Skip to main content

Copper(I)-Catalyzed Direct Boryl Substitution of Unactivated Alkyl Halides

  • Chapter
  • First Online:
Synthesis of Functionalized Organoboron Compounds Through Copper(I) Catalysis

Part of the book series: Springer Theses ((Springer Theses))

  • 492 Accesses

Abstract

The borylation substitution of alkyl halides with diboron reagent proceeded in the presence of a copper(I)/Xantphos catalyst and a stoichiometric amount of K(O-t-Bu) base. The borylation proceeded with normal and secondary alkyl chlorides, bromides, and iodides, but alkyl sulfonates did not react. Menthyl halides afforded the corresponding borylation product with excellent diastereoselectivity, whereas optically active (R)-2-bromo-5-phenylpentane gave a racemic product. The reaction with cyclopropylmethyl bromide resulted in ring-opening products, suggesting that the reaction involves a radical-mediated mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall DG (ed) (2011) Boronic acids: preparation and applications in organic synthesis, medicine and materials, 2nd revised edn. Wiley-VCH, Weinheim

    Google Scholar 

  2. Matteson DS (1995) Stereodirected synthesis with organoboranes. Springer, Berlin

    Book  Google Scholar 

  3. Kaufmann D (ed) (2005) Boron compounds, science of syntheses, vol 6. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  4. Chemler SR, Roush RW (2000) Modern carbonyl chemistry. In: Otera J (ed) Wiley-VCH, Weinheim, pp 403–490

    Google Scholar 

  5. Miyaura N, Yamamoto Y (2007) Comprehensive organometallic chemistry III. In: Crabtree RH, Mingos MP (eds) vol 9. Elsevier, Amsterdam, pp 146–244

    Google Scholar 

  6. Crudden CM, Edwards D (2003) Chem Eur J:4695

    Google Scholar 

  7. Miyaura N (2008) Bull Chem Soc Jpn 81:1535

    Article  CAS  Google Scholar 

  8. Dang L, Lin ZY, Marder TB (2009) Chem Commun:3987

    Google Scholar 

  9. Segawa Y, Yamashita M, Nozaki K (2006) Science 314:113

    Article  CAS  Google Scholar 

  10. Kajiwara T, Terabayashi T, Yamashita M, Nozaki K (2008) Angew Chemie Int Ed 47:6606

    Article  CAS  Google Scholar 

  11. Okuno Y, Yamashita M, Nozaki K (2011) Angew Chemie Int Ed 50:920

    Article  CAS  Google Scholar 

  12. Yamashita M (2011) Bull Chem Soc Jpn 84:983

    Article  CAS  Google Scholar 

  13. Ito H, Yamanaka H, Tateiwa J, Hosomi A (2000) Tetrahedron Lett 41:6821

    Article  CAS  Google Scholar 

  14. Ito H, Kawakami C, Sawamura M (2005) J Am Chem Soc 127:16034

    Article  CAS  Google Scholar 

  15. Ito H, Ito S, Sasaki Y, Matsuura K, Sawamura M (2007) J Am Chem Soc 129:14856

    Article  CAS  Google Scholar 

  16. Ito H, Kosaka Y, Nonoyama K, Sasaki Y, Sawamura M (2008) Angew Chemie Int Ed 47:7424

    Article  CAS  Google Scholar 

  17. Ito H, Sasaki Y, Sawamura M (2008) J Am Chem Soc 130:15774

    Article  CAS  Google Scholar 

  18. Ito H, Kunii S, Sawamura M (2010) Nat Chem 2:972

    Article  CAS  Google Scholar 

  19. Ito H, Okura T, Matsuura K, Sawamura M (2010) Angew Chemie Int Ed 49:560

    Article  CAS  Google Scholar 

  20. Ito H, Toyoda T, Sawamura M (2010) J Am Chem Soc 132:5990

    Article  CAS  Google Scholar 

  21. Sasaki Y, Zhong CM, Sawamura M, Ito H (2010) J Am Chem Soc 132:1226

    Article  CAS  Google Scholar 

  22. Zhong C, Kunii S, Kosaka Y, Sawamura M, Ito H (2010) J Am Chem Soc 132:11440

    Article  CAS  Google Scholar 

  23. Sasaki Y, Horita Y, Zhong CM, Sawamura M, Ito H (2011) Angew Chemie Int Ed 50:2778

    Article  CAS  Google Scholar 

  24. Takahashi K, Ishiyama T, Miyaura N (2008) Chem Lett:982

    Google Scholar 

  25. Takahashi K, Ishiyama T, Miyaura N (2001) J Organometall Chem 625:47

    Article  CAS  Google Scholar 

  26. Mun S, Lee J, Yun J (2006) Organ Lett 8:4887

    Article  CAS  Google Scholar 

  27. Lee J, Yun J (2008) Angew Chemie Int Ed 47:145

    Article  CAS  Google Scholar 

  28. Bonet A, Lillo V, Ramirez J, Diaz-Requejo M, Fernandez E (2009) Organ Biomol Chem 7:1533

    Article  CAS  Google Scholar 

  29. Chea H, Sim H, Yun J (2009) Adv Synth Catal 351:855

    Article  CAS  Google Scholar 

  30. Chen I-H, Yin L, Itano W, Kanai M, Shibasaki M (2009) J Am Chem Soc 131:11664

    Article  CAS  Google Scholar 

  31. O’Brien JM, Lee K-S, Hoveyda AH (2010) J Am Chem Soc 132:10630

    Article  Google Scholar 

  32. Gao M, Thorpe SB, Santos WL (2009) Organ Lett 11:3478

    Article  CAS  Google Scholar 

  33. Guzman-Martinez A, Hoveyda A (2010) J Am Chem Soc 132:10634

    Article  CAS  Google Scholar 

  34. Park J, Lackey H, Ondrusek B, McQuade D (2011) J Am Chem Soc 133:2410

    Article  CAS  Google Scholar 

  35. Kleeberg C, Dang L, Lin Z, Marder T (2009) Angew Chemie Int Ed 48:5350

    Article  CAS  Google Scholar 

  36. Laitar D, Muller P, Sadighi J (2005) J Am Chem Soc 127:17196

    Article  CAS  Google Scholar 

  37. Laitar D, Tsui E, Sadighi J (2006) J Am Chem Soc 128:11036

    Article  CAS  Google Scholar 

  38. Lee Y, Jang H, Hoveyda A (2009) J Am Chem Soc 131:18234

    Article  CAS  Google Scholar 

  39. McIntosh M, Moore C, Clark T (1996) Organ Lett 2010:12

    Google Scholar 

  40. Our group previously reported that a 4-silyl-3-butenyl methanesulfonate gave a cyclobutylboronate product under copper(I)-catalyzed conditions in the presence of diboron, in which no simple substitution product was detected.

    Google Scholar 

  41. Copper(II) salt was most probably reduced to copper(I) at the initial step of the catalysis

    Google Scholar 

  42. Whitesides GM, Fischer WF, San Filippo J, Bashe RW, House HO (1969) J Am Chem Soc 91:4871

    Article  CAS  Google Scholar 

  43. Johnson CR, Dutra GA (1973) J Am Chem Soc 95:7777

    Article  CAS  Google Scholar 

  44. Lipshutz B, Wilhelm RS (1982) J Am Chem Soc 104:4696

    Article  CAS  Google Scholar 

  45. Mori S, Nakamura E, Morokuma K (2000) J Am Chem Soc 122:7294

    Article  CAS  Google Scholar 

  46. Terao J, Todo H, Begum SA, Kuniyasu H, Kambe N (2007) Angew Chemie Int Ed 46:2086

    Article  CAS  Google Scholar 

  47. Ashby EC, DePriest RN, Tuncay A, Srivastava S (1982) Tetrahedron Lett 23:5251

    Article  CAS  Google Scholar 

  48. Ashby EC, Coleman D (1987) J Organ Chem 52:4554

    Article  CAS  Google Scholar 

  49. Maillard B, Forrest D, Ingold KU (1976) J Am Chem Soc 98:7024

    Article  CAS  Google Scholar 

  50. Griller D, Ingold KU (1980) Acc Chem Res 13:317

    Article  CAS  Google Scholar 

  51. Yang C-T, Zhang Z-Q, Tajuddin H, Wu C-C, Liang J, Liu J-H, Fu Y, Czyzewska M, Steel PG, Marde TB, Liu L (2011) During investigation of this reaction, a similar borylation with CuI/PPh3 catalytic system was published. Angew Chem Int Ed 51:528

    Google Scholar 

  52. Goldenstein K, Fendert T, Proksch P, Winterfeldt E (2000) Tetrahedron 56:4173

    Article  CAS  Google Scholar 

  53. Cano R, Ramón DJ, Yus M (2010) J Organ Chem 75:3458

    Article  CAS  Google Scholar 

  54. Blakemore PR, Burge MS (2007) J Am Chem Soc 129:3068

    Article  CAS  Google Scholar 

  55. Yamamoto Y, Fujikawa R, Umemoto T, Miyaura N (2004) Tetrahedron 60:10695

    Article  CAS  Google Scholar 

  56. Lee Y, Hoveyda AH (2009) J Am Chem Soc 131:3160

    Article  CAS  Google Scholar 

  57. Kleeberg C, Dang L, Lin Z, Marder TB (2009) Angew Chemie Int Ed 48:5350

    Article  CAS  Google Scholar 

  58. Endo K, Hirokami M, Shibata T (2010) J Organ Chem 75:3469

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Kubota .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kubota, K. (2017). Copper(I)-Catalyzed Direct Boryl Substitution of Unactivated Alkyl Halides. In: Synthesis of Functionalized Organoboron Compounds Through Copper(I) Catalysis. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4935-4_2

Download citation

Publish with us

Policies and ethics