Skip to main content

An Eigenvector-Expansion Method for Localized Plasmon Modes: Application to Extinction and Electron Energy Loss Spectra of Isolated and Coupled Metallic Nanoparticles

  • Conference paper
  • First Online:
Nano-Structures for Optics and Photonics

Abstract

The dominant features in the UV/visible spectra of metallic nanoparticles are governed by collective oscillations of valence electrons. These resonances are called localized surface plasmon (LSP) and have positions, widths and intensities that depends strongly on the nanoparticle’s geometry and environment but also on the nature of the probing excitation. When one is interested in coupled nanoparticles, the plasmon modes of these systems can be described with an hybridization scheme (Prodan et al. Science 302(5644):419–422, 2003). With help of this approach, modes can be classified in “bright” or “dark” mode according to whether they have a net dipole moment. In the last case, the mode cannot be excited with traditional optical excitation but one has to use a focused beam of fast electrons having electric field with low spatial extension that allows local stimulation (Nelayah et al. Nat Phys 3:348–353, 2007). Here, we are interested in the simulation of the extinction and electron energy loss (EEL) spectra of isolated and coupled metallic particles. To achieve this, we have developed a new approach based on the Discrete-Dipole Approximation (DDA) (Draine, Astrophys J 333:848–872, 1988; Geuquet and Henrard, Ultramicroscopy 110:1075–1080, 2010) that uses eigenvectors of the particle’s propagator to make a truncated basis for physical quantities (Guillaume et al. Phys Rev B 88(245439), 2013). The response of the cluster of particles is then obtained by adding interaction terms which account for multiple scattering between the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane-Olivier Guillaume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Guillaume, SO., García de Abajo, F.J., Henrard, L. (2015). An Eigenvector-Expansion Method for Localized Plasmon Modes: Application to Extinction and Electron Energy Loss Spectra of Isolated and Coupled Metallic Nanoparticles. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Structures for Optics and Photonics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9133-5_44

Download citation

Publish with us

Policies and ethics