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Abstract In the past decade, the network science community has witnessed huge
advances in the threshold theory, prediction and control of epidemic dynamics on
complex networks. While along with the understanding of spatial epidemics on
meta-population networks achieved so far, more challenges have opened the door
to identify, retrospect, and predict the epidemic invasion process. This chapter
reviews the recent progress towards identifying susceptible-infected compartment
parameters and spatial invasion pathways on a meta-population network as well
as the minimal case of two-subpopulation version, which may also extend to the
prediction of spatial epidemics as well. The artificial and empirical meta-population
networks verify the effectiveness of our proposed solutions to the concerned
problems. Finally, the whole chapter concludes with the outlook of future research.

6.1 Introduction

After around 70 years of the seminal work of Norbert Wiener “Cybernetics: or the
Control and Communication in the Animal and the Machine” [1], Wiener’s great
thinking still presents fundamental impacts to many folds of the human society
in the era of networking world and Big Data today, ranging from modelling and
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feedback-loop analysis to stability and control of categories of systems and subjects,
whatever large-scale or simply structured, linear or nonlinear, low dimensional or
extremely high dimensional. The communications among humans and machines
in the eyes of Norbert Wiener in 1950s were generally assumed as point-to-point
or neglected as regularly structured in the scope of classic graph theory [2, 3].
Afterwards, Erdős and Rényi extended the graph description with uncertainty and
randomness, and proposed the random graph theory in 1960s [4]. In the following
decades the flourishing information and communication techniques have pushed the
whole human society to a networking village of today, while the understanding of
dominant yet hidden connectivity patterns of the communications among humans
and machines were not revisited until recently.

The discovery of small-world and scale-free features in 1998–1999 has been
verified in ubiquitous complex networks [5, 6], which have attracted the world-wide
attention to the new emergence of network science. The popular concerns cover
not only the topological complexity of a large-scale complex network system but
also the interdependence between the infrastructure and the collective performance
of such networks [7–10]. Typically, from the viewpoint of system and control,
the precise mathematic description and appropriate models of a complex network
play a significant role to achieve the desirable performance in return. However, in
the situations of large-scale spatial prevalence of diseases in human populations,
for example, such a solution may be infeasible if the availability of accurate data
collections is far from sufficiently satisfactory.

Nevertheless the global outbreaks of prevalent infectious diseases in recent
decades have led to great social, economic, and public health loss [11–14], which is
partially due to the urbanization process and, in particular, the wide-establishment
of long-distance public transportation networks (e.g., world-wide air-line web)
and urban public commuting systems (e.g., subway and metro networks) to
facilitate the dissemination of pathogens accompanied with passengers [15, 16].
Academia has witnessed that prediction and control of epidemic dynamics in
networks as a flourishing research topic with interdisciplinary approaches [17–
20]. However, more challenging problems arising from the epidemic prevalence
on a meta-population network have not received adequate attentions, such as
identifying the parameters of epidemic network systems and the epidemic invasion
pathways on a meta-population network, which, ignored previously, certainly play
important roles in evaluating the intensity of outbreak of epidemics among human
patches/populations.

Assume the seed of a disease/virus as the input signal to the whole human
population system, and the observed patient samples as the system output. Then,
the spatial invasion of the disease inside the human population is obscure as a black
box to be identified, and this system combines many factors such as human mobility
patterns (commuting and long-distance traveling) and mathematical epidemiology
as well. Therefore, identifying such an epidemic process with the interplay of
complex networks and the human population is a challenge to public health-care
administrative agency when predicting the large-scale spatial prevalence of a disease
and announcing counter strategies.
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The theory of system identification has been used to estimate the epidemic
parameters of a complex system which are described by ordinary differential equa-
tions (ODE) such as HIV/AIDS epidemic dynamics [21]. Another related topic is
inferring network topology by utilizing the information about a dynamics process on
networks [22, 23]. Note that system identification and network inference techniques
are not fit to handle the epidemic process on meta-population networks which
are stochastic, high-dimensional, and multi-scale. Besides, source identification
on complex networks is a close and popular topic. Some source identification
algorithms [24, 25] have been designed for information/contact networks, but they
are not feasible in identifying the invasion processes on meta-population networks.

Many instructive methods have also been proposed to explore the spatial spread
of an epidemic process on meta-population networks. Maeno [26] inferred the
epidemic network between eleven countries and areas during SARS in 2003
by analysing the epidemic time series. Reference [27] extracted the most likely
epidemic transmission trees of the 1918 influenza pandemic in England, Wales and
the United States. Some methods based on machine learning were also proposed
to infer the epidemic networks from surveillance data [28–30]. Gautreau et al.
presented a measure of the average arrival time to characterize the minimum-
distance path from subpopulation i to subpopulation j over all possible paths [31],
and the average arrival time-based shortest path tree is constructed by assembling
all the shortest paths from the seed subpopulation to any other subpopulation in
a networked meta-population. Balcan et al. proposed a Monte Carlo maximum
likelihood method to produce a most likely infection tree [32]. They constructed
the minimum spanning tree from the seed subpopulation to minimize the distance.
Recently, Brockmann and Helbing [15] proposed a new concept called “effective
distance” to predict the disease arrival time. From node/location i to node/location j,
the effective distance Dij is defined as the minimum sum of effective lengths over all
reachable branches along this path. The set of shortest paths to all other nodes from
seed node i constitutes a shortest path tree, illustrating the most probable paths from
the root to other nodes. On the other hand, approaches based on machine learning
such as genetic algorithm [28–30] has been used to extract epidemic transmission
networks.

Note that some of the above works didn’t distinguish epidemic transmission
network and invasion pathways/trees. In fact, these two concepts are a bit different,
and very few work has discussed the parameter identification of a meta-population
network system. Here a natural problem poses itself that whether the parameters and
epidemic invasion process can be identified from the infection data of populations
and network topology? To get a better understanding of how the contagion diffuses
via an invasion process on network, more topics deserve further efforts: (i) So far,
there are few works on identification of parameters of a meta-population network
which an epidemic is occurring on. New questions such as the following ones are
raised: How to use the data from the limited epidemic realizations to infer the system
parameters as accurate as possible? Does a more appropriate model of individual
mobility exist? (ii) Identification of spatial invasion pathways is to uncover the
channels by which the hosts transmit viruses in a spatially structured population with
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the infection data. In a large-scale meta-population network, the complex pattern of
pathways challenges the methodology to identify the epidemic invasion pathways
in a meta-population network.

In this chapter, we review our series of work in recent years [33–37] on iden-
tifying parameters of the susceptible-infected model and spatial invasion pathways
on a meta-population network as well as the minimal case of two-subpopulation
version, which may also extend to the prediction of spatial epidemics as well. The
remainder of this chapter is arranged as follows. Section 6.2 gives the detailed
description of preliminaries. Section 6.3 introduces the parameter identification
of epidemic models on a meta-population network. Section 6.4 contributes the
inference of epidemic invasion pathways in a meta-population network with both
methodologically and example verifications. In Sect. 6.5, extending the steps of
the previous sections, the prediction of spatial epidemic transmission comes with
several feasible methods. Finally, Sect. 6.6 concludes the whole chapter with
outlook in future research.

6.2 Preliminary

A meta-population network, which was originated from the meta-population model
proposed by Richard Levins [38] to explore spatial ecology, embeds public trans-
portation networking systems to model and uncover nontrivial patterns of spatial
prevalence of global infectious diseases in the past years [15, 31, 32, 39, 40]. In
this section, we introduce the meta-population network model and the susceptible-
infected (SI) compartment epidemic dynamic as well. In this chapter, we consider
the discrete-time dynamics.

6.2.1 The Compartment Model with SI Reaction Dynamics

The well-known susceptible-infected (SI) compartment model (Fig. 6.1), which is
the simplest version in the epidemic compartment family, generally describes the
early stage of prevalence of viruses/pathogen [24, 25, 41], especially in the situation
of non-recovery. In such a population, the states of individuals are stratified into two
compartments (classes): susceptible to the infection of the pathogen; and infected by
the pathogen. Generally, we assume that all individuals are homogenously mixing
in the population. The state transition of an individual between two compartments

Susceptible Infected

Fig. 6.1 Schematic illustration of the SI compartment model, where ˇ denotes the infection rate
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is governed by the following reaction process: When a susceptible individual meets
(i.e., has the contacts) with an infected individual in a unit time, the susceptible
individual will be infected with an infection rate ˇ.

6.2.2 The Two-Subpopulation Version of a Meta-population
Network

Before describing a general meta-population network, we first introduce a minimal
meta-population network containing two subpopulations (labelled as 1 and 2 as
shown in Fig. 6.2) with SI epidemic compartments. We assume the infection process
evolves as a discrete-time system, and subpopulation 1 is infected initially (In this
case of simulation, we assume 1 individual is infected among all 10,000 individuals
in subpopulation 1). During each time step, the reaction takes place in each
subpopulation if it contains two classes of individuals (susceptible and infected).
Denote p12 (p21) the diffusion rate of individuals transferring from subpopulation 1

to 2 (2 to 1), which are often not symmetric, i.e., p12 ¤ p21. Besides, an individual
in subpopulation 1 (2) chooses jumping to subpopulation 2 (1) at diffusion rate p12

(p21), i.e., the so-called diffusion process. Therefore, the probability an individual
stays in subpopulation 1 (2) is 1 � p12 (1 � p21).

Therefore, without considering the diffusion of new increment of infected
individuals after reaction, the whole evolution dynamics is described as

8
ˆ̂
<̂

ˆ̂
:̂

hI1.t C 1/ � I1.t/i D ˇI1.t/
S1.t/

N1.t/
C p21I2.t/ � p12I1.t/;

hI2.t C 1/ � I2.t/i D ˇI2.t/
S2.t/

N2.t/
C p12I1.t/ � p21I2.t/;

(6.1)

where h�i represents the expectation of the corresponding terms, N1.t/ (N2.t/)
denotes the number of individuals in subpopulation 1 (2) at time t, I1.t/ (I2.t/)
denotes the number of infected individuals in subpopulation 1 (2), S1.t/ (S2.t/)

N1

N2

p12

p21

I
S

Fig. 6.2 Schematic representation of a minimal meta-population network with the SI model. At
initial time, subpopulation 1 is infected (containing at least one infected individual (red)), and
subpopulation 2 is susceptible (all are susceptible individuals (blue)) (From Wang et al. [33])
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denotes the number of susceptible individuals in subpopulation 1 (2). The first term
of the right-hand side (RHS) in Eq. (6.1) represents the new increment of infected
individuals h�RIi.t/i D ˇIi.t/

Si.t/
Ni.t/

; i D 1; 2, after reaction from t to tC1. The second
and third terms of RHS in Eq. (6.1) represent the diffusion of infected individuals in
the diffusion process. As mentioned above, we do not consider the diffusion of new
increment of infected individuals after reaction in this case. Besides, the evolution
of susceptible individuals is similar with the infected individuals.

6.2.3 The General Description of a Meta-population Network

Extending the minimal version as two subpopulations to the general case of a meta-
population network, we divide the whole population (generally, such a population
covers a large-scale spatial region of a country or the whole world) into a number
of subpopulations. In a meta-population network, a subpopulation is connected with
others via a public transportation network, e.g., the air-line web, the high-way web
to form the backbone of such a meta-population network. A subpopulation as a
node in the network contains a number of individuals homogeneously mixed, and
individuals travel between two subpopulations (nodes) via the public transportation
means (edge) with some (fixed) diffusion rate. All edges are directed.

With the SI dynamics, the disease propagates in subpopulations and spreads
among neighbouring subpopulations via the reaction-diffusion process in a unit
time, as illustrated in Fig. 6.3. Denote N the number of subpopulations (nodes)
of a meta-population network, and Ni.t/ D Si.t/ C Ii.t/ is the population size of

i

j

S
I

Diffusive
Mobility

i

j

(a)

(b)

Fig. 6.3 Illustration of a networked meta-population model, which comprises six subpopulations
that are coupled by the mobility of individuals. In each subpopulation, each individual can be in
one of the two states (susceptible, infected), as shown in different colours. Grey ones represent
susceptible subpopulations. Red ones represent infected subpopulations. Light red subpopulations
denote less number of infected individuals than the dark red ones. Each individual can travel
between the connected subpopulations. (a) A networked meta-population. (b) Two subpopulations
(From Wang et al. [35])
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subpopulation i at time t, where Si.t/ is the number of susceptible individuals, and
Ii.t/ is the number of infected individuals of subpopulation i at time t, respectively.
Therefore, the intra-population epidemic dynamics in subpopulation i is governed
by the SI model. Per unit time, the risk of infection of a susceptible individual
within subpopulation i is characterized by �i.t/ D ˇIi.t/=Ni.t/ during the reaction
process. Denote the probability that an individual (S or I) of subpopulation i moves
to its neighbouring subpopulation j as diffusion rate pij, which describes the inter-

population mobility dynamics. The symbol of diffusion rate 0 � pij D hwiji
hNii < 1,

where wij is the number of individuals moving from subpopulation i to j per unit
time (0 � hwiji < hNii).

Therefore, if we do not consider the diffusion of new increment of infected
individuals after the reaction process, the evolution of an infected subpopulation
i is described as follows:

hIi.t C 1/ � Ii.t/i D ˇIi.t/
Si.t/

Ni.t/
C

NX

jD1;j¤i

pjiIj.t/ �
NX

jD1;j¤i

pijIi.t/; (6.2)

which is investigated in Sect. 6.4.
When we consider the diffusion of new increment of infected individuals after

the reaction, the evolution is described by

hIi.t C 1/ � Ii.t/i DˇIi.t/Si.t/=Ni.t/

C
X

j¤i

˚
pjiŒIj.t/ C h�RIj.t/i� � pijŒIi.t/ C h�RIi.t/i�

�
;

(6.3)

where �RIj.t/ is the increment of Ij.t/ after the reaction from t to t C 1. We give the
extensive investigation of the dynamics given by Eq. (6.3) in Sect. 6.5.

We now discuss the individual mobility operator to handle the presence of
stochasticity and independence of individual mobility, where the number of suc-
cessful migration of individuals between adjacent subpopulations is quantified by a
binomial or a multinomial process, respectively. If the focal subpopulation i only has
one neighbouring subpopulation j, the number of individuals in a given compartment
X (X 2 fS; Ig and

P
X Xi D Ni) transferred from i to j per unit time, Tij.Xi/, is

generated from a binomial distribution with probability pij representing the diffusion
rate and the number of trials Xi, i.e.,

Binomial.Tij;Xi; pij/ D XiŠ

TijŠ.Xi � Tij/Š
p
Tij

ij .1 � pij/
.Xi�Tij/; (6.4)

where 1 � pij denotes the probability of an individual staying in subpopulation i.
If the focal subpopulation i has multiple neighbouring subpopulations

j1; j2; : : : ; jk, with k representing i’s degree, the numbers of individuals in a given
compartment X moving from i to j1; j2; : : : ; jk are generated from a multinomial
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distribution with probabilities pij1 ; pij2 ; : : : ; pijk representing the diffusion rates on
the edges emanated from subpopulation i and the number of trails Xi, i.e.,

Multinominal.fTij`g;Xi; fpij`g/

D XiŠ
Q

` Tij` Š.Xi � P
` Tij` /Š

.
Y

`

p
Tij`
ij`

/.1 �
X

`

pij` /
.Xi�P

` Tij` /;
(6.5)

where integer ` 2 Œ1; k�, term 1 � P
` pij` denotes the probability of an individual

staying in subpopulation i.

6.3 Epidemic Parameter Identification

The epidemic parameters of a networked meta-population include the infection
rate and diffusion rate, which play an important role in the SI dynamics, while
the stochastic epidemic dynamics and the limit of available data make such an
identification task more difficult. In this section, we review the method to identify
both parameters for a two-subpopulation network and an estimation of infection rate
for a general network version.

6.3.1 The Case of Two-Subpopulation Model

We first describe one realization of the invasion process evolving as follows. At the
beginning, subpopulation 1 has been initialized with one infected individual in this
case. When time evolves, the number of infected individuals I1.t/ of subpopulation 1
increases due to the SI reaction dynamics in this subpopulation. The epidemic arrival
time (EAT) is defined as the first arrival time of infected individuals from an infected
subpopulation moving to a neighbouring susceptible subpopulation. To address the
EAT, some infected individual(s) will move (diffuse) to subpopulation 2, which
finally succeed in infecting subpopulation 2. Therefore, recording the infection data
(the number of infected individuals in subpopulation i at time t, i.e., Ii.t/; i D 1; 2) of
each subpopulation as the available data, we need to identify the unknown infection
rate ˇ and diffusion rate p12.

At the early stage of epidemic dynamics, we can approximate Si.t/ � Ni.t/; i D
1; 2 (Ii.0/ � Ni.0/) and therefore simplify Eq. (6.1) as

hI1.t C 1/ � I1.t/i C hI2.t C 1/ � I2.t/i � ˇ.I1.t/ C I2.t//: (6.6)

Denote I.t/ the number of infected individuals in all subpopulations at time t,
i.e., I.t/ D I1.t/ C I2.t/. Traditionally, the RHS of the above equation accounts
for an exponential growth of the number of infected individuals, and ˇ is regarded
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as the Malthusian growth rate. Thus, we rewrite Eq. (6.6) in the compact form as
I.t/ � eˇ.t�0/I.0/. Considering lnŒI.0/� � lnŒI.t/�, .0 � t/, we have ˇ � lnŒI.t/�

t .
Therefore, we estimate the infection rate ˇ by fitting the slope of lnŒI.t/�.

We now discuss how to identify diffusion rate p12. Repeat the invasion of
subpopulation 2 from subpopulation 1 until we record the epidemic arrival time
to subpopulation 2, i.e., the disease/virus finally lands in subpopulation 2 and starts
the local infection. We investigate the period from the initial time (t D 0) to the
epidemic arrival time (tEAT ) that the first H individuals from subpopulation 1 invade
subpopulation 2. From tEAT � 1 to tEAT , we get

8
<

:

hI1.tEAT/ � I1.tEAT � 1/i D ˇI1.tEAT � 1/ � p12I1.tEAT � 1/;

hI2.tEAT/ � I2.tEAT � 1/i D p12I1.tEAT � 1/:

(6.7)

The likelihood function about the first H infected individuals from subpopula-
tion 1 traveling to subpopulation 2 at time tEAT is

P.H ; tEAT � 1/ D CH
I1.tEAT �1/.1 � p12/I1.tEAT �1/�H pH12 �

��1Y

iD1

.1 � p12/I1.i/; (6.8)

where tEAT � 1 D �, �.� 	 1/ is an integer. If there are s (s 	 1) rounds of repeated
realizations of invasion processes, the joint likelihood function is given by

P.H f1g; t1IH f2g; t2I � � � IH fsg; ts/ (6.9)

D P.H f1g; t1/ � P.H f2g; t2/ � � � � P.H fsg; ts/;

where s is the number of rounds of repeated simulation realizations of epidemic
invasion processes. Take the logarithm of Eq. (6.9), the joint likelihood function
yields L.P/ D ln.P.H f1g; t1IH f2g; t2I � � � IH fsg; ts//:

Therefore, by means of the maximum likelihood estimation, we have dL.P/

dp12
D

1
p12�1

.
Ps

iD1 .Ifig
1 .�i/ � H fig/ C Ps

iD1

P�i�1
jD1 Ifig

1 .j// C 1
p12

Ps
iD1 H

fig. Letting
dL.P/

dp12
D 0, we finally have

Op12 D
Ps

iD1 H
fig

Ps
iD1

h
Ifig
1 .�i/ � H fig C H fig C P�i�1

jD1 Ifig
1 .j/

i D
Ps

iD1 H
fig

Ps
iD1

P�i
jD1Ifig

1 .j/
;

(6.10)
where Op12 represents the estimation of diffusion rate p12.
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6.3.2 The Case of a Meta-population Network

Mathematically, the estimation of diffusion rates requires the availability of a large
number of epidemic realizations for a given meta-population network. However, the
availability of such repeated data for emergent infectious diseases is rather limited
in reality. Therefore, the estimation of diffusion rates in the general case of a meta-
population network is infeasible due to the computational complexity and the limit
of available data, which generally can be alternatively obtained from the statistics of
public transportation section. The estimation of infection rate ˇ in the general case
of a meta-population network is addressed here.

Summing the number of infected individuals in Eq. (6.3) over all subpopulations
i, we have

P
ihIi.t C 1/ � Ii.t/i D PN

iD1 ˇIi.t/Si.t/=Ni.t/. Since Ii.t/ � Ni.t/ at
the early epidemic stage, it is simplified as

P
ihIi.t C 1/ � Ii.t/i � ˇ

P
i Ii.t/. The

term Ii.t C 1/ � Ii.t/ fluctuates around its mathematical expectation, and we have
the approximation as

ˇ �
P

i.Ii.t C 1/ � Ii.t//
P

i Ii.t/
: (6.11)

Thus, given all recorded times t1; t2; : : : ; tm0 , the infection rate Ǒ is estimated as

Ǒ D arg min
ˇ�

tm0X

tDt1

j.I.t C 1/ � I.t// � ˇ�I.t/j2 D .X>X/�1X>Y; (6.12)

where X> represents the transposition of X, and X D ŒI.t1/; I.t2/; : : : ; I.tm0/��1,
Y D Œ.I.t1 C 1/ � I.t1//; .I.t2 C 1/ � I.t2//; : : : ; .I.tm0 C 1/ � I.tm0//��1.

6.3.3 Example: Identifying the Diffusion Rate p12

In this subsection, we only illustrate the identification performance of estimating
diffusion rate p12 on a two-subpopulation SI model as an example. A more
general case (in the sense of an arbitrary number of subpopulations) of example of
identification performance of infection rate ˇ will be investigated in Sect. 6.5. In the
two-subpopulation case, statistic information of p12 is embedded in the surveillance
infection data of the two subpopulations during the epidemic invasion process. As
shown in Fig. 6.4, the estimation of p12 approaches the real value if the number of
realizations increase, and the estimation error jOp12 � p12j is less than 5% of p12.
Finally the estimation of p12 as Op12 tends to the real value.
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Fig. 6.4 The estimation error of diffusion rate p12 versus the number of realizations of the invasion
process, and the error finally converges to zero. Op12 is the estimated value of p12. The actual value
of diffusion rate p12 is 0.01

6.4 Identification of Invasion Pathways

During a real spatial cascade of an infectious disease, the spatial invasion pathways
are the collection of directed transmission paths of an infectious disease rooted in
the infected source subpopulation invading their susceptible neighbouring subpopu-
lations. Actually, no one can predict such spatial invasion pathways to suppress the
spreading processes at its infant prevalence. With the data availability of epidemic
arrival time (EAT), i.e., the first invasion time discussed in the previous section, we
may infer the patterns of invasion pathways.

Suppose one subpopulation is initially infected containing several infected
individuals. As time evolves, the infected individuals of the seed subpopulation
travel to the neighbouring subpopulations and try to infect their individuals. The suc-
cessful invasion brings more invaded subpopulations with the cascade of infections.
Therefore, the focus of interest is that when a subpopulation is invaded/infected by
its m.m 	 2/ infected neighbours with the available EAT data, how can we infer
the culprit(s) and identify the invasion pathways in such a cascade infection? In the
concerned situation, we assume that the surveillance infection data (the number of
infected individuals of each subpopulation at each time t) is available as well as the
topology of the meta-population network (including diffusion rates).
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6.4.1 Invasion Partition and Types of Invasion Cases

We categorize all candidates of invasion pathways via the so-called invasion
partition (INP) into four types of invasion cases (INCs), as shown in Fig. 6.5. An
invasion case contains two sets, i.e., S and I. Subpopulations which are not infected
at tEAT � 1 but infected at tEAT are put in set S, and their neighbours which are
infected at tEAT � 1 are put in set I. All four types of invasion cases are defined.

(i) I 7! S: In this case, both I and S only have one subpopulation. That is to say,
a susceptible subpopulation is infected at tEAT by the first arrival of infected
individual(s) from its unique neighbouring infected subpopulation at tEAT � 1,
and this infected subpopulation has no other newly infected neighbours at tEAT .

(ii) I 7! nS.n > 1/: In this case, I contains one infected subpopulation, and S

contains n.n > 1/ subpopulations. That is to say, an infected subpopulation

Invasion
Edges

Sn

S2

S1

...
Invasion
Edges S1

I1

(a) (b)

S1

I1

I1

I2

Im

Invasion
Edges

......

Sn

...
S1

I1

I2

Im
Invasion

Edges

(c) (d)

Fig. 6.5 (a) Example of I 7! S INC, in which the infected individuals of only one infected
subpopulation invades one susceptible subpopulation. The infected subpopulation is represented
in red, while the plain patch is the subpopulation that remains susceptible before time tEAT but
will be infected between tEAT � 1 to tEAT due to the arrival of infected individuals from the
upstream infected subpopulation. (b) Example of I 7! nS INC, in which the infected individuals
of only one infected subpopulation invades n.n � 2/ susceptible subpopulations. (c) Example of
mI 7! S INC, in which the infected individuals of m infected subpopulations invade one susceptible
subpopulation. (d) Example of mI 7! nS INC, in which the infected individuals of m.m � 2/

infected subpopulations invade n.n � 2/ susceptible subpopulations (From Wang et al. [35])
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simultaneously infects its n.n > 1/ susceptible neighbours, each of which has
only one infected neighbouring subpopulation.

(iii) mI 7! S.m > 1/: In this case, I consists of m.m > 1/ subpopulations,
and S only contains one single subpopulation. That is to say, a susceptible
subpopulation is infected by the first arrival of infected individual(s) coming
from its m.m > 1/ infected neighbouring subpopulation, which has no other
newly infected neighbours at this time.

(iv) mI 7! nS.m; n > 1/: In this case, sets S and I both contain more than
one subpopulation. The edges from I to S form a connected subgraph. Each
previously susceptible subpopulation in S is infected by the new arrival of
infected individual(s) from at least one of the m infected subpopulations in
I. Each subpopulation in I has no other newly infected neighbours except the
susbpopulations in S at this time.

Figure 6.5 illustrates such four types of invasion cases as I 7! S, mI 7! nS.n >

1/, mI 7! S.m > 1/ and mI 7! nS.m; n > 1/. Besides, we define the directed
edges from infected subpopulation i in I to susceptible subpopulations in S as
invasion edges, which are the candidates of invasion pathways. Therefore, we define
a decomposition procedure invasion partition (INP) to achieve the task of dividing
subpopulations and edges into such invasion cases. As summarized in Algorithm 1,
we propose a heuristic algorithm to achieve the INP task.

Algorithm 1 Invasion Partition (INP)
1: At an epidemic arrival time, collect all newly infected subpopulations as initial S and their
previously infected neighbours as I;
2: Start with an arbitrary element Si in set S, to compose the initial S�;
3: Find all neighbors of Si in set I to compose the set I� ;
4: For each new member in I

�, find its new neighbours in the S to update S
� if any;

5: For each new member in S
�, find its new neighbours in the I to update I

� if any;
6: Repeat the above two steps until we cannot find any new neighbours in S and I, we get an
invasion case consisting of I� and S

�, then update the S and I;
7: Repeat steps 2–6 to get new invasion cases until there are no elements in S.

6.4.2 Observability of a Subpopulation and an Edge

We further classify the observability of a subpopulation and an edge. Observability
of a subpopulation is defined by comparing the number of infected individuals of
subpopulation i at time tEAT � 1 and tEAT , which reflects the information held for the
inference of relevant invasion pathway. Observability of an directed edge emanated
from an infected subpopulation can be defined by the types of subpopulations it
connects to.
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Ii Si
Ii

Si

SiSi

(a) Observable i

t-1 t
t-1 t

(b) Partially observable i

iI (t-1)>I (t) i

iI (t-1)<I (t) i_

(c) Unobservable i

Ii

Ii

Ii

Ii

Fig. 6.6 Illustration of subpopulation observability: (a) observable subpopulations, (b) partially
observable subpopulation, and (c) unobservable subpopulation. Here time t is tEAT (From Wang
et al. [35])

(i) Observable Subpopulation: From tEAT � 1 to tEAT , subpopulation i is an
observable subpopulation if it experiences one of the following three state
transitions. The first is Si ! Ii, which indicates that this subpopulation has
been infected (for the first time) during this period by infected individuals
(because Ii.t/ is available). The second is Ii ! Si. We know how many infected
individuals diffused from this subpopulation in this case. The third is Si ! Si.
This case represents subpopulation i keeps its susceptible status.

(ii) Partially Observable Subpopulation: The number of infected individuals of an
infected subpopulation may decrease, that is to say Ii.tEAT/ < Ii.tEAT � 1/ and
Ii.tEAT/ > 0. We call subpopulation i is a partially observable subpopulation,
because we know at least �Ii.tEAT/ D jIi.tEAT/ � Ii.tEAT � 1/j infected
individuals leave i.

(iii) Unobservable Subpopulation: If the number of infected individuals does not
decrease, i.e., Ii.tEAT/ 	 Ii.tEAT � 1/, it is difficult to judge whether and
how many infected hosts leave subpopulation i. We call it unobservable
subpopulation.

Here the observability of a subpopulation indicates the diffusion information
of this subpopulation. Figure 6.6a–c illustrate the above cases. Together with the
observability of a subpopulation, the directed edges emanated from an infected
subpopulation (here denoted i) in set I can be classified into three types, i.e.,
observable edges, partially observable edges and unobservable edges:

(i) Observable Edges: Any directed edge from i to observable subpopulation j
whose transition is Sj ! Sj or Ij ! Sj from tEAT � 1 to tEAT . This edge implies
no infected hosts move from i.
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(ii) Partially Observable Edges: If an directed edge emanated from infected
subpopulation i to a partially observable subpopulation, the edge is partially
observable.

(iii) Unobservable Edges: If infected subpopulation i connects with an unobserv-
able subpopulation, this directed edge from i is an unobservable edge.

6.4.3 Accurate Identification of Invasion Pathways

We now consider to accurately identify the invasion pathways. Among the four types
of invasion cases (INCs), since the two types of INCs (I 7! S and I 7! nS, n 	 2)
have the unique invasion edge(s) from the neighboring infected subpopulation, the
invasion pathways therefore are easy to identify accurately. We only need concern
the other two types of INCs, i.e., mI 7! S and mI 7! nS.

6.4.3.1 The Case of mI 7! S .m > 1/

A representative mI 7! S.m > 1/ INC (Fig. 6.5c) consists of two sets. Set I D
fI1; I2; : : : ; Img is composed of the infected subpopulations at tEAT � 1, and set S D
fS1g is composed of the susceptible subpopulation(s) at tEAT �1 which are infected at
tEAT . Assume subpopulation S1 is infected at tEAT by the first arrival of H infected
individuals coming from some of the infected subpopulations in I, where H is a
positive integer.

Suppose Hi1 is the actual number of infected individuals travelling from an
infected subpopulation Ii in set I, and we have

mX

iD1

Hi1 D H ; (6.13)

where 0 � Hi1 � H , Hi1 � Ii.tEAT � 1/, and 0 � i � m. H is available from the
infection data, while we do not know Hi1. To reach the unique solution of Eq. (6.13)
which corresponds to a set of invasion pathways of mI 7! S.m > 1/, we give
Theorem 1 to accurately identify the invasion pathways of INC mI 7! S.m > 1/.

Theorem 1 The invasion pathways of the invasion case mI 7! S.m > 1/ can be
accurately identified, given the following two conditions are satisfied: (1) among m
possible sources illustrated in set I, there are only m0.m0 � m/ partially observable
subpopulations I

0, whose neighbouring subpopulations j (excluding the invasion
destination S1) only experience the transition Sj ! Sj or Ij ! Sj at that EAT,
(2)

P
i2I0

�
Ii.tEAT � 1/ � Ii.tEAT/

� D H .

Proof According to the definition of observability, in an INC, the number of
local infected individuals in an partially observable source i will be decreased by
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�
Ii.tEAT � 1/ � Ii.tEAT/

�
due to the movement of infected individuals. If the

subpopulations j in the neighbourhood of i only experience the transition of Sj ! Sj

or Ij ! Sj from tEAT � 1 to tEAT , they do not to receive the infected individuals
from subpopulation i. Therefore, the newly infected subpopulation S1 is the only
destination for those infected individuals departing from the partially observable
sources. Since m0 � m, the second condition guarantees that Eq. (6.13) only has
a unique solution, which corresponds to the accurate identification of invasion
pathways of this invasion case. ut

6.4.3.2 The Case of mI 7! nS.m > 1;n > 1/

The final typical INC mI 7! nS as shown in Fig. 6.5d includes set I D fIiji D
1; 2; : : : ; mg and S D fSiji D 1; 2; : : : ; ng. Denote fHiji D 1; 2; : : : ; ng the number
of the first arrival of infected individuals to susceptible subpopulation Si in set S,
and Ui.i D 1; 2; : : : ; m/ the subset of susceptible neighbouring subpopulations in
set S of infected subpopulation Ii , and Yj.j D 1; 2; : : : ; n/ the subset of infected
neighbouring subpopulations in set I of susceptible subpopulation Sj.

Define � D ffHi1ji 2 Y1g; : : : ; fHinji 2 Yngg as a potential solution for the
mI 7! nS, if � is subject to the following two conditions: (i)

X

i2Yk

Hik D Hk; (6.14)

where Hik.	 0/ is the number of infected hosts invading subpopulation Sk from Ii

at tEAT ; (ii) For any Hik, we have
P

k2Ui
Hik � Ii.tEAT � 1/, where 1 � i � m; 1 �

k � n.
Suppose an mI 7! nS has M potential solutions, and �j D ffH .j/

i1 ji 2
Y1g; : : : ; fH .j/

in ji 2 Yngg .1 � j � M/ represents one of the solutions.
Given some specific prerequisites (as the conditions of Theorem 2), Eq. (6.14)

has a unique solution, which implies that the invasion pathway(s) can be identified
accurately. Theorem 2 elucidates this scenario.

Theorem 2 The invasion pathway(s) of the invasion case mI 7! nS.m; n > 1/ can
be identified accurately, given the following three conditions are satisfied: (1) the
number of invasion edges Ein � n C m, (2) the neighbouring subpopulations j of
each subpopulation in set I are with the transition Sj ! Sj or Ij ! Sj except their
neighbouring subpopulations in set S during tEAT � 1 to tEAT , (3)

Pm
iD1 �Ii.tEAT/ DPn

kD1 Hk.

Proof Since the number of infected individuals in the partially observable subpopu-
lation i reduces at time tEAT , i.e., Ii.tEAT/ < Ii.tEAT � 1/, Ii.tEAT/ > 0, it is inevitable
that a few infected individuals diffuse away from subpopulation i. Occurring the
state transitions of Sj ! Sj or Ij ! Sj from tEAT � 1 to tEAT , subpopulations j in
the neighbourhood of i (excluding the new infected subpopulation j) cannot receive
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infected individuals. Therefore, the only possible destination for those infected
individuals is subpopulation Sk in S.

The conditions Ein � nCm and
Pm

iD1 �Ii.tEAT/ D Pn
kD1 Hk make the equationsP

i2Yk
Hik D Hk and

P
k2Ui

Hik D �Ii.tEAT/ have the unique solution � D
ffHi1ji 2 Y1g; : : : ; fHinji 2 Yngg. The reason is that rank(Acoef )=Ein, where Acoef is
the coefficient matrix of equations

P
i2Yk

Hik D Hk and
P

k2Ui
Hik D �Ii.tEAT/.

Thus the invasion pathway(s) of this mI 7! nS.m; n > 1/ can be identified
accurately. ut

6.4.4 Identification for Potential Invasion Pathways

Now we are in the position to construct the whole framework of identifying
invasion pathways, namely, the invasion pathways identification (IPI) algorithm as
summarized as below.

(i) Invasion partition: Twhole invasion pathways is defined as the whole invasion path-
ways of an invasion process. At each EAT, we get four types of invasion
cases (i.e. I 7! S; I 7! nS; mI 7! S; mI 7! nS.m > 1; n > 1//. Suppose
Twhole invasion pathways is contained in all ƒ INCs. Denote by Oai the identified
invasion pathways of INCi, which can be optimally solved by (stochastic)
dynamic programming as

Twhole invasion pathways D opt
ƒX

iD1

Oai; (6.15)

where “opt” represents the optimal solution via dynamic programming.
(ii) Accurate identification: For the two cases of I 7! S, I 7! nS, it is easy to

reach the accurate identification of invasion pathways. In the other two cases
of mI 7! S; mI 7! nS, we first evaluate whether mI 7! S or mI 7! nS can
be accurately identified or not. If yes, Theorems 1 and 2 work out the accurate
identification.

(iii) Identification of potential invasion pathways: If accurate identification is not
feasible, we propose an efficient optimization method based on the maximum
likelihood estimation to identify the most likely invasion pathways. We define
the maximum likelihood (ML) estimator as

Oai D arg max
ai2INCi

P.aijINCi/; (6.16)

where P.aijINCi/ is the likelihood of uncovering the potential pathway ai,
supposing the actual pathway is a�

i . Therefore, we evaluate P.aijINCi/ and
choose the maximal likelihood one as a�

i from all potential pathways ai 2 INCi.
(iv) The whole spatial invasion pathways can be reconstructed by assembling all

invasion cases chronologically.
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Therefore, in the situations where accurate identification of invasion pathways is
not feasible, e.g., the conditions of Theorems 1 and 2 are not satisfied, Eqs. (6.13)
and (6.14) may have a number of potential solutions which correspond to a set of
potential invasion pathways. Therefore, we propose the identification algorithm to
infer the most likely pathways among all potential invasion pathways. Herein we
unify mI 7! S.m > 1/ and mI 7! nS.m > 1; n > 1/ as mI 7! nS.m > 1; n 	 1/.

Denote �.H
.j/

kk�
/ the transfer estimator of infected subpopulation Ik in I, k� 2 Yk.

Here the transfer estimator is used to estimate the diffusion likelihood if Ik diffuses
H

.j/
kk�

infected individuals to Sk� . Thus, the likelihood of potential solution �j of an
INC mI 7! nS.m > 1; n 	 1/ is presented by

P.�jjINCmInS/ D
mY

kD1

�.H
.j/

kk�
/
. MX

iD1

mY

kD1

�.H
.i/

kk�
/; (6.17)

where M represents the number of solution �j.
We now consider the events from tEAT � 1 to tEAT , and give some definitions.

We assume an infected subpopulation Ii in I emanates ki edges in total, among
which there are 	i.1 � 	i � n/ invasion edge(s) labeled as 1; 2; : : : ; 	i with the
corresponding diffusion rates p�; � 2 Œ1; 	i�, � is an integer. We suppose Hii�
infected hosts invade its neighbouring subpopulations in the subset fYi D i�g at
tEAT . Assume there are `i unobservable and partially observable edges, labelled
as 1 C 	i; : : : ; `i C 	i. Along each unobservable or partially observable edge, the
traveling rate is p`, ` 2 Œ1; `i�, and x` infected hosts leave Ii. Accordingly, in total
�i D P

` x` infected individuals leave Ii through the unobservable and partially
observable edges. Now there remain ki � `i � 	i observable edges, labelled as
`i C 	i C 1; : : : ; ki. Along each observable edge, the diffusion rate is p@, integer
@ 2 Œ`i C 	i C 1; ki�, and x@ infected individuals leave Ii. With probability
pi D 1 � P

�
p� � P

` p` � P
@ p@, an infected individual keeps staying at

subpopulation Ii. There are xi infected individuals staying in subpopulation Ii

with probability pi. Because Ii connects the unobservable and partially observable
infected subpopulations, we obtain

P
` x` C xi D �0.

Therefore, we have the transfer likelihood estimator � of Ii in the following three
parts.

(a) Unobservable Subpopulation Ii: It is difficult to estimate whether and how
many infected hosts move to which neighbours due to �Ii.tEAT/ D Ii.tEAT �
1/ � Ii.tEAT/ � 0 (we have Ii.tEAT � 1/ � Ii.tEAT/ because unobservable
subpopulation Ii). We write the transfer likelihood estimator of Ii as

�u.Hii�/ D P.Hii� ; p�; � D Œ1; 2; : : : ; 	�I x`; p`; ` D Œ1 C 	; 2 C 	;

: : : ; l C 	�I x@; p@; @ D Œl C 	 C 1; l C 	 C 2; : : : ; k�I xi; pi/:
(6.18)

With the definition of observable edges, the transfer likelihood estimator is
simplified as
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�u D Ii.t � 1/Š
Q

�
Hii� Š�0

iŠ

Y

�

p
Hii�
�

h X

`

p` C pi

i�0

i
: (6.19)

(b) Observable Subpopulation Ii .Ii ! Si/: Given an I ! S observable subpop-
ulation Ii, the infected individuals Hi D fHii� j� D 1; 2; : : : ; 	g moved out of
subpopulation Ii to Si� are all from the term of �Ii.tEAT/. Therefore, its transfer
likelihood estimator is derived as

�ob D �Ii.t/ŠQ
� Hii� Š.�Ii.t/�P

� Hii� /Š

Q
�
. p�

PlC	
kD1 pk

/
H 00

ii� �

.
P

` p`
PlC	

jD1 pj
/�Ii.t/�P

� Hii� ; (6.20)

where �Ii.tEAT/ D Ii.tEAT � 1/ � Ii.tEAT/ D Ii.tEAT � 1/ (we have Ii.tEAT/ D 0

because observable subpopulation Ii (Ii ! Si)).
(c) Partially Observable Subpopulation Ii: Because �Ii.tEAT/ D Ii.tEAT � 1/ �

Ii.tEAT/ > 0, at least �Ii.tEAT/ infected individuals leave subpopulation Ii from
tEAT �1 to tEAT according to the definition of partially observable subpopulation.
Hi D fHii� j� D 1; : : : ; 	g is decomposed into two subsets: H0

i D fH 0
ii�

j� D
1; : : : ; 	g and H00

i D fH 00
ii�

j� D 1; 2; : : : ; 	g, H 0
ii�

C H 00
ii�

D Hii� , where
H 0

ii�
	 0;H 00

ii�
	 0. H0

i D fH 0
ii�

j� D 1; : : : ; 	g represents the set of infected
individuals departing from Ii.tEAT � �t/ � �Ii.tEAT/, and H00

i D fH 00
ii�

j� D
1; : : : ; 	g denote the infected individuals departing from �Ii.tEAT/. We then
have the transfer likelihood estimator in the following two cases.

Case 1:
P

�
Hii� 	 �Ii.tEAT/

The transfer likelihood estimator is

�pu D
�Ii.tEAT /X


D0

X

P
H 00

ii�
D


P1P2; (6.21)

where

P1 D �Ii.tEAT/Š
Q

�
H 00

ii�
Š.�Ii.tEAT/ � 
/Š

Y

�

.
p�

PlC	
kD1 pk

/
H 00

ii� .

P
` p`

PlC	
jD1 pj

/�Ii.tEAT /�
;

P2 D .Ii.tEAT ��t/��Ii.tEAT //ŠQ
� H 0

ii�
Š.Ii.tEAT ��t/��Ii.tEAT /�P

� Hii�C
/Š

Q
�

p
H 0

ii�
�

�.
P

` p` C pi/
Ii.tEAT ��t/��Ii.tEAT /�P

� Hii�C
:
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Here, 
 D P
�
H 00

ii�.0 � 
 � �Ii.tEAT//, which represents the sum of infected
individuals travelling from subpopulation Ii to Si� . For a given 
, we need to
enumerate all possible sets H00

i D fH 00
iij

jj D 1; : : : ; 	g to calculate the �pu.

Case 2:
P

�
Hii� < �Ii.t/

Denote 
 D P
�
H 00

ii�.0 � 
 � P
�
Hii�/. Similar to Case 1, we should

enumerate all possible permutations of H00
i D fH 00

iij
jj D 1; : : : ; 	g for a fixed 
.

Therefore, in this case we have the transfer likelihood estimator of Ii as

�pu D
P

� Hii�X


D0

X

P
H 00

ii�
D


P1P2; (6.22)

where P1 and P2 are the same as those in Eq. (6.21).
According to Eq. (6.17), the most likely invasion pathways for an INC mI 7!

nS.m > 1; n 	 1/ are identified as

OamI 7!nS D arg max
�i

P.�ijINCmI 7!nS/ D arg max
ai

P.aijINCmI 7!nS/: (6.23)

If the number of the first arrival infected individuals Hij 	 3, multiple potential
solutions may correspond to the same set of potential pathway(s). In this case, we
merge the transfer likelihood of all potential solutions of this INC if they belong to
the same invasion pathways. Then we find out the most likely invasion pathways
corresponding to the maximum likelihood.

After identifying the potential invasion pathways, the whole invasion pathway
Twhole invasion pathways can be reconstructed chronologically by assembling all INCs.
Finally, we depict the IPI algorithm explicitly with the pseudocodes as outlined in
Algorithm 2.

Algorithm 2 Invasion Pathways Identification (IPI)
1: Inputs: the time series of infection data Ii.t/ and topology of network G
2: Find all EAT data
3: for each EAT
4: Invasion partition to find out the I 7! S , I 7! nS, mI 7! S and mI 7! nS.
5: for each mI 7! S or mI 7! nS
6: if it satisfies conditions of Th 1 or Th 2
7: Compute the unique invasion pathway
8: else It does not satisfy conditions of Th 1 or Th 2
9: Find all M potential solutions �j

10: Compute the P.�jjINCmI 7!S/ or P.�jjINCmI 7!nS/

11: Merge the P.�jjINCmI 7!S/ or P.�jjINCmI 7!nS/ of �j corresponding to same pathway(s)
12: end if
13: end for
14: Find invasion pathway amI 7!S or amI 7!nS that maximize P.�jjINCmI 7!S/ or P.�jjINCmI 7!nS/

15: end for
16: Reconstruct the whole invasion pathways (T) by assembling each invasion case chronologically
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6.4.5 Identifiability of Invasion Pathways

We now evaluate the identifiability of invasion pathways of all invasion cases.
Denote � the likelihood corresponding to the most likely pathways for a given
invasion case. Therefore we have

�.�/ D sup
�i

fP.�ijINC/g: (6.24)

Property 1 Given an invasion case ‘mI 7! S’ or ‘mI 7! nS’, P.�jjINC/ D
Qm

kD1 �
PM

iD1

Qm
kD1 �

, there must exist Pmin and Pmax satisfying

Pmin � �.�/ � Pmax: (6.25)

Proof Suppose that P.�1jINC/ � : : : � P.�MjINC/, where M is the number of
potential solutions. Thus Pmax D .P.�MjINC/=P.�2jINC/ C : : : C P.�MjINC//;
Because �.�/ 	 1=M, let Pmin D maxf1=M; P.�MjINC/=.P.�1jINC/ CPM

jD1 P.�jjINC//g. We have Pmin � �.�/ � Pmax. ut
We define an entropy to characterize the likelihood vector of M potential

pathways of an INC.

Definition 1 (Entropy of Likelihoods of M Potential Solutions) Define the
normalized entropy of transfer likelihood P.�1jINC/; : : : ; P.�MjINC/ as

S D � 1

log M

MX

iD1

P.�ijINC/ log P.�ijINC/: (6.26)

This likelihood entropy S tells the information embedded in the likelihood vector
of the potential solutions of a given INC.

Definition 2 (Identifiability of Invasion Pathways) Define the identifiability of
invasion pathways to characterize the feasibility to identify an invasion case as

… D �.�/.1 � S /: (6.27)

Definition 2 tells that the bigger �.�/ and the smaller entropy S , the easier to
identify the epidemic invasion pathways for an invasion case.

6.4.6 Examples

We illustrate the performance of our proposed IPI algorithm to identify the invasion
pathways, with the maximal connected component of the American airports network
(AAN, Fig. 6.7) to form a meta-population network. Note that the data to construct
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Fig. 6.7 Illustration of an American airports network (From Brockmann et al. [42])

the AAN was collected from the U.S. demographic statistical data and domestic
air transportation [35, 43]. Here, the AAN is a weighted and directed graph having
V D 404 nodes (airports) and E D 6480 weighted and directed edges representing
flight routes. The weight of edge Eij is defined as diffusion rate pij D hwiji

hNii , where
hwiji is the daily amount of passengers of the flight from i to j, hNii is the population
of serving areas [43] of airport i. The average degree of the AAN is hki � 16,
and the range of degree k is [1,158]. The range of distributions of hwiji and pij is
Œ1; 9100� and Œ7:4 � 10�8; 0:03�, respectively. The range of distribution of hNii is
Œ6100; 1:907 � 107�, and the total population of the AAN is Ntotal � 0:243 � 109,
i.e., approximately the whole population of the United States of America. Therefore,
the AAN as the sample of a meta-population network shows high heterogeneity of
connectivity patterns, traffic capacities as well as the population distribution [43].

To verify the performance of the proposed IPI algorithm, we select three
methods [15, 31, 32] as the benchmark for comparison, which generate the
shortest path trees or minimum spanning trees of a meta-population network. In
more detail, [31] generates the average-arrival-time-based (ARR) shortest path tree,
and [15] generates the effective-distance-based (EFF) most probable paths, and
[32] generates the Monte-Carlo-Maximum-Likelihood-based (MCML) most likely
epidemic invasion tree.

We define the identifying accuracy as the ratio of the number of correctly
identified invasion pathways by each method to the number of true invasion
pathways. We also compute the accuracy of accumulative INCs of mI 7! S and
mI 7! nS, which is defined as the ratio of the number of correctly identified
invasion pathways by each method to the number of true invasion pathways in this
INC. Besides, we also make the comparison of the identification accuracy at the
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Fig. 6.8 (Top) The wholly identifying accuracy of the invasion pathways on the AAN with 20
rounds of independent realizations. (Middle) The identifying accuracy of the invasion pathways for
the early stage (before infecting 50 subpopulations) on the AAN with 20 rounds of independent
realizations. (Bottom) The accumulative identifying accuracy of invasion cases (mI 7! S and
mI 7! nS) for the early stage and the whole invasion pathways on the AAN. Here “mIS” and
“mInS” stand for mI 7! S and mI 7! nS, respectively (From Wang et al. [35])

early stage of epidemic dynamics, which is defined as the period when the first
50 subpopulation have been infected. In the top and middle panels of Fig. 6.8,
we observe the whole identification accuracy and the early-stage identification
accuracy, while the bottom panel of Fig. 6.8 presents the early and whole accu-
mulative identification accuracy of mI 7! S and mI 7! nS through 20 independent
realizations on the AAN, respectively. Here the whole identification accuracy means
the identification accuracy of whole meta-population network has been infected.
The seed subpopulation in all such independent realizations is set as the Sun Valley
Airport in Bullhead City, Arizona. We clearly observe that the IPI algorithm is more
accurate at identifying the invasion pathways than other benchmark methods.

We then visualize the identified invasion pathways (the lower panel of Fig. 6.9)
during the early stage of a realization compared with the actual invasion pathways
(the upper panel of Fig. 6.9). The weights (diffusion rates) of invasion edges are
shown by the thicknesses of lines, and arrows represent the directions of invasions.
We observe that most of the invasion pathways are correctly identified to form the
invasive backbone of this realization of an epidemic dynamics, while there still
exist some wrongly identified pathways in some INCs, indicating the necessity of
defining the identifiability of an INC.
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Fig. 6.9 Illustration of the actual invasion pathways (the upper panel) and the identified invasion
pathways (the lower panel), during the early stage of a realization (before the appearance of 50
infected subpopulations) on the AAN. Subpopulation 1 is the seed (Sun Valley Airport in Bullhead
City, Arizona) (From Wang et al. [35])

We finally examine the identifiability of an invasion case. Figure 6.10 shows
the entropy and identifiability of wrongly identified mI 7! S of 20 independent
realizations on the AAN. The smaller the identifiability of an invasion case is, the
more prone it is to be wrongly identified. The identifiability depicts the wrongly
identified mI 7! S more reasonably than the likelihoods entropy. The frequency
of identifiability of INCs descends obviously, but that of the likelihood entropy of
INCs does not clearly ascend. This statistical result indicates that the identifiability
… has a better performance to distinguish whether an invasion case is difficult to
identify or not than the distinction performance of the likelihood entropy, and also
tells that why some invasion cases are easy to identify, whose … are more than 0.5,
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Fig. 6.10 Statistical analysis of the likelihoods entropy and identifiability of wrongly identified
mI 7! S in 20 realizations of epidemic spreading on the AAN (From Wang et al. [35])

and why some invasion cases are difficult to identify, whose … are much less than
0.5. Here 0.5 is an empirical value.

6.5 Predicting the Epidemic Transmission

As the final part of this chapter, we now move a step further to predict the early
stage of an epidemic transmission. Suppose the epidemic process starts from the
patient 0 subpopulation. This subpopulation invades and infects its neighbours, and
the cascading transmission proceeds. At the early epidemic stage, the time series
of the number of infected individuals in each subpopulation Ii.t/ (i.e., the infection
data) is recorded. Assume the topology of the meta-population network (including
population sizes and diffusion rates, as Sect. 6.4) and the time series of the recorded
infection data Ii.t/ until time t are available, and the focus of interest in this section
is to predict which subpopulations will be infected at time step tC1. We consider the
SI model with the diffusion of new increment of infected individuals after reaction
(see Sect. 6.2 Eq. (6.3)).
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6.5.1 A Prediction Algorithm

The growth of infected individuals in an infected subpopulation is governed by the
infected rate ˇ, while the diffusion process is ruled by the parameters of multinomial
distribution. We first identify the infection rate ˇ by using the method in Sect. 6.3.2,
then estimate the increment �RIi.t/ of Ii.t/ of subpopulation i after the reaction
from t to t C 1. Statistically, h�RIi.t/i D ˇIi.t/Si.t/=Ni.t/. To keep the population
balance of each subpopulation, we assume hwiji D hwjii, i.e., hNi.t/piji D hNj.t/pjii,
where wij is the number of individuals that have moved from subpopulation i to
subpopulation j in a unit time (e.g., a day). Thus we have hNj.t/i D hNj.t C 1/i. At
the early stage, Nj.t/ � Sj.t/, and Nj.t/ is included in the population information of
each subpopulation of meta-population network. Therefore, we estimate �RIj.t/ by
�RIj.t/ � ˇIj.t/=Nj.t/.

Next we give the algorithm predicting n.n 	 1/ subpopulations infected from t
to t C 1 during the diffusion process. At time step t, all susceptible subpopulations
having at least one infected neighbouring subpopulation comprise set S. We discuss
the two cases of n D 1 and n > 1 in the following, and Algorithm 3 presents the
pseudocode for the prediction algorithm.

(i) n D 1;

In this case, there is only one susceptible subpopulation infected at time t C 1.
The likelihood Li.t C 1/ that subpopulation i in set S is infected at time t C 1 is
derived as

Li.t C 1/ D1 � .1 � p1i/
I1.t/C�RIi.t/.1 � p2i/

I2.t/C�RI2.t/

: : : .1 � pmi/
Im.t/C�RIm.t/;

(6.28)

where m is the number of infected neighbouring subpopulations of i at time step t.
We label infected neighbouring subpopulations of i as 1; 2; : : : ; m.

Accordingly, the most likely infected subpopulation Ov is predicted as

Ov D arg max
i

Li

Y

j¤i;j2S

L j; (6.29)

where L j D 1 � Lj.

(ii) n 	 2;

The most likely n.n 	 2/ infected subpopulations in S can be predicted as

Ovn D arg max
ik

Li1Li2 : : :Lin

Y

j¤ik ;kD1;2;:::;n;j2S

L j: (6.30)
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Algorithm 3 Prediction Algorithm
1: Inputs: time series of infection data Ii.t/ and topology of network G
2: Estimate the infection rate ˇ

3: for each time step t
4: find all possible candidate subpopulations (set S)
5: compute the likelihood Li.t C 1/ of each subpopulation i 2 S
6: rank all subpopulations i by their likelihoods Li.t C 1/

7: end for
8: Choose the subpopulation i corresponding to the maximal likelihood Li.tC1/ as the most likely
infected i in the next time step

Note that the above method only presents the most likely infected subpopulations
at the next time step. Generally, the number of possibly infected subpopulations
increases sharply during the epidemic dynamics. In this case, the likelihood of the
most likely infected subpopulation may be very small. Therefore, we shall rank
the likelihoods and investigate the top ranking subpopulations, which help us to
judge which subpopulations are prone to be infected. Let Pi D Li

Q
j¤i;j2S L j

in Eq. (6.29). We define the infected likelihood vector fP1;P2; : : : ;PZg of all
Z candidate subpopulations in set S, where Pi is the likelihood the susceptible
subpopulation i gets infected in the next time step as Eq. (6.29), i D 1; 2; : : : ; Z.
Then we define the infected likelihood entropy E as

E D � 1

log M

MX

iD1

Pi logPi: (6.31)

This entropy tells the extent of prediction difficulty at each time step. The smaller
E , the easier the prediction.

6.5.2 Examples

This time we select an artificial meta-population network as the simulation example
of spatial epidemic prediction. We generate a scale-free network with the BA
model [6], then design the diffusion rate of each edge. Note that empirically the
diffusion rates [44] of air transportation networks depend on the degree of the nodes.
We define the diffusion rate from node i to node j as

pij D bijk
O�
j

P
l bilk

O�
l

C; (6.32)

where bij stands for the elements of the adjacency matrix (bij D 1 if i connects to j,
and bij D 0 otherwise), C is a constant (C is assumed as available, and set as 0.005),
and O� is a parameter. We assume that parameter � follows the Gaussian distribution
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� � N. O�; ı2/ D 1p
2�ı

exp.� . O���/2

2ı2 / for each subpopulation. By setting constant C

and computing the population of each subpopulation at equilibrium, the polynomial
regression is employed to evaluate parameters O� and ı2 based on the empirical rule
of T 0 � kˇ0

; ˇ0 ' 1:5˙0:1, (where T 0 D P
l wjl, and ˇ0 is approximately linear with

O� (observed in simulations). Assume O� D a0ˇ0 C b0, we can obtain O� , where a0; b0
are parameters). Therefore we can determine the diffusion rate pij along each edge.
We set the whole BA meta-population network having 404 nodes (subpopulation),
and fix hki D 16 .m0

0 D 9; m0 D 8/ as the average degree of the BA meta-population
network. The initial size of each subpopulation is N1 D N2 D � � � D NN D 6 � 105,
and the total population of the whole meta-population network is Ntotal D 6 � 105 �
404 D 2:424 � 108.

As illustrated in Fig. 6.11, the estimation of ˇ is close to the actual infection
rate. We compare our prediction algorithm with the randomization prediction, i.e.,
we randomly choose a susceptible subpopulation in S as the most likely infected
subpopulation at the next time step. Ranking distance is defined as the difference of
rank of likelihood L .t C 1/ between the investigated two subpopulations i and j.
In Fig. 6.12, “RankError” means the ranking distance of the corresponding infected
likelihood between the predicted candidate and the actual infected subpopulation.
“RandError” means the ranking distance of the corresponding infected likelihood
between the randomly selected candidate and the actual infected subpopulation. As
shown in Fig. 6.12, the subpopulations predicted by our algorithm are closer to the
actual infected subpopulations at the next time step compared with those randomly
selected subpopulations.

We further investigate why the accurate prediction of the infected subpopulation
is difficult to achieve. At time step t, if any new subpopulation(s) will be infected
in this realization at the next time step, t C 1 is called the prediction time. As
shown in Fig. 6.13, we observe that the number of possible infected candidates
Z increases sharply, and the infected likelihood entropy also increases (generally

Fig. 6.11 The estimation of
the infection rate ˇ on a BA
meta-population network
with 404 subpopulations. The
actual value of ˇ D 0:05.
Inset: The evolution of I(t) in
a linear scale (From Wang
et al. [36])
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Fig. 6.12 (Top) The distribution of the RankError from t to t C 1 at the early stage of a realization
(one run) of epidemic dynamics. (Bottom) The distribution of the RandError from t to t C 1 at the
early stage of the same realization of epidemic dynamics. Here t C 1 is each time of prediction. In
the realization, the infection rate ˇ D 0:05 (From Wang et al. [36])

E > 0:5) during the time evolution. Because the likelihoods of possibly infected
subpopulations become more homogeneous as the infection prevails, indicating the
infected likelihoods in the likelihood vector are not significantly different from each
other, the infected likelihood entropy herein becomes large, suggesting the difficulty
of accurately predicting the next infected subpopulation.

6.6 Outlook

As only a snapshot of the emergent frontier in the exciting network science,
some latest advances on identification and prediction of epidemic meta-population
networks have been introduced in this chapter. The future steps along this line may
involve the following aspects: (1) The adaptiveness of humans deserves sufficient
respect when facing the modelling, analyses and prediction of a large-scale spatial
pandemic situation, and an appropriately designed role with the feedback-loop
of human adaptiveness into such a complex networking system will be much
appreciated. (2) The power of Big Data and cloud computing may help embed high-
resolution records of human behavioural dynamics (including mobility, interaction
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Fig. 6.13 (Top) The evolution of the number of possibly infected candidates Z with each
prediction time. (Bottom) The entropy of likelihoods vector. The epidemic realization is run on
a BA meta-population network with 404 subpopulations with the infection rate ˇ D 0:05 (From
Wang et al. [36])

and other non-private profiles) into the study. Nevertheless, abuse of data should
be carefully avoided. (3) The verification even for the prediction of an infectious
process requires the precise control means and public strategy in the viewpoints of
not only mathematical results but also implementations in practice. Finally comes
the end of this chapter, which may still stands at the beginning of the long journey
in this exciting and challenging direction.

References

1. Wiener, N.: Cybernetics: or Control and Communication in the Animal and the Machine. MIT
Press, Cambridge, MA (1961)

2. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan, London (1976)
3. West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River (2001)
4. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci.

5, 17–61 (1960)
5. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393,

440–442 (1998)
6. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512

(1999)



6 Towards Identifying and Predicting Spatial Epidemics on Complex Meta-. . . 159

7. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74,
47–97 (2002)

8. Wang, X., Li, X., Chen, G.: Complex Networks: Theories and Applications. Tsinghua
University Press, Beijing (2006, in Chinese)

9. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, New York (2010)
10. Chen, G., Wang, X., Li, X.: Introduction to Complex Networks: Models, Structures and

Dynamics. Higher Education Press, Beijing (2012)
11. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton

University Press, Princeton/Oxford (2008)
12. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford

University Press, Oxford (1991)
13. Heesterbeek, H., Anderson, R.M., Andreasen, V., et al.: Modeling infectious disease dynamics

in the complex landscape of global health. Science 347, aaa4339 (2015)
14. Fitch, J.P.: Engineering a global response to infectious diseases. Proc. IEEE 103, 263–272

(2015)
15. Brockmann, D., Helbing, D.: The hidden geometry of complex, network-driven contagion

phenomena. Science 342, 1337–1342 (2013)
16. McMichael, A. J.: Globalization, climate change, and human health. N. Engl. J. Med. 368,

1335–1343 (2013)
17. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in

complex networks. Rev. Mod. Phys. 87, 925–979 (2015)
18. Fu, X., Small, M., Chen, G.: Propagation Dynamics on Complex Networks: Models, Methods

and Stability Analysis. Higher Education Press, Beijing (2014)
19. Li, X., Li, X.: A Data-driven inference algorithm for epidemic pathways using surveillance

reports in 2009 outbreak of influenza A (H1N1). In: Proceedings of 51st IEEE Conference on
Decision and Control (CDC), pp. 2840–2845 (2012)

20. Hufnagel, L., Brockmann, D., Geisel, T.: Forecast and control of epidemics in a globalized
world. Proc. Natl. Acad. Sci. U. S. A. 101, 15124–15129 (2004)

21. Miao, H., Xia, X., Perelson, A.S., et al.: On identifiability of nonlinear ODE models and
applications in viral dynamics. SIAM Rev. 53, 3–39 (2011)

22. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence.
In: Proceedings of 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), pp. 1019–1028 (2010)

23. Han, X., Shen, Z., Wang, W.-X., Di, Z.: Robust reconstruction of complex networks from
sparse data. Phys. Rev. Lett. 114, 028701 (2015)

24. Shah, D., Zaman, T.: Rumors in a network: who’s the culprit? IEEE Trans. Inf. Theory 57,
5163–5181 (2011)

25. Wang, Z., Dong, W., Zhang, W., Tan, C.-W.: Rumor source detection with multiple obser-
vations: fundamental limits and algorithms. In: Proceedings of the ACM Sigmetrics 2014,
pp. 1–13 (2014)

26. Maeno, Y.: Discovering network behind infectious disease outbreak. Phys. A 389, 4755–4768
(2010)

27. Eggo, R.-M., Cauchemez, S., Ferguson, N.M.: Spatial dynamics of the 1918 influenza
pandemic in England, Wales and the United States. J. R. Soc. Interface 8, 233–243 (2011)

28. Wan, X., Liu, J., Cheung, W.K., Tong, T.: Inferring epidemic network topology from
surveillance data. PLoS One 9, e100661 (2014)

29. Shi, B., Liu, J., Zhou, X.-N., Yang, G.-J.: Inferring plasmodium vivax transmission networks
from tempo-spatial surveillance data. PLoS Negl. Trop. Dis. 8, e2682 (2014)

30. Yang, X., Liu, J., Zhou, X.-N., Cheung, W.-K.: Inferring disease transmission networks at a
metapopulation level. Health Inf. Sci. Syst. 17, 8 (2014)

31. Gautreau, A., Barrat, A., Barthelemy, M.: Global disease spread: statistics and estimation of
arrival times. J. Theor. Biol. 251, 509–522 (2008)

32. Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Multiscale
mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. U. S.
A. 106, 21484–21489 (2009)



160 X. Li et al.

33. Wang, J.-B., Cao, L., Li X.: On estimating spatial epidemic parameters of a simplified
metapopulation model. In: Proceedings of 13th IFAC Symposium on Large Scale Complex
Systems: Theory and Applications, pp. 383–388 (2013)

34. Wang, J.-B., Li, X., Wang, L.: Inferring spatial transmission of epidemics in networked
metapopulations. In: Proceedings of 2015 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 906–909 (2015)

35. Wang, J.-B., Wang, L., Li, X.: Identifying spatial invasion of pandemics on metapopulation
networks via anatomizing arrival history. IEEE Trans. Cybern. 46, 2782–2795 (2016)

36. Wang, J.-B., Li, C., Li, X.: Predicting spatial transmission at the early stage of epidemics on a
networked metapopulation. In: Proceedings of 12th IEEE International Conference on Control
& Automation (ICCA), pp. 116–121 (2016)

37. Li, X., Wang, J.-B., Li, C.: Towards identifying epidemic processes with interplay between
complex networks and human populations. In: Proceedings of 2016 IEEE Conference on
Norbert Wiener in the 21st Century (21CW), pp. 67–71 (2016)

38. Levins, R.: Some demographic and genetic consequences of environmental heterogeneity for
biological control. Bull. Entomol. Soc. Am. 15, 237–240 (1969)

39. Rvachev, L.A., Longini, I.M.: A mathematical model for the global spread of influenza. Math.
Biosci. 75, 3–22 (1985)

40. Wang, L., Li, X.: Spatial epidemiology of networked metapopulation: an overview. Chin. Sci.
Bull. 59, 3511–3522 (2014)

41. Brooks-Pollock, E., Roberts, G.O., Keeling, M.J.: A dynamic model of bovine tuberculosis
spread and control in Great Britain. Nature 511, 228–231 (2014)

42. Brockmann, D., Theis, F.: Money circulation, trackable items, and the emergence of universal
human mobility patterns. IEEE Pervasive Comput. 7, 28–35 (2008)

43. Wang, L., Li, X., Zhang, Y.-Q., Zhang, Y., Zhang, K.: Evolution of scaling emergence in large-
scale spatial epidemic spreading. PLoS One 6, e21197 (2011)

44. Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex
weighted networks. Proc. Natl. Acad. Sci. U. S. A. 101, 3747–3752 (2004)


	6 Towards Identifying and Predicting Spatial Epidemics on Complex Meta-population Networks
	6.1 Introduction
	6.2 Preliminary
	6.2.1 The Compartment Model with SI Reaction Dynamics
	6.2.2 The Two-Subpopulation Version of a Meta-population Network
	6.2.3 The General Description of a Meta-population Network

	6.3 Epidemic Parameter Identification
	6.3.1 The Case of Two-Subpopulation Model
	6.3.2 The Case of a Meta-population Network
	6.3.3 Example: Identifying the Diffusion Rate p12

	6.4 Identification of Invasion Pathways
	6.4.1 Invasion Partition and Types of Invasion Cases
	6.4.2 Observability of a Subpopulation and an Edge
	6.4.3 Accurate Identification of Invasion Pathways
	6.4.3.1 The Case of mI→S (m>1)
	6.4.3.2 The Case of mI→nS (m>1,n>1)

	6.4.4 Identification for Potential Invasion Pathways
	6.4.5 Identifiability of Invasion Pathways
	6.4.6 Examples

	6.5 Predicting the Epidemic Transmission
	6.5.1 A Prediction Algorithm
	6.5.2 Examples

	6.6 Outlook
	References


