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Abstract In this paper, we evaluate 15 methods for gene set analysis in microarray
classification problems. We employ four datasets from myeloma research and three
types of biological gene sets, encompassing a total of 12 scenarios. Taking a
two-step approach, we first identify important genes within gene sets to create
summary gene set scores, we then construct predictive models using the gene set
scores as predictors. We propose two powerful linear methods in addition to the
well-known SuperPC method for calculating scores. By comparing the 15 gene set
methods with methods used in individual-gene analysis, we conclude that, overall,
the gene set analysis approach provided more accurate predictions than the
individual-gene analysis.
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1 Introduction

Gene expression profiling (GEP) via DNA microarrays has been used extensively in
cancer research to study disease mechanisms and make predictions of clinical
outcomes. A typical microarray data analysis focuses on the selection of individual
genes. For example, to identify differentially expressed genes under different
conditions, one typically calculates a statistic and p value for each gene, followed
by multiple comparison adjustments since normally tens of thousands of genes are
measured in a microarray experiment. To select genes for predicting clinical out-
comes, one can resort to methods such as semi-supervised principal component
analysis (SuperPC) [1], partial least squares [2], Lasso [3], random forest [4], and so
on. However, this type of analysis can miss some important genes whose individual
contributions to a particular outcome may be moderate but whose combined effects
are significant. Another limitation of the individual-gene approach is frequently
inconsistent gene findings from similar studies conducted by different institutes
[5, 6]. These problems of the individual-gene analysis were discussed in Mootha
et al. [7] and Subramanian et al. [8], where they proposed a gene set enrichment
analysis (GSEA) idea, incorporating prior biological knowledge into the analysis
routine to identify important genes through gene sets. Since then many new sta-
tistical methods have been proposed for making inference on associations or pre-
dictions at gene set levels instead of individual-gene levels.

A gene set is a group of genes related in certain ways (e.g., they may be from the
same pathway or perform similar molecular functions). There are public databases
holding such information, for example those with the Gene Ontology (GO) anno-
tations [9] and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
[10]. For differential expression analysis, a gene set method aims to determine via
hypothesis testing whether a gene set as a whole is associated with an outcome of
interest. Examples include the pioneering GSEA algorithm [8], the Global Test
[11], ANCOVA Global Test [12], SAM-GS [13], and GSA [14], to name just a few.
For biomarker discovery, i.e. finding genes to build models for diagnostic/
prognostic purposes, the idea of incorporating gene set information is to improve
both performance and interpretability of resulting models. Tai and Pan [15] pro-
posed a modified linear discriminant analysis (LDA) approach for classification by
regularizing the covariance matrix and incorporating correlations among the genes
within gene sets. With simulated and real datasets plus information from KEGG
pathways, they showed that the new approach performed better than not incorpo-
rating the correlations within gene sets. Chen and Wang [16] proposed a two-step
procedure: first to create a “super gene score” using SuperPC [1] within each a
priori gene set obtained from GO and then to use Lasso or SuperPC again to build a
final model based on the super gene scores. With two survival microarray data they
demonstrated that their gene set-based models enjoyed improved prediction accu-
racy and generated more biologically interpretable results. Ma et al. [17] also took
a two-step approach, where they first divided genes into clusters by k-means,
followed by applying Lasso within each cluster to get refined gene clusters,
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and then they selected important gene clusters with group Lasso [18]. Luan and Li
[19] proposed a group additive regression model to incorporate pathway informa-
tion and the use of gradient descent boosting for model fitting. With both simu-
lations and a real microarray survival dataset, they showed improved accuracy by
their method when compared to not using gene group information.

In this paper, we aim to investigate several score methods in conjunction with
trees and random forests for gene set analysis and compare with individual-gene
analysis in classification problems. In the individual-gene analysis, neither the gene
selection nor the prediction process utilizes any biological information. For the
gene set analysis, we first identify important genes within a priori gene sets to create
summary gene set scores, and we then use the gene set scores as predictors for
constructing predictive models. We explore four myeloma microarray datasets and
three types of gene sets, and demonstrate that predictive accuracy depends on both
the method and the type of gene sets being investigated. In the next section we first
introduce our datasets from myeloma research. We then describe the analysis
methods in Sect. 3 and show our results from applying the methods to the myeloma
datasets in Sect. 4. Finally in Sect. 5, we conclude with a comparison of our results
with findings reported by others.

2 Datasets

All GEP datasets used in this investigation were from the Myeloma Institute (MI) at
the University of Arkansas for Medical Sciences (UAMS). Multiple myeloma
(MM) is a cancer of plasma cells in the bone marrow, with symptoms such as
elevated calcium, renal failure, anemia, and bone lesions (the so-called CRAB
symptoms). Normal plasma cells produce many immunoglobulins (antibodies) that
the body needs to identify and fight pathogens such as bacteria and viruses.
With MM, abnormal plasma cells from a single clone accumulate and eventually
crowd out normal plasma cells, causing the body to produce only one type of
immunoglobulin. It is not clear what causes MM, but it is characterized by genetic
abnormalities such as gene mutations and translocations. For example, deletions of
chromosome 17p and P53 gene mutations have been linked to poor clinical out-
comes in numerous MM studies. Typically prior to developing MM, abnormal
plasma cells accumulate in the body and the patient undergoes an asymptomatic
phase, comprising monoclonal gammopathy of uncertain significance (MGUS) and
smoldering multiple myeloma (SMM). Compared to MGUS, SMM has more
abnormal plasma cells in the bone marrow and higher levels of monoclonal
immunoglobulin (M-protein) in the serum. Both MGUS and SMM patients lack the
CRAB symptoms that define MM. However, MGUS patients have an approxi-
mately 1% risk per year of developing MM [20]. Among patients with SMM, about
10% annually will progress to MM within 5 years, and after the 5-year mark the
progression rate is similar to MGUS [21].
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In previous work, based on an earlier Affymetrix platform with *12,000 genes,
we identified differentially expressed genes that could distinguish in plasma cells
between normal and MM and between normal and MGUS [22]. An interesting
finding at the time was a lack of ability of the models to discriminate between
MGUS and MM at the gene expression level. Based on the newer platform
U133Plus2, and more samples, we aimed to do a more refined analysis in this
investigation, specifically to identify signature genes and build predictive models to
distinguish between (1) normal and MGUS, (2) MGUS and SMM, (3) SMM and
MM, and (4) P53 deletion and no deletion in MM. The MM patients in this study
were enrolled in a series of Total Therapy (TT) clinical trials, with the
MGUS/SMM patients in two observational clinical trials (SWOG S0120 and MI
M0120). P53 deletion was determined at baseline by interphase fluorescence in situ
hybridization (iFISH). For GEP, purified plasma cells (PC) by CD138 expression
were obtained from normal healthy subjects and the MM (MGUS/SMM) patients
prior to therapy (at registration of the observational trials). Microarray raw intensity
values were preprocessed and normalized using the MAS5 algorithm provided by
the manufacturer, and the normalized data also went through batch effect checking
and corrections [23].

3 Methods

Table 1 gives the sample sizes in each dataset. To ensure data quality, we first
implemented the following steps prior to analysis:

1. Use the genes with current annotations from Affymetrix.
2. Take the median if a gene is represented by more than one probe set.
3. Keep only those genes whose raw intensity values are >128 in at least 80% of

the samples to avoid any resolution problems that may be encountered by low
microarray intensity values.

Table 1 Number of samples used in the training and test sets for each disease comparison

Disease comparison Group 0 Group 1 # samples in training
set (group 0, group 1)

# samples in test set
(group 0, group 1)

Normal versus
MGUS

Normal MGUS (25, 73) (13, 44)

MGUS versus
SMM

MGUS SMM (73, 89) (44, 75)

SMM versus MM SMM MM (89, 174) (74, 178)

P53 deletion versus
no deletion

without P53
deletion

with P53
deletion

(377, 45) (294, 29)
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Since applying the above procedure to each GEP dataset separately produced
similar sets of genes, for simplicity we applied it to all the data combined to obtain a
total of 9624 genes before analysis.

3.1 What Gene Sets to Use?

There are different types and sources of biological gene sets. The Molecular
Signatures Database (MSigDB) [24] on the Broad Institute website is one of the
largest and most popular repositories. We downloaded three types of gene sets from
MSigDB: those associated with the GO biological processes (BP), the hallmark
gene sets, and the positional gene sets. Each gene set groups certain genes together
that share a particular biological property. GO BP gene sets contain genes asso-
ciated with biological processes, each of which is made up of many chemical
reactions or events leading to chemical transformations. However, the GO BP gene
sets are a broad category and do not necessarily comprise co-regulated genes. On
the other hand, the hallmark gene sets represent well-defined biological states or
processes and contain genes with coordinate expression [25]. The positional gene
sets group genes by chromosome and cytogenetic band. Such gene sets are helpful
in identifying effects related to chromosome abnormalities.

3.2 Approach for Gene Set Analysis

Our general approach for gene set analysis is a two-step procedure: (1) within each a
priori gene set create a summary gene set score after gene selection, and (2) construct a
predictivemodel based on the resulting gene set scores. BothChen andWang [16] and
Ma et al. [17] pointed out that typically not all members of a gene set will participate in
a biological process, or be relevant to the outcome of interest, and not doing gene
selection within gene sets could result in inferior prediction accuracy. Thus we carry
out variable selection twice, first to select important genes within each gene set to
calculate a summary gene set score (step 1), and then to select important gene sets
based on the gene set scores and build a final predictive model (step 2).

3.3 Variable Selection and Model Building

We investigated several linear and nonlinear methods for variable selection and
model building. The linear methods included the Lasso and three univariate score
methods, and the nonlinear methods included decision trees and random forests.

Lasso is a multivariate regression technique [3] that has become popular and
essential in genomic data analysis. By shrinking regression coefficients using an L1
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penalty term in the likelihood function for a logistic regression model, the
regression coefficients for some genes become exactly zero, thus enabling variable
selection. Classification will be done according to the estimated probabilities from
the resulting sparse model with the shrunken coefficients. We implemented Lasso
via the R package glmnet [26].

The idea of univariate score methods is to first rank genes by univariate analysis
(e.g., doing a t-test for each gene in a two-class problem) and then create a score by
a linear combination of the top ranking genes. There are many variants of this
method and we investigated three in this paper. In a two-class problem, let xi and ti
denote the expression level and the two-sample t-statistic for gene i, respectively.
The first score is based on a regularized compound covariate, where the t-statistics
are shrunken towards 0 by soft-thresholding. We denote it by ccscore, that is,

ccscore ¼
Xp

i¼1

sign tið Þ tij j � Dð Þþ xi; ð1Þ

where p is the total number of genes, xð Þþ = x if x [ 0 and 0 otherwise, and
0�D�maxi( tij j) is a tuning parameter to be determined by cross-validation. The
non-regularized version of the compound covariate method is also a popular choice
for constructing scores, which was originally proposed by Tukey [27] and discussed
in Huang and Pan [28] for classification problems with microarray data. The second
score is one that, instead of using the t-statistics from univariate analysis, only the
signs of the t-statistics are used, followed by dividing by the total number of
selected genes. We refer to it as “score”, that is,

score ¼ 1
Sj j
X

i2S
sign tið Þxi; ð2Þ

where S = i: tij j �Df g, Sj j = number of genes in S, and D is a tuning parameter
determined by cross-validation. Originally we employed a similar method to
develop the robust GEP70 model for risk stratification for MM patients undergoing
standard therapy [29]; we then modified it to its current form in (2). The third score
is an extension of SuperPC [1], originally developed for time-to-event data and
shown to perform well in gene set analysis [16]. It takes the top ranking genes and
calculates their first principal component as a score. We denote it here by pcscore,
that is,

pcscore ¼
X

i2S
bixi; ð3Þ

where S ¼ i: tij j �Df g, bi are loadings from the first principal component of the
genes selected in S, and D is a tuning parameter determined by cross-validation. For
all the aforementioned score methods, they were first created as continuous
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variables, and we then dichotomized them, balancing both sensitivity and speci-
ficity to create 2-group classification rules.

There is a rich literature concerning the development of predictive models using
decision trees and random forests and their applications in genomic data analysis
(e.g., see [4, 30–34]). A decision tree model based on recursive partitioning has the
advantage of easy interpretation. In a random forest model, many decision trees are
built by utilizing bootstrap samples and results from each tree are aggregated by
majority voting to make final predictions. By building each tree to the fullest, the
method is able to achieve low bias, and by aggregating results from many trees it
can also achieve low variance. Importantly, a random forest considers only a ran-
dom subset of the variables at each split. Doing so allows it to (1) produce less
similar bootstrap samples and trees and therefore low variance at the end, and
(2) identify a diverse set of important variables associated with the outcome of
interest even when there is multicollinearity in the data. We implemented decision
trees and random forests via the R packages rpart and randomForest.

For the individual-gene analysis, we used methods such as the Lasso, score,
ccscore, pcscore, trees, and random forests. For the gene set analysis, to maintain
focus we considered only various (instead of all) combinations of the methods
from individual-gene analysis. As genes within a biological gene set are more
likely to be co-regulated or co-expressed, we restricted to linear methods in step 1
(within gene sets), while in step 2 (between gene sets) we explored both linear
and nonlinear methods. There were a total of 15 combinations in the gene set
analysis we considered. We denote each combined methodology by using a
period between the names of the methods used in the two steps. For example,
suppose in step 1 we chose the score method to select genes while in step 2 trees
were employed; we would refer to the combined method by score.tree. Tables 2
and 3 list all the methods and their notations for both the gene set and
individual-gene analysis.

Table 2 Methods
investigated in
individual-gene analysis

Classification method Notation

Lasso Lasso

score score

ccscore ccscore

pcscore pcscore

decision tree tree

random forest rf
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3.4 Cross-Validation to Determine Tuning Parameter

For the univariate score methods described above, we employed 10-fold
cross-validation to select appropriate values for the tuning parameter D and to
achieve variable selection. The search range for D is normally between 0 and
maxi( tij j) as suggested in (1–3), which can be a big range. To reduce computational
burden, we restricted our search within the range of 1000 most significant genes
when doing the cross-validation. For example, if the absolute values of the t statistic
in the top 1000 genes vary between 4.5 and 5.6, we would assess each value from
4.5 to 5.6, with an increment of 0.1 in search of an optimal threshold for D. We used
error rate as the performance measure in the cross-validation.

3.5 Model Comparison

Each of the four datasets was split into training and test sets (Table 1), and we only
report error rates from the test sets as a guide to compare performance of the
different methods. All model building steps were performed in the training sets,
including gene selection or shrinkage parameter estimation with cross-validation.

Table 3 Methods investigated in gene set analysis

Classification method (within gene sets + between gene sets) Notation

Lasso + Lasso lasso.lasso

Lasso + random forest lasso.rf

Lasso + tree lasso.tree

score + Lasso score.lasso

score + score score.score

score + random forest score.rf

score + tree score.tree

pcscore + Lasso pcscore.lasso

pcscore + pcscore pcscore.score

pcscore + random forest pcscore.rf

pcscore + tree pcscore.tree

ccscore + Lasso ccscore.lasso

ccscore + ccscore ccscore.ccscore

ccscore + random forest ccscore.rf

ccscore + tree ccscore.tree
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4 Results

There are currently a total of 825 GO BP, 50 hallmark, and 326 positional gene sets
on the Broad website that we downloaded. Due to the fact that we had previously
performed a gene filtering step, we were left with fewer numbers of gene sets (736
GO BP, 50 hallmark, and 278 positional) as well as fewer genes within the gene
sets when we applied these gene sets to our datasets. We also focused on gene sets
containing at least 5 genes. Table 4 gives a summary of the number of genes in the
gene sets of our datasets. Both the GO BP and positional categories have a small
percent of gene sets with a large number of genes in them. However, if we look at
the median number of genes within gene sets, the hallmark gene sets have the
largest number (86) followed by the GO BP gene sets (54.76) and the positional
gene sets (25.9).

4.1 Methods Comparison

Table 5 shows the test set error rates achieved in the individual-gene analysis for
each disease comparison. To compare the methods, we ranked them by their
averaged error rates (AER) over all the disease comparisons—lower AER is better.
Overall, ccscore and score ranked as the top two classifiers in the individual-gene
analysis with AER being 0.16 and 0.17 respectively, followed by Lasso

Table 4 Summary on number of genes within each type of gene sets in our datasets

Type of gene sets Minimum 1st. quartile Median Mean 3rd. quartile Maximum

GO BP 5 9 16 54.76 47 1110

Hallmark 9 50.5 85.5 86 114 186

Positional 5 10 17 25.9 30 281

Table 5 Test set error rates achieved in the individual-gene analysis (columns 2–5), where D1,
D2, D3, D4 denote the four disease comparisons: normal versus MGUS, MGUS versus SMM,
SMM versus MM, p53 deletion versus no deletion, respectively

Classification method D1 D2 D3 D4 Average Rank by average

ccscore 0.16 0.31 0.10 0.10 0.16 1

score 0.19 0.31 0.08 0.10 0.17 2

lasso 0.25 0.39 0.06 0.07 0.19 3

rf 0.23 0.36 0.12 0.09 0.20 4

pcscore 0.19 0.31 0.15 0.16 0.20 5

tree 0.28 0.32 0.19 0.10 0.22 6

The last two columns have the averaged error rates (average) over 4 disease comparisons and the
rankings of the methods by the averaged error rates
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(AER = 0.19), random forest (AER = 0.20), and pcscore (AER = 0.20), and the
tree method ranked the lowest (AER = 0.22). Note that the AER were rounded to
the 2nd decimal point while the rankings were calculated using all decimal points.

For the gene set methods, Table 6 gives the test set error rates for each disease
comparison/type of gene sets combination (a total of 12 scenarios). Note that both
the method and type of gene sets affected the error rates for each disease com-
parison. We ranked the methods by their averaged error rates (AER) across all 12
scenarios. It turned out that lasso.lasso and all the methods that employed trees in
step 2 of the gene set analysis were low performers. However, Lasso performed
well in conjunction with random forests. When not combined with trees in the 2nd
step, the ccscore-related methods consistently ranked at the top followed by the
pcscore- and score-related methods, although the differences among them were
small (� 0.02) by the AER measure. More often than not, random forests were
good choices when combined with the score methods or Lasso.

4.2 Gene Set Analysis Versus Individual-Gene Analysis

The question is: did the gene set analysis improve prediction accuracy over the
individual-gene analysis? We compared the two types of analysis by calculating
differences in error rates. For example, suppose in individual-gene analysis we used
the Lasso, then we would compare it with those gene set methods that employed
Lasso in 2nd step of the gene set analysis such as ccscore.lasso, score.lasso,
pcscore.lasso, and lasso.lasso. By doing such comparisons, one can gauge whether
step 1 of the gene set analysis is necessary—without step 1 the gene set analysis just
reduces to individual-gene analysis. Table 7 lists reductions in error rate by using
gene set analysis compared to individual-gene analysis in all such comparisons.
Note that each gene set method was applied for each disease comparison three
times, each time utilizing a different kind of gene sets (either GO BP, hallmark, or
positional), while each individual-gene method was applied only once for each
disease comparison. Thus when calculating the differences in error rate, we repli-
cated those error rates of the individual-gene methods three times. We can see in
Table 7 that both the method and the type of gene sets affected whether there was
any improvement in performance by doing gene set analysis, where improvement
was measured by reduction in error rate. We highlighted those scenarios when the
reductions in error rate by doing gene set analysis were somewhat meaningful
(� 0.04), although 0.04 is an arbitrary choice. The fact that there are both posi-
tive and negative values in Table 7 indicates that sometimes individual-gene
analysis was better than gene set analysis in terms of prediction accuracy.
Averaged reductions in error rate were also calculated for each gene set method in
comparison to an appropriate individual-gene method (last column of Table 7).
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By this measure, all 15 gene set methods except two produced more accurate
models with reduced error rates. Figure 1 provides a visualization of the reductions
in error rate. Despite the variations, overall across all the methods, gene set analysis
reduced error rates by 0.02 on average, and 25% of the time by at least 0.05.

4.3 Disease Comparisons

Tables 5 and 6 is also a good summary of the overall prediction error rates for the
disease comparisons. To have a focused discussion here, we consider only the
ccscore and ccscore.lasso methods in this subsection and the next, as respectively
they were among the top methods used in the individual-gene and gene set analysis.
It appears that both the individual-gene and gene set methods were able to classify
SMM versus MM and P53 deletion versus no deletion very well with error rates
varying between 0.06 and 0.10. Clinically, SMM is characterized by a higher
percentage of abnormal plasma cells in the bone marrow and higher levels of
M-protein in the serum than MGUS. Thus being able to classify SMM versus MM
implies being able to discriminate between MGUS and MM as well. It turned out
that our hypothesis was right when we went to verify it—the test set error rate for
discriminating between MGUS and MM by an individual-gene analysis with the
ccscore was 0.099. This is contradictory to the findings reported in Hardin et al.
[22], where all the models failed to classify MGUS versus MM. A couple of factors
could be the cause here. First, the newer microarray platform U133Plus2 covers the
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Fig. 1 Boxplots of the reductions in test set error rate (shown in Table 7) by using each of 15
gene set methods compared to corresponding individual-gene methods
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whole genome more comprehensively than the older platform, so there is a better
chance to detect differentiable genes and therefore create more powerful models.
Second, we had more MGUS samples in this investigation: 73 compared to 21 in
Hardin et al. [22], while the MM samples in both investigations were plenty (174 in
ours and 218 in Hardin et al.). Nonetheless, the difficult case for us was to dis-
criminate between MGUS and SMM, as the error rates for this classification were
between 0.3 and 0.37 for the individual-gene and gene set analysis. This indicates
that at the molecular level MGUS and SMM are different for the most part, yet
they share certain genetic features that make them less indistinguishable. Also
interesting were the error rates for classifying MGUS versus normal varied between
0.16 and 0.21.

Taken together, these data seem to suggest that in terms of gene expression
levels SMM is very different from MM, while MGUS is somewhere between
normal and SMM, but more similar to SMM. At this point careful interpretation of
the results is warranted. When using CD138 expression to isolate plasma cells
(PC) before GEP—a standard procedure routinely performed at the Myeloma
Institute, the MGUS/SMM PC samples were infiltrated with normal PC, while the
MM PC samples were largely abnormal. Consequently, some of the differentially
expressed genes we identified between MGUS/SMM PC and MM PC samples
might be due to differences in the amount of normal PC in the samples rather than
due to disease differences. This problem was less when comparing normal versus
MGUS and MGUS versus SMM PC samples, as they were more comparable in
terms of the amount of normal PC in the samples.

4.4 Gene Lists and Gene Selection

We provide a list of genes and gene sets identified for each disease comparison by the
ccscore and ccsore.lasso methods from the individual-gene and gene set analysis
respectively (for the same reason described in the last subsection) (Tables 8, 9, 10,
and 11). For the ccscore.lasso gene set analysis, we chose the gene set that gave the
best result for each disease comparison (2nd row in Table 6). Furthermore, we
summarized the total number of genes identified by the two types of analysis. In all
except the comparison of P53 deletion versus no deletion, more genes were selected
by ccscore.lasso than ccscore, with comparatively few overlapping genes (Table 12).

4.5 Computing Time

We recorded computing time for all the methods in the individual-gene analysis
(Table 13). The evaluations were conducted on a laptop using 64-bit Windows 7
and running on a 4-core 3 GHz CPU with 8 GB of memory. For all the methods
except Lasso, we started with all 9624 genes. For random forests, however, we
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included another filtering step to consider only the top 1500 differentially expressed
genes prior to model selection. Our experience is that random forests can be very
slow without pre-filtering. As shown in Table 13, computing time increases as
sample size increases. The ccscore/score/pcscore finished in decent amounts of time
(a couple of minutes) but Lasso was no doubt the fastest algorithm in all cases.

5 Conclusions and Discussion

In this paper, we evaluated 15 methods for gene set analysis in classification problems
using four GEP myeloma datasets and three types of biological gene sets, encom-
passing a total of 12 scenarios. By comparing the 15 methods with individual-gene
methods, we conclude that, overall, the gene set analysis provided more accurate
models than the individual-gene analysis. Within a biologically defined gene set, genes
are more likely to be co-regulated or co-expressed. We propose to use linear methods
such as the ccscore, score, and pcscore (an extension of the SuperPC [1]) for calcu-
lating gene set scores before constructing final predictive models.

Our overall results after averaging across different datasets/gene sets are com-
parable to those reported by other authors. For example, Ma et al. [17] proposed

Table 9 Genes and gene sets identified from the classification of MGUS versus SMM (the
methods used were ccscore and ccscore.lasso for the individual-gene and gene set analysis,
respectively)

Disease
comparison

Analysis type Gene set Genes

MGUS
versus
SMM

Individual-gene
analysis

CTSH, GATA2, GSTA1, IGHD,
IGHM, IGK, IGKC, IGLC1,
IGLJ3, IGLV1-44, TNFRSF18

Gene set
analysis
(Hallmark)

TNFA
SIGNALING VIA
NFKB

BIRC3, TNIP1, ID2, NFAT5,
TNFAIP3

DNA REPAIR SUPT5H, AAAS, POLE4

APOPTOSIS IGFBP6, BIRC3, CYLD

PROTEIN
SECRETION

SEC31A, RAB2A

INTERFERON
GAMMA
RESPONSE

HIF1A, IL10RA, TNFAIP3

COMPLEMENT CTSH, CALM1, TNFAIP3,
APOBEC3F, PLA2G4A

EPITHELIAL
MESENCHYMAL
TRANSITION

EFEMP2

IL2 STAT5
SIGNALING

TNFRSF18, CD81, IL10RA,
CDC42SE2
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using Lasso within gene clusters to first select important genes before applying
group Lasso [18] on the refined gene clusters. In four microarray datasets, they
demonstrated either equal or better performance of their method than using regular
Lasso in individual-gene analysis. In our study, lasso.lasso, ccscore.lasso, score.
lasso, and pcscore.lasso are similar to their approach. Although both are two-step
procedures, in their 1st step they created refined gene clusters rather than summary
genet set scores. As shown in Tables 5 and 6, when compared to regular Lasso, the
ccscore.lasso, score.lasso, and pcscore.lasso each had a reduction in error rate
between 0.01 and 0.02, although lasso.lasso had a 0.01 increase in error rate.

Our general approach resembles with that of Chen and Wang [16]. In the 1st step
they created “super gene scores” with SuperPC [1], and in the 2nd step they
employed either Lasso or again SuperPC using the super gene scores as predictors.
With two microarray survival datasets they demonstrated the superiority of their
methods when compared to not using gene set information. Our pcscore is essen-
tially an extension of the SuperPC for binary outcomes, and therefore our pcscore.
pcscore and pcscore.lasso directly correspond to their methods except that they
focused on survival prediction instead of classification. When comparing to only
using pcscore or lasso in individual-gene analysis, we saw an averaged reduction of
at least 0.02 in error rate for pcscore.pcscore and pcscore.lasso (Tables 5 and 6),
confirming comparability of our results with theirs.

Additionally, Tai and Pan [15] proposed a modified LDA approach to incor-
porate pathway information. With both simulated and real datasets, their method

Table 12 Number of genes selected and number of overlapping genes in the individual-gene and
gene set analysis (the methods used were ccscore and ccscore.lasso for the individual-gene and
gene set analysis, respectively)

Disease Comparison # genes selected in
individual-gene analysis

# genes selected in
gene set analysis

# overlapping genes

Normal versus MGUS 20 96 4

MGUS versus SMM 11 26 2

SMM versus MM 19 260 3

P53 deletion versus
no deletion

66 55 32

Table 13 Computing time (in minutes) for training different models in individual-gene analysis.
Note that there were 9624 genes to begin with for the Lasso, score, ccscore, and pcscore methods,
and 1500 genes for random forest (rf)

Comparison Sample size in training set Lasso score ccscore pcscore rf

Normal versus MGUS 98 0.04 1.03 1.05 1.08 0.17

MGUS versus SMM 162 0.05 1.25 1.24 1.26 0.27

SMM versus MM 263 0.08 1.71 1.66 1.69 0.39

P53 deletion versus
no deletion

422 0.12 2.25 2.25 2.27 0.61
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was shown to perform better than not incorporating pathway information (e.g.,
when compared to PAM [35], which considers genes as independent). Genes are
naturally not independent from each other, therefore the improvements by their
method were reasonable and expected. Importantly, our ccscore/score/pcscore
methods already draw strength by combining correlated genes. As Park et al. [36]
have shown, averaging genes within gene clusters can improve prediction accuracy.
Our score method is essentially an extension of the averaged gene expression
method to account for genes with both positive and negative correlations with the
outcome. Although it is beyond the scope of this paper, it would be interesting to
apply their approach and PAM on myeloma datasets in future research. Further
investigations on the genes identified to examine whether the gene set analysis
could provide more coherent biological insights into the myeloma disease mech-
anisms would be another avenue of research.
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