitable for large scale scene reconstruction.

For outdoor scenes, uncontrollable imaging conditions and multiple scale
structure make it hard to reconstruct scene surfaces. A common process of large
scale scene reconstruction is to generate the dense point cloud from calibrated
images first, and then extract the scene surface. The dense point cloud can be
generated by depth fusion method [2,17,19] or by feature expansion methods
[3]. Once the dense point cloud is generated, scene surface can be reconstructed
by Possion surface construction [9], by level-set like method [21] or by graph cut
based methods [6,11,12]. Graph cut based methods are exploited most for its
efficiency and ability of filtering noise. In these methods, Delaunay tetrahedra
are generated from dense point cloud first, then a visibility model is applied to
weight the facets in Delaunay tetrahedra, finally the binary labeling problem of
tetrahedra is solved and the surface is extracted. The typical visibility model is
introduced in [12]. The basic assumption of the visibility model in [12] is that
the space between camera center and 3D point is free-space, while the space
behind 3D point is full-space. Then this typical visibility model is promoted by
a refined version in [11], namely soft-visibility, to cope with noisy point clouds.

In this paper, we follow the idea of [6,11] and exploit the visibility information
in the binary labeling problem of Delaunay tetrahedra. The main contributions of
our proposed method are the introductions of (a) a new visibility model and (b)
a new energy term for efficient noise filtering. Experimental comparison results
show that our method rivals the state-of-the-art methods [2,3,6,19] in terms of
accuracy and completeness of scene reconstruction, but performs better in terms
of detail preservation.
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(a) Typical visibility model in [12]

(c) Our visibility model

(b) Soft visibility model in [11]

(d) Typical end tetrahedra of noise points and
true surface points

Fig. 1. (a) Typical visibility model, (b) soft visibility model and (c) our visibility model
in 2D. (d) From left to right: typical end tetrahedron (in 2D) of noise points and that
of true surface points on densely sampled surfaces.

3 Visibility Models and Energies

The input of our method is a dense point cloud generated by MVS methods.
Each point is attached with the visibility information recording that from which
views the point is seen. Then, Delaunay tetrahedra are constructed, and the
scene reconstruction problem is formulated as a binary labeling problem with a
given visibility model. The total energy of the binary labeling problem is

Etotal = Evis + λlikeElike + λqualEqual (1)

where λlike and λqual are two constant balancing factors; Evis and Elike are
defined in Sects. 3.2 and 4.1; Equal is the surface quality energy in [11]. By mini-
mizing Etotal with Maxflow/Mincut algorithm, the label assignment of Delaunay
tetrahedra is yielded and a triangle mesh is extracted, which consists of triangles
lying between tetrahedra with different labels. Further optional refinement can
be applied as described in [23]. In the following subsections, we introduce the
existing visibility models and our new one.

3.1 Existing Visibility Models

The typical visibility model [12] assumes that, for each line of sight v, the space
between camera center c and point p is free-space, and that behind point p
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(a) Point cloud with heavy noise (b) reconstructed meshes with-
out the likelihood energy

(b) reconstructed meshes with
the likelihood energy

Fig. 2. Surface reconstruction without and with the likelihood energy.

is full-space. Thus, the tetrahedra (T1–T5 in Fig. 1(a)) intersected by segment
(c, p) should be labeled as outside, and that (T6 in Fig. 1(a)) right behind point
p as inside. For a single line of sight, the above label assignment is desirable.
While taking all lines of sight into consideration, some surface part might not be
handled properly. This violates the label assignment principle described above.
To quantize the conflicts, the facets intersected by lines of sight are given weights
of W (lTi

, lTj
), and those for punishing bad label assignments of the first and the

last tetrahedron are D(lT1) and D(lTNv+1), respectively. Therefore, the visibility
energy is the sum of the penalties of all the bad label assignments in all the lines
of sight, as

Etypical
vis =

∑

v∈V
[D(lT1) +

Nv−1∑

i=1

W (lTi
, lTi+1) + D(lTNv+1)] (2)

where if lT1 = 1, D(lT1) = α(p); otherwise, D(lT1) = 0; if lTNv+1 = 0,
D(lTNv+1) = α(p); otherwise, D(lTNv+1) = 0; if lTi

= 0 ∧ lTj
= 1, W (lTi

, lTj
) =

α(p); otherwise, W (lTi
, lTj

) = 0; α(p) is the weight of point p, which is its
photo-consistency score; V is the visibility information set; Nv is the number of
tetrahedra intersected by the line of sight v, indexed from the camera center c
to the point p; Nv +1 denotes the tetrahedron behind the point p; lT is the label
of tetrahedron T , with 1 stands for inside and 0 for outside.

The typical visibility model described above is effective, but it has several
flaws in dealing with dense and noisy point clouds. In such cases, the surfaces
yielded by [12] tend to be overly complex, with bumps on and handles inside the
model [11]. One possible solution is the soft visibility in [11], shown in Fig. 1(b).
The basic assumptions of the two visibility models are similar. The differences are
that in the soft visibility model, the edge weights are given a factor (1−e−d2/2σ2

)
according to the distance d between the point p and the intersecting point, and
the end of the line of sight is shifted to a distance of kσ along it.

3.2 Our Proposed Visibility Model

Though the soft visibility model is effective to filter noise points, it sometimes
performs badly in preserving details, especially in a large scene containing small
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(a) Fountain-P11

(c) Temple-P312

(b) Herz-Jesu-P8

(d) Free-space support threshold evaluation

Fig. 3. This figure shows the ratios of number of outside and inside tetrahedra with
different percentiles of all free-space support scores on (a) Fountain-P11 [18], (b) Herz-
Jesu-P8 [18] and (c) Temple-P312 [16]. (d) The true positive rates and false positive
rates of different free-space support threshold.

scale objects (see experimental results). According to our observations, this hap-
pens mainly because of the strong constraint imposed on the end of line of sight
in the tetrahedron kσ from the point p along the line of sight. It could be free-
space even the point p is a true surface point in some cases.

To balance noise filtering and detail preserving, we propose a new visibility
model shown in Fig. 1(c). In our visibility model, we keep the relaxed visibility
constraints in the space between the camera center c and the point p, and set
the end of line of sight in the tetrahedron right behind the point p. We observe
that the end tetrahedra of noise points and true surface points have different
shapes, as shown in Fig. 1(d). In addition, to determine the weight of the t-edge
of the end tetrahedron, we compare the end tetrahedra of noisy points and true
surface points on public datasets. Figure 1(d) shows a typical end tetrahedron of
a noisy point and that of a true surface point on densely sampled surfaces in 2D
space. Noise points tend to appear a bit away from true surface, which makes
the end tetrahedra thin and long, and true surface points are often surrounded
by other true surface points, which makes their end tetrahedra flat and wide.
Based on these observations, we set a weight of α(p)(1−e−kr2/2σ2

) to the t-edge
of the end tetrahedron, where r is the radius of the circumsphere of the end
tetrahedron. Thus the corresponding visibility energy is formulated as
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Fig. 4. Results of the five methods on MVS Data Set [7]. From left to right: the
reference model, Tola et al. [19], Furukawa and Ponce [3], Campbell et al. [2], Jancosek
and Pajdla [6] and ours.

Evis =
∑

v∈V
[D(lT1) +

Nv−1∑

i=1

W (lTi
, lTi+1) + D(lTNv+1)] (3)

where if lT1 = 1, D(lT1) = α(p); otherwise, D(lT1) = 0; if lTNv+1 = 0,
D(lTNv+1) = α(p)(1− e−kr2/2σ2

); otherwise, D(lTNv+1) = 0; if lTi
= 0 ∧ lTj

= 1,
W (lTi

, lTj
) = α(p)(1−e−d2/2σ2

); otherwise, W (lTi
, lTj

) = 0. Although Eqs. 2 and
3 look identical, they differ from each other in term W (lTi

, lTi+1) and D(lTNv+1).
One may refer to the text for details.

4 Likelihood Energy for Efficient Noise Filtering

In both the typical visibility model and our proposed one, the end of each line
of sight is set in the tetrahedron right behind the point p. This practice could
weaken the ability of noise filtering. When the surface is sampled very noisy, part
of the surface fails to be reconstructed, as shown in Fig. 2(b). This is mainly due
to the unbalanced links of s-edges and t-edges in the s-t graph. The s-edges
are heavy-weighted and concentrative, while the t-edges are low-weighted and
scattered. The noisier the point cloud is, the greater the gap between s-edges
and t-edges will be.
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Table 1. Performance of 5 methods on MVS data set [7]

Dataset scan1 scan24 scan44

Ā A0.5 C̄ C0.5 Ā A0.5 C̄ C0.5 Ā A0.5 C̄ C0.5

Tola [19] 0.2449 0.1918 0.3994 0.3213 0.3937 0.2656 0.8512 0.4340 0.6410 0.3251 0.7382 0.4160

Furu [3] 0.4533 0.2517 0.4105 0.3533 0.7455 0.3125 0.4828 0.3692 1.0951 0.4906 0.5264 0.3872

Camp [2] 0.4428 0.2550 0.3988 0.3601 3.4601 0.5227 0.4010 0.2954 1.2926 0.5641 0.3807 0.2976

Jan [6] 0.3595 0.2314 0.4246 0.3444 0.6054 0.2032 0.3488 0.2574 0.8098 0.36739 0.5652 0.3907

ours 0.3053 0.1760 0.3062 0.2556 0.7865 0.2354 0.4230 0.2874 1.2309 0.5410 0.6787 0.4577

Ā: mean accuracy; A0.5: median accuracy; C̄: mean completeness; C0.5: median completeness.

4.1 Likelihood Energy

To solve the problem, we introduce a likelihood energy Elike to the total energy
of the binary labeling problem. Elike is defined as

Elike =
N∑

i=1

D(lTi
), where D(lTi

) =

{
Uout(Ti) if lTi

= 1
Uin(Ti) otherwise

(4)

where N is the total number of Delaunay tetrahedra. Elike measures the penalties
of a wrong label assignment. For each tetrahedron, a penalty is given for its wrong
label, i.e. Uout(Ti) or Uin(Ti). To evaluate the likelihood of the label assignment
of a tetrahedron, we employ the measure free-space support [6], which is used
to measure the emptiness of a compact space. For each line of sight (c, p) that
intersects tetrahedra T , it contributes to the emptiness of Ti, thus increasing
the outside probability of T . The free-space support f(T ) of tetrahedron T is
defined as

f(T ) =
∑

(c,p)∈ST

α(p), with ST = {(c, p) | (c, p) ∩ T �= ∅} (5)

In order for free-space support f(T ) of tetrahedron T to adequately describe the
likelihood energy, we set Uout(T ) = λf(T ) and Uin(T ) = λ(β − f(T )), where
f(T ) is the free-space support of tetrahedron T , λ and β are constants.

4.2 Implementation of the Likelihood Energy

For the likelihood term Elike, we link two edges for each vertex i in s-t graph.
One is from source s to vertex i, with weight Uout(Ti); the other is from vertex
i to sink t, with weight Uin(Ti). However, we observe that the tetrahedra with
lower f(T ) are easily to be mislabeled, thus we only link the vertices whose
correspondent tetrahedra have lower f(T ) than the 75th percentile of all f(T )s
to sink t, and cross out the s-edges of all vertices.

Note that the free space support threshold of the 75th percentile is empir-
ically set. We generate dense point clouds from 3 datasets, Fountain-P11 [18],
Herz-Jesu-P8 [18] and Temple-P312 [16]. Then we label the tetrahedra with the
method in [6], and take the result as quasi-truth. Finally, we evaluate the ratios
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(a) Thin objects (b) Object edges

Fig. 5. Comparison with the method of Jancosek and Pajdla [6]. The result of our
method is on the left columns of (a) and (b) and that of [6] on the right columns of
them.

of number of outside and inside tetrahedra in different proportions of all free-
space support scores, as shown in Fig. 3. From Fig. 3(a)–(c) we can see that,
generally tetrahedron with f(T ) lower than the 75th percentile of all f(T )s has
a high probability to be truly inside. From Fig. 3(d), when the free-space support
threshold is set as the 75th percentile of each dataset, both true positive rate
and false positive rate are reasonable. Therefore, we set the free space support
threshold as the 75th percentile of all free-space support scores. From Fig. 2, we
can see that the likelihood energy is helpful for filtering noise.

5 Experimental Results

The input dense point cloud is generated with the open source library Open-
MVG1 and OpenMVS2. Sparse point cloud is generated by OpenMVG, then den-
sified with OpenMVS. Delaunay tetrahedralization is computed using CGAL3

library. Maxflow/Mincut algorithm [4] is used. Our method is tested on public
benchmark MVS Data Set [7] and some of our own datasets.

Figure 4 shows the results on the MVS Data Set [7]. From left to right, the
reference model, the results of Tola et al. [19], Furukawa and Ponce [3], Campbell
et al. [2], Jancosek and Pajdla [6] and ours are shown. The final meshes given by
Tola et al. [19], Furukawa and Ponce [3] and Campbell et al. [2] are generated by
poisson surface reconstruction method [9] and trimmed, which are provided in

1 http://imagine.enpc.fr/∼moulonp/openMVG/.
2 http://cdcseacave.github.io/openMVS/.
3 http://www.cgal.org/.

http://imagine.enpc.fr/~moulonp/openMVG/
http://cdcseacave.github.io/openMVS/
http://www.cgal.org/
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(a) JinDing dataset

(b) NanChan Temple dataset

Fig. 6. Result of (a) JinDing dataset and (b) NanChan Temple dataset. In the first row
of (a) and (b), example image(s) and dense point cloud are shown; in the second row
of (a) and (b), overview result and details of our method are shown in left 2 columns
and those of Jancosek and Pajdla [6] in right 2 columns.

MVS Data Set; the meshes of Jancosek and Pajdla [6] are generated by Open-
MVS which contains an reimplementation of [6]. Table 1 shows the quantitative
results of the five methods. From Fig. 4 and Table 1, though our method is not
quantitatively the best, the meshes generated by our method preserves more
details than the others. To better visualize the performances of Jancosek and
Pajdla [6] and our method, we enlarge some parts in Fig. 4, and present in Fig. 5,
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with the result of our method on the left columns of (a) and (b) and that of
[6] on the right columns of them. Figure 5(a) shows the performance of the 2
methods on thin objects. In some cases, [6] fails to reconstruct them completely;
even the complete ones are less detailed than those by our method. In Fig. 5(b),
our method shows a tremendous capability of preserving sharp object edges,
compared with the result of [6]. From Fig. 5, we can notice that our method
performs well in dealing with small scale objects and sharp edges, while [6] fails
to reconstruct those parts completely and loses some details.

Figure 6 show the results of our method and Jancosek and Pajdla [6] on
our own datasets, the JinDing and NanChan Temple datasets. The JinDing
dataset consists of 192 images taken by a hand-held camera, with the resolution
of 4368×2912. The NanChan Temple dataset contains 2006 images, with 1330 of
them taken by a hand-held camera and the rest by an unmanned aerial vehicle
(UAV). The ground images have a resolution of 5760 × 3840 and the aerial ones
of 4912×3264. The dense point cloud contains 31M and 40M points for the two
datasets respectively. Note that we downsample the images twice in NanChan
Temple dataset so that the point cloud would not be too dense to be processed.
In Fig. 6, example image(s), dense point cloud, result overview and details of
our method and Jancosek and Pajdla [6] are presented. From the closer view of
the result of our method, details like elephant’s tusk and ears, cloth folds, beam
edges and roof drainages are preserved. In the meantime, the two models of
our method avoid over-complexity. The results show that our method performs
better than [6] on our datasets.

6 Conclusions and Future Work

In this paper, we present a novel visibility model and a new energy term for sur-
face reconstruction. Our method takes dense point clouds as input. By applying
Delaunay tetrahedralization to the dense point cloud, we divide the scene space
into cells, and formulate the scene reconstruction as a binary labeling problem
to label each tetrahedron inside or outside. To yield out meshes with enough
scene details, we introduce a new visibility model to filter out noise and select
true surface points. The proposed visibility model keeps the relaxed visibility
constraints and takes the distribution of points into consideration, thus it is
efficient for preserving details. To strengthen the robustness to noise, a new like-
lihood energy term is introduced to the binary labeling problem. Experimental
result shows that our method performs well in dealing with scene details like
thin objects and sharp edges, which will help to attach semantic knowledge to
the model. So, for the future work, we would like to investigate to segment the
model and add semantic knowledge to each part of the scene.

Acknowledgments. This work was supported by the Natural Science Foundation of
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