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Abstract. Multi-modality fusion tracking is an interesting but challeng-
ing task. Many previous works just consider the fusion of different features
from identical spectral image or identical features from different spectral
images alone, which makes them be quite distinct from each other and be
difficult to be integrated naturally. In this study, we propose an unified
tracking framework to naturally integrate multiple different modalities
via innovative use of spatiogram and fuzzy logic. Specifically, each modal
target and its candidate are first represented by second-order spatiogram
and their similarity is measured. Next, a novel objective function is built
by integrating all modal similarities, and then a joint target center-shift
formula is gained by performing mathematical operation on the objec-
tive function. Finally, the optimal target location is gained recursively
by applying the mean shift procedure. Besides, a model update scheme
via particle filter is developed to capture the appearance variations. Our
framework allows the modalities to be original pixels or other extracted
features from single image or different spectral images, and provides the
flexibility to arbitrarily add or remove modality. Tracking results on the
combination of infrared gray-HOG and visible gray-LBP clearly demon-
strate the excellence of the proposed tracker.
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1 Introduction

Target tracking is a major foundation in visual surveillance, human-machine
interface, vehicle navigation, video scene analysis, etc. Numerous methods have
been reported [1], and these methods can be classified into two categories: using
single-modality [2–5] and using multi-modality [6–10]. By leveraging the com-
bined benefit of using different modalities while compensating for failure in indi-
vidual modality, multi-modality system offers considerable advantage over single-
modality system.
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The fusion of different spectral images is significant in multi-modality track-
ing, because each spectral image provides disparate, yet complementary informa-
tion about a scene. It offers an improved operational robustness, because distinct
physical sensing principles compensate for particular perception shortcomings.
Besides the fusion of multi-spectral images, the combination of multiple features
from identical spectral image is also widely researched. The multi-feature fusion
can better represent the target than single feature under complex dynamic cir-
cumstance by taking advantage of the complementarity of different features.
However, above two types of multi-modality tracking method act in their own
way, and few method can integrate them in a natural mean. In this paper, we
propose a unified framework to cope with the problem by employing spatial his-
togram representation and mean shift search. Being fast and robust, the Mean
Shift Tracker (MST) [5] has been used widely and many extensions and variants
were proposed [11–14]. Instead of completely ignoring the spatial structure of
the object features in original MST, Birchfield et al. [11] introduced a spatial
histogram (abbreviated to spatiogram) that was formed by weighting each bin
of histogram with the mean and covariance of the locations of the pixels that
contribute to that bin. The spatiogram-based method not only improves the
accuracy of the target appearance model but also preserves the rapidity of mean
shift tracking, so we choose it to build our framework. The main contributions
of our work are as follows:

– Establish a unified framework of multi-modal target tracking based on joint
spatiogram representation, and the framework is flexible enough to handle
any number of modalities;

– Design a fast multi-input multi-output fuzzy system to adaptively adjust the
weight of each modality for evaluating the target state pre frame;

– Develop a particle filter based model update scheme to keep track of the most
representative reference spatiogram throughout the tracking procedure;

The rest of paper is organized as follows. In Sect. 2, we first introduce the
related work. Next, the spatiograms and their similarity is sketched in Sect. 3.
After that, respectively detail the proposed tracking algorithm and fuzzy logic
based weight adjust method in Sect. 4. Our model update scheme based particle
filter is described in Sect. 5. Experimental results on the method are reported in
Sect. 6. We conclude this paper in Sect. 7.

2 Related Work

The cooperation of visible and infrared imagery is the most active topic in multi-
spectral combination. Infrared sensor can detect relative difference in the amount
of thermal energy emitted from objects, and is independent of illumination,
making it more effective than visible camera under poor lighting condition, but
infrared imagery can’t provide color and texture features. Visible sensor is obliv-
ious to temperature difference, but is more effective than infrared sensor when
objects are at thermal crossover, provided that the scene is well illuminated and
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the objects have color signatures different from the background. Therefore, by
combining their data, a tracker can perform better than one that uses only sin-
gle sensor. There are many methods for tracking color-infrared target. Reference
[6] proposed a framework by fusing the outputs of multiple spatiogram trackers.
Reference [7] presented a multi-cue mean-shift tracking approach based on fuzzi-
fied region dynamic image fusion. Reference [8] proposed a tracking approach
for visible-infrared target using tracking-before-fusion, in which the visible and
infrared targets were tracked individually, and their results were fused. How-
ever, the final result may be very bad when any one of their tracking results
is poor. Reference [9] proposed a compressive spatial-temporal Kalman fusion
tracking algorithm that allowed independent features to be integrated, whose
fusion model was formulated with both spatial and temporal fusion coefficients.
However, its Bayesian classification requires a large number of samples to gain
enough accuracy, which leads to large computational burden. Reference [10] pro-
posed an infrared-visible target tracking method using joint sparse representa-
tion, in which only one target template was required for infrared or visible image.
The method need solve only one �1 norm minimization problem, so its time cost
is dramatically decreased. However, it is the single target template that leads to
the loss of diversity of target templates, thus reducing the robustness of tracker.

In recent years, many multi-feature fusion tracking algorithms have been
reported. Reference [15] proposed a fusion tracking method that employed local
steering kernel descriptor and color histogram to represent the target object. Ref-
erence [16] proposed a new joint sparse representation model for robust feature-
level fusion tracking, which dynamically prevented unreliable feature being fused
by taking advantage of the sparse representation. Reference [17] developed a par-
ticle filter tracking algorithm based on the fusion of color histogram and edge
orientation histogram. Reference [18] located the target through independent
multi-feature fusion and region-based temporal difference model under particle
filter framework. Reference [19] proposed a multi-feature fusion tracking frame-
work by employing hashing method to fuse different features to generate compact
binary feature. Reference [20] presented a novel online object tracking algorithm
by using multi-feature channels with adaptive weights.

3 The Spatiograms and Their Similarity

Spatiogram [11] is generalization of histogram that includes potentially higher
order moments. Conventional histogram is a zeroth-order spatiogram, while
second-order spatiogram contains spatial mean and covariance for each his-
togram bin.

Denote by ĥ = {p̂u, μ̂u, ̂Σu}m
u=1 the m-bin reference second-order spatiogram

of the target. In each frame of the image sequence, the center point z of the image
region in which the spatiogram h(z) = {pu(z),μu(z),Σu(z)}m

u=1 is closest to
ĥ is sought. Let {xi}n

i=1 denote the (normalized) coordinates of the pixels in a
candidate region centered at z, then the feature probability of the uth bin is
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pu(z) =
n

∑

i=1

k(‖xi − z‖2)δ[b(xi) − u], (1)

where b(x) is the bin number (1, · · · ,m) associated with the feature at location
x, δ is the Kronecker delta function, and k(x) is a kernel profile that assigns
smaller weights to pixels farther from the circle center. Note that the kernel is
normalized such that its profile satisfies

∑n
i=1 k(‖xi − z‖2) = 1. The coordinate

mean μu(z) and covariance Σu(z) of pixels belong to the bin u are

μu(z) =
1

∑n
k=1 δ[b(xk) − u]

n
∑

i=1

(xi − z)δ[b(xi) − u], (2)

Σu(z) =
1

∑n
k=1 δ[b(xk) − u] − 1

n
∑

i=1

(xi − μu(z))(xi − μu(z))Tδ[b(xi) − u],

(3)
Similarly, the calculation of reference spatiogram ĥ can be regarded as a special
case of h(z) that z = 0.

The similarity between the spatiograms is measured by

ρ(z) � ρ[h(z), ĥ] =
m

∑

u=1

ψu(z)
√

pu(z)p̂u, (4)

where
√

pu(z)p̂u is used to measure the similarly between features of candidate
region and target image, while

ψu(z) =
4|Σu(z)̂Σu| 1

4

|˜Σu| 1
2

exp
{

−1
2
(μu(z) − μ̂u)T(˜Σu(z))−1(μu(z) − μ̂u)

}

(5)

is used to measure the similarity in spatial arrangement between these features,
and ˜Σu(z) = 2(Σu(z) + ̂Σu).

4 Proposed Multi-modality Tracker

Assume there are N different modalities (or N reference spatiograms), then it
is a fact that each candidate state should correspond to N image patches with
different modalities. That is to say, at any time instant t, all well registered
N image patches with different modalities should share same dynamic state
(including location, size and shape), because they merely use different modalities
to describe identical real object.

4.1 Joint Spatiogram Representation

Denote by ĥj = {p̂j
u, μ̂j

u, ̂Σj
u}m

u=1 the jth modality reference spatiogram. Given
a candidate state centered at z, then there are N candidate spatiograms with
different modalities, and we denote by hj = {pj

u(z),μj
u(z),Σj

u(z)}m
u=1 the jth
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modality candidate spatiogram. The similarity between the jth modality candi-
date spatiogram and its reference spatiogram is measured by

ρj(z) =
m

∑

u=1

ψj
u(z)

√

pj
u(z)p̂j

u (6)

where

ψj
u(z) =

4|Σj
u(z)̂Σj

u| 1
4

|˜Σj
u| 1

2

exp
{

−1
2
(μj

u(z) − μ̂j
u)T(˜Σj

u(z))−1(μj
u(z) − μ̂j

u)
}

, (7)

and ˜Σj
u(z) = 2(Σj

u(z) + ̂Σj
u).

For the multi-modality fusion tracking, whether a candidate state should be
accepted or not is decided by joint similarity of all modality candidates and their
corresponding targets, so we define the joint similarity (or object function) as

ρ(z) �
N

∑

j=1

αjρj(z), (8)

where 0 ≤ αj ≤ 1 is the weight that reflects the reliability of the jth modality
to evaluating the target state in current frame, and

∑N
j=1 αj = 1.

4.2 Target Localization

The goal of target localization is to estimate the target translation ẑ that max-
imizes the joint similarity in (8). Denote by ẑ0 the estimated target location in
the previous frame. Approximating the joint similarity (8) in the current frame
by its first-order Taylor expansion around the values pj

u(ẑ0) and μj
u(ẑ0) results in

ρ(z) ≈
N

∑

j=1

m
∑

u=1

αjψ
j
u(ẑ0)

√

pj
u(ẑ0)p̂

j
u((˜Σj

u(ẑ0))−1(μ̂j
u − μj

u(ẑ0))μj
u(z) + · · ·

N
∑

j=1

m
∑

u=1

αj

2
ψj

u(ẑ0)
√

p̂j
u/pj

u(ẑ0)pj
u(z) + C,

(9)

where

pj
u(z) =

n
∑

i=1

k(‖xj
i − z‖2)δ[b(xj

i ) − u], (10)

μj
u(z) =

1
∑n

k=1 δ[b(xj
k) − u]

n
∑

i=1

(xj
i − z)δ[b(xj

i ) − u], (11)

and C is independent of z. Taking the derivative of (9) with respect to z yields

∂ρ(z)
∂z

=
N

∑

j=1

n
∑

i=1

wj
i k

′(‖z − xj
i‖2)(z − xj

i ) −
N

∑

j=1

m
∑

u=1

wj
u, (12)
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where

wj
i =

m
∑

u=1

αj

2
ψj

u(ẑ0)
√

p̂j
u/pj

u(ẑ0)δ[b(x
j
i ) − u]

wj
u = αjψ

j
u(ẑ0)

√

pj
u(ẑ0)p̂

j
u((˜Σj

u(ẑ0))−1(μ̂j
u − μj

u(ẑ0))

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(13)

Set ∂ρ(z)
∂z = 0 and solve for z:

ẑ =

N
∑

j=1

n
∑

i=1

wj
i g(‖z0 − xj

i‖2)xj
i −

N
∑

j=1

m
∑

u=1
wj

u

N
∑

j=1

n
∑

i=1

wj
i g(‖z0 − xj

i‖2)
, (14)

where g(x) = −k′(x). If we use the Epanechnikov profile [5] then the derivative
of the kernel is constant, thus the iteration (14) is reduced to

ẑ =

⎛

⎝

N
∑

j=1

n
∑

i=1

wj
i x

j
i −

N
∑

j=1

m
∑

u=1

wj
u

⎞

⎠

/ N
∑

j=1

n
∑

i=1

wj
i , (15)

To enable the physical meaning of (15) to evident, we rearrange the numerator
to obtain

ẑ =
N

∑

j=1

n
∑

i=1

(wj
i x

j
i − vj

i )
/ N

∑

j=1

n
∑

i=1

wj
i , (16)

where vj
i =

∑m
u=1(w

j
uδ[b(xj

i ) − u]
/∑n

k=1 δ[b(xj
k) − u]). It is easy to see from

(16) that each pixel in each modality candidate patch casts a vote proportional
to ‖wj

i x
j
i − vj

i ‖ in the direction of xj
i − vj

i /wj
i for the Mean-Shift offset toward

or away from ẑ, which also shows that the optimal location of the target is
determined by all modalities.

4.3 Adjusting Weights Using Fuzzy Logic

The weights in most algorithms are assumed to be unchanged during the track-
ing, but the fact is that the importance (reliability) of each modality changes over
time. Usually, the target doesn’t change drastically between consecutive frames,
but has always a few difference, so we can only fuzzily rather than determinately
estimate the change. In this paper, we use the similarity between the tracking
result and the reference model to measure the change, and employ the fuzzy
logic method to calculate the weights. Specifically, the inputs of fuzzy system
are the reliabilities

ej(ẑ) =
1√
2πδ

exp
(

−1 − ρj(ẑ)
2δ2

)

(17)

index j = 1,. . . ,N, where ρj(ẑ) is the similarity between the tracking result and
the reference model in current frame. Notice that the smaller the similarity,
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the lower the reliability. The outputs of fuzzy system are the weights αj index
j = 1,. . . ,N in the next frame.

In this study, we apply the singleton fuzzification, product inference, and
centroid defuzzification to build the fuzzy system [21]. Each input variable ej is
fuzzified with five linguistic variables, labeled SR, S, M, B, BR, partitioned on
the interval [0, 1], and each output variable αj is also fuzzified with nine linguistic
variables, labeled ST, VS, SR, S, M, B, BR, VB, BT, partitioned on the interval
[0, 1], where ST stands for smallest, VS for very smaller, SR for smaller, S for
small, M for middle, B for big, BR for bigger, VB for very bigger, BT for biggest.
The membership functions of ej and αj are all Gaussian function, as shown in
Fig. 1(a) and (b).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 SR S M B BR

ej

(a)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 ST VS SR S M B BR VB BT

αj

(b) (c)

Fig. 1. (a) Membership function for ej (b) membership function for αj (c) the control
rule bases for a dual-input and single-output fuzzy system.

Our fuzzy system is a typical multi-input multi-output system with N inputs
and N outputs, and if directly using the IF-THEN rule of N inputs inferring
one output then resulting in N × 5N rules, which is time-consuming. Therefore,
we convert the fuzzy system into several dual-input and single-output (DISO)
fuzzy systems, and define the fuzzy rule of each DISO system as

IF ej is Ak
1 and ei is Ak

2 THEN αi
j is Bk, k = 1, . . . ,K (18)

where Ak
1 and Ak

2 belong to {SR, S, M, B, BR}, Bk belongs to {ST, VS, SR, S,
M, B, BR, VB, BT}, αi

j (i �= j) is the weight of modality j relative to modality
i, and K is the total number of rules. The control rule bases originating from
(18) is shown in Fig. 1(c), apparently, K = 25 and αj

i = 1−αi
j . After performing

the fuzzy control procedure to acquire all αi
j , the αj is calculated by

αj = (α1
j + · · · + α

(j−1)
j + α

(j+1)
j + · · · + αN

j )
/

(N − 1) (19)

Finally, all αj are normalized such that they satisfy
∑

j αj = 1. Since the deriva-
tion of each αj needs N −1 noninteractive DISO fuzzy systems, the total number
of DISO systems is N(N − 1)/2, thus the total fuzzy rules can be reduced to
25 × N(N − 1)/2.

Algorithm 1 summarizes the proposed Multi-modality Joint Spatiogram
Tracking (MJST) procedure, which is implemented in MATLAB+MEX. The
model update will be detailed in the next section.
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Algorithm 1. Multi-modality fusion tracking via spatiogram and fuzzy logic
Input: each modal target image {I(xj

i , 1)}n
i=1 centered at z1 in the first frame, the

corresponding reference spatiogram {p̂j
u(1), μ̂j

u(1), ̂Σj
u(1)}m

u=1, its weight αj , and γ;
1: for t = 2, . . . , T do
2: Compute the current candidate spatiogram {pj

u(zt−1), μ
j
u(zt−1),Σ

j
u(zt−1)}m

u=1

by (1) to (3) and its similarity ρj(zt−1) with its reference spatiogram by (6) to
(7), as well as their ρ(zt−1) by (8);

3: Compute each weights wj
i and wj

u by (13), and find new candidate location zt

by (15);
4: Compute the new candidate spatiogram {pj

u(zt), μ
j
u(zt),Σ

j
u(zt)}m

u=1 by (1) to
(3) and its similarity ρj(zt) with its reference spatiogram by (6) to (7), and their
ρ(zt) by (8);

5: If ρ(zt)<ρ(zt−1), then set zt ← 1
2
(zt−1+ zt) and go to Step 4;

6: If zt = zt−1 or the number of iterations reached Mmax, then go to Step 7.
Otherwise, set zt−1 ←zt and ρ(zt−1)←ρ(zt), and go to Step 3;

7: Compute all reliability ej(zt) by (17) and adjust all weight αj using fuzzy logic
method;

8: For each modality, establish the particle filter with the state variable {I(xj
i , t−

1)}n
i=1 and its current observation hj(zt) by (20) to (22), run the filter procedure

to gain optimal state {Î(xj
i , t)}n

i=1, and obtain the new reference spatiogram

{p̂j
u(t), μ̂j

u(t), ̂Σj
u(t)}m

u=1 according to (23);
9: end for

5 Model Update via Particle Filter

In practical tracking scenarios, the target model should be updated so that it can
capture the appearance variations due to illumination or pose changes. Some self-
learning methods use the weighted sum of the current tracking result and current
model to get new model, which is easy to realize but also prone to drift from the tar-
get because of the accumulation of errors. Other semi-supervised learning methods
are suggested to avoid the drift problem, but the classifier-based tracking cannot
be applicable to our case. Motivated by the Ref. [12], we propose a model update
mechanism based on particle filter, and its details are introduced as follows.

5.1 Spatiogram Filtering

In most of tracking methods, the particle filter keeps tracking of object changes
in position and velocity, not the changes of object appearance. We use particle
filter for filtering object spatiogram so as to obtain the optimal estimate of the
target model.

In frame t, let I(xi, t) be the feature value (e.g., intensity, gradient, tex-
ture, etc.) at the normalized coordinate xi in object image, and h({I(xi, t)}n

i=1)
be the corresponding spatiogram that is obtained by performing (1) to (3) on
{I(xi, t)}n

i=1. The object appearance variations in essence are the value changes
of all I(xi, t). Since the change of each I(xi, t) is independent, we can filter each
of them independently. Thus, the state prediction equation of each I(xi, t) is
given by
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I(xi, t) = I(xi, t − 1) + ωi(t − 1), i = 1, 2, · · · , n, (20)

where I(xi, t) is called the state of pixel xi in the frame t, and I(xi, t − 1) is its
counterpart in the frame t − 1. ωi(t − 1) specifies the state noise owing to the
object appearance variation, which is assumed to be Gaussian, and furthermore,
to have the same variance σ2

ω for all xi.
To obtain measurements of the filters, the previous reference spatiogram

h({I(xi, t − 1)}n
i=1) is matched with the current frame, and yielding a new spa-

tiogram h(zt) at the convergence position zt provided by the mean-shift track-
ing algorithm. Then, h(zt) is used as measurement for h({I(xi, t)}n

i=1), and the
observation equation is

h(zt) = h({I(xi, t)}n
i=1) + υ(t), (21)

where υ(t) models the noise in the image signal. Since each bin in the spatiogram
is independent, the (21) can be rewritten as

hu(zt) = hu(t) + υu(t), u = 1, 2, · · · ,m, (22)

where hu(zt) = [pu(zt),μu(zt),Σu(zt)]T, h(zt) = {hu(zt)}m
u=1, hu(t) =

[p̂u(t), μ̂u(t), ̂Σu(t)]T, h({I(xi, t)}n
i=1) = {hu(t)}m

u=1, and υu(t) is the observa-
tion noise, which is assumed to be Gaussian, and furthermore, to have the same
variance σ2

υ for all u. Because the Σu is 2-D diagonal matrix, we only update its
two diagonal entries, thus the hu is a 5-D vector.

We call h({I(xi, t − 1)}n
i=1) current model, and h(zt) observation model.

Particle filter then yields a tradeoff between the two models and provides
us an optimal estimate of the object model that is called candidate model,
denoted by h({Î(xi, t)}n

i=1), where {Î(xi, t)}n
i=1 is the optimal particle. In imple-

ment, the {I(xi, t)}n
i=1 is treated as a particle whose likelihood weight is calcu-

lated by 1√
2πσυ

exp{− 1−ρ[h(zt),h({I(xi,t)}n
i=1)]

σ2
υ

} incorporating with (4), and the

{Î(xi, t)}n
i=1 is determined by taking the weighted mean of all particles.

5.2 Update Criterion

It is not suitable for us to accept the candidate model all the time. We should try
to find a robust criterion to decide whether the candidate mode h({Î(xi, t)}n

i=1)
should be accepted because over-update could make tracker sensitive to outliers
like occlusions or dramatic appearance changes.

We take the similarity ρ[h(zt),h({I(xi, t − 1)}n
i=1})] between the observa-

tion model and the current model as the criterion. If the similarity is smaller
than the threshold γ, which implies that the object encounters dramatic appear-
ance changes, then we reject h({Î(xi, t)}n

i=1) and remain using current model,
otherwise accept it. The final model update formula is as follows

ĥ(t) =

{

h({I(xi, t − 1)}n
i=1}) ρ[h(zt),h({I(xi, t − 1)}n

i=1})] < γ

h({Î(xi, t)}n
i=1) ρ[h(zt),h({I(xi, t − 1)}n

i=1})] ≥ γ
(23)

Once h({Î(xi, t)}n
i=1) is accepted, the {Î(xi, t)}n

i=1 is also saved.
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6 Experiments

To verify the flexibility, accuracy and efficiency of the proposed tracker, we tested
six registered infrared-visible sequences which involve general difficulties like
night, shade, cluster, crossover and occlusion. We also compared the proposed
tracker to the state-of-the-art methods such as �1 tracker (L1T) [4], joint sparse
representation tracker (JSRT) [10], and fuzzified region dynamic fusion tracker
(FRD) [7]. All tracking results are obtained by running these trackers on an Intel
Dual-Core 2.6 GHz CPU with 8 GB RAM, using the same initial positions for
fair comparison. The L1T can tackle only one modality at a time.

Set Mmax = 20, γ = 0.4, and the number of particles 50 for model update.
We use the combination of infrared gray, infrared HOG (histogram of oriented
gradient), visible gray, and visible LBP (local binary pattern), so N = 4.

6.1 Combination of Infrared Gray-HOG and Visible Gray-LBP

The LBP [22] is very effective to describe the image texture features, and has
advantages such as fast computation and rotation invariance, which facilitates
the wide usage in the fields of texture analysis, image retrieval, object tracking,
etc. In LBP, each pixel is assigned a texture value, which can be naturally com-
bined with the gray of the pixel to represent targets. The LBP operator labels
the pixel in an image by thresholding its neighborhood with the center value
and considering the result as a binary number.

The HOG technique [23] counts occurrences of gradient orientation in local-
ized portions of an image, and is very effective to describe the object shape
feature. HOG is invariant to geometric and photometric transformations, so is
used widely in object detection. See [23] for the extraction steps of HOG. To
enable HOG to naturally combine with the gray of image, we employ the visu-
alization method suggested in [24].

Generally, the visible image contains more texture features, whereas shape
feature is more obvious in the infrared image, so we extract LBP feature from vis-
ible image and HOG feature from infrared image. Figure 2 shows the extraction
of LBP and HOG features from visible and infrared images respectively.

Figure 3 shows the screenshots of some sampled tracking results on video1-
video6.

Fig. 2. Extracting LBP and HOG features from visual and infrared images respectively,
(a) visible image, (b) visible gray, (c) visible LBP, (d) infrared image, (e) infrared gray,
(f) infrared HOG.
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(a) video1 at night (b) video2 under shade

(c) video3 with crossover (d) video4 with crossover and clutter

(e) video5 with partial occlusion (f) video6 with severe occlusion

MJST JSRT FRD L1TVS L1TIR

Fig. 3. Screenshots of some sampled tracking results, where L1TIR represents using
L1T to track infrared target, and L1TVS represents using L1T to track visible target.

Night and Shade: At night without light, the target in visible image is usually
obscure (see Fig. 3(a)), so the tracker that only using visible camera often fails
to hold the target. However, by using or cooperating with infrared camera, our
tracker can hold well the target, because the infrared sensor is independent of
illumination. In Fig. 3(b), the man in black is walking into a shade area, and the
contrast between him and his background is very low in visible image but no for
infrared image, which is similar to walking at night, so our tracker can hold the
target well. It is notable that our tracker successfully overcome the occlusion of
lamppost (see frame 245 and 288 in Fig. 3(b)), which is mainly attribute to the
use of online model update.

Crossover and Clutter: The tracker is easily attracted by the distracter when
target is at thermal crossover or in cluttered background. For example, the FRD
is attracted by the right man when two men are at thermal crossover (see frame
78 in Fig. 3(c)), and FRD and L1TVS are attracted by the cluttered background
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(see frame 118 and 291 in Fig. 3(d)). The distracter presents similar appearance
as the target, so can give good match to the target, which makes it be difficult
to discriminate such a distracter only using single source or matching score.
However, our tracker can stick with the target all the time because of using joint
compressive representation of infrared and visual modalities, thus can always
capture the target well.

Partial and Full Occlusion: Occlusion is the most general yet crucial problem
in object tracking, and it is classified into partial and full. For partial occlusion,
our tracker can successfully overcome it (see frame 245 in Fig. 3(b), frame 112 in
Fig. 3(e), and frame 100 in Fig. 3(f)), because both it use model update to handle
occlusion. For full occlusion, as showed in Figs. 3(f) and 4(f), almost all trackers
lost the targets, which is because that the targets have completely disappeared
from our sight.

6.2 Quantitative Comparison

We use five criteria, i.e., center offset error � =
√

(xG − xT )2 + (yG − yT )2,
average center offset error �̄ = 1

q

∑

i �i, overlap ratio ε = area(RG

⋂
RT )

area(RG

⋃
RT ) , aver-

age overlap ratio ε̄ = 1
q

∑

i εi, and success rate sr = 1
q

∑

i f(εi − 0.5), where
(xG, yG, RG) is the center and region of target given by manual, (xT , yT , RT ) is
the result given by the tacker, and q is the number of frames. The f(x) is step
function, if x ≥ 0, then f(x) = 1, else f(x) = 0. The overlap ratio is used to
evaluate the accuracy of the tracking result pre frame, and whose value is 1 when
the estimated region overlaps fully with the ground truth, thereby obtaining best
tracking result. An ideal tracker should have less center offset error, and high
overlap ratio and success rate.

The L1T can track only one of visible and infrared at a time, for easy to
compare with other fusion trackers, we integrate the tracking results of L1TVS
and L1TIR as following: (1) the time consumer of L1T is equal to the time sum
of L1TVS and L1TIR, and (2) the target state of L1T is equal to the weight
average of the target states of L1TVS and L1TIR, where the weight is induced by

Table 1. Quantitative comparison of MJST, JSRT, FRD and L1T.

MJST JSRT FRD L1T
¯ ¯ sr ¯ ¯ ¯ ¯ ¯ ¯

video1 4.28 0.81 1.00 83.3 0.19 0.21 6.97 0.75 0.93 36.4 0.32 0.36
video2 2.31 0.77 0.98 69.5 0.07 0.07 5.33 0.64 0.77 35.3 0.07 0.06
video3 1.47 0.84 1.00 17.6 0.46 0.51 2.75 0.84 0.95 2.64 0.78 0.90
video4 5.44 0.75 0.93 53.5 0.30 0.38 20.9 0.27 0.36 7.46 0.70 0.87
video5 19.1 0.65 0.78 79.6 0.12 0.15 24.0 0.42 0.59 20.6 0.56 0.68
video6 9.79 0.62 0.73 16.7 0.43 0.51 3.63 0.78 0.85 23.5 0.53 0.61
averag 7.07 0.74 0.90 53.4 0.26 0.31 10.6 0.62 0.74 21.0 0.49 0.58
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their observation likelihood in a mean square error way. The quantitative results
are summarized in Table 1, where red font indicates the best performance while
the blue font indicates the second best ones. The detail of overlap ratio pre frame
is shown in Fig. 4. It can be observed that, compared with other trackers, our
tracker obtains the highest tracking accuracy and success rate.
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(a) video1
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(b) video2
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(c) video3
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(d) video4
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(e) video5
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(f) video6

Fig. 4. The overlap ratio between tracked region and manually marked ground truth

7 Conclusions

In this paper we had proposed a unified multi-modality tracking framework
by cooperating fuzzy logic. In the framework, different types of modalities can
be arbitrary added, removed and naturally integrated through joint spatiogram
representation. In addition, the target model update strategy enables the tracker
promptly respond to the variations of appearance. Experiment results on six
datasets demonstrate that our approach performs best. Our current tracker is
not quite suitable for tracking full occlusion targets.
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