
1Introduction andSomeProblems
Encountered in theConstruction
of a RelativisticQuantumTheory

1.1 States in Relativistic Quantum and Classical Mechanics

One of the deepest and most difficult problems of theoretical physics in the past cen-
tury has been the construction of a simple, well-defined one-particle theory which
unites the ideas of quantum mechanics and relativity. Early attempts, such as the
construction of the Klein-Gordon equation and the Dirac equation were inadequate
to provide such a theory since, as shown by Newton and Wigner (1949), they are
intrinsically non-local, in the sense that the solutions of these equations cannot pro-
vide a well-defined local probability distribution. This result will be discussed in
detail below. Relativistic quantum field theories, such as quantum electrodynamics,
provide a manifestly covariant framework for important questions such as the Lamb
shift and other level shifts, the anomalous moment of the electron and scattering
theory, but the discussion of quantum mechanical interference phenomena and asso-
ciated local manifestations of the quantum theory are not within their scope; the one
particle sector of such theories display the same problem pointed out by Newton and
Wigner since they satisfy the same one-particle field equations.

On the other hand, the nonrelativistic quantum theory carries a completely local
interpretation of probability density; it can be used as a rigorous basis for the develop-
ment of nonrelativistic quantum field theory, starting with the construction of tensor
product spaces to build the Fock space, and on that space to define annihilation and
creation operators (e.g., Baym 1969). The development of a manifestly covariant
single particle quantum theory, with local probability interpretation, could be used
in the same way to develop a rigorous basis for a relativistic quantum field theory
which carries such a local interpretation. A central problem in formulating such a
theory is posed by the requirement of constructing a description of the quantum state
of an elementary system (e.g., a “particle”) as a manifestly covariant function on a
manifold of observable coordinates which belongs to a Hilbert space. The essential
properties of the quantum theory, such as the notions of probability, transition ampli-
tudes, linear superposition, observables and their expectation values, are realized in
terms of the structure of a Hilbert space.
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Nonrelativistic quantum mechanics, making explicit use of the Newtonian notion
of a universal, absolute time, provides such a description in terms of a square inte-
grable function over spatial variables at a givenmoment of this Newtonian time. This
function is supposed to develop dynamically, from one moment of time to another,
according to Schrödinger’s equation, with some model Hamiltonian operator for the
system. The theory furthermore satisfies the property of manifest covariance under
the Galilean group.

This non-relativistic description of a state is, however, inconsistent with special
relativity from both mathematical and physical points of view. The wave function
ψt (x), as a function of spatial variables, and parametrized by the Newtonian time,
described in a frame in inertial motion with respect to another and related to it by a
Lorentz transformation, undergoes a transformation which makes its interpretation
in the new frame very difficult. In particular, if an event is predicted by this function
with a certain probability to take place at the point x at the time t in the original
frame, that event should occur with the same probability, as seen in the new frame, at
the point x′ at the time t ′. According to the structure of the Lorentz transformation,
the time t ′ depends on the location of the point x in the original frame as well as t ,
so that it is inconsistent to label the wave functions in the new frame according to
t ′, now no longer a parameter, but partly dependent on the variable x, with a value
associated with the probability distribution defined by the original wave function.
Since the Hilbert spaces associated with different times are distinct, the transformed
function therefore loses its interpretation as the description of a state.

The situation for classical nonrelativisticmechanics is quite analogous; the state of
a system is described by a set of canonical coordinates andmomenta (the variables of
the phase space) at a given time. These canonical variables develop in time according
to the first order Hamilton equations of motion. The variables of the phase space,
under the transformations of special relativity, are mapped into a new set in which
the time parameter for each of them depends on the spatial location of the points;
in addition, there is a structural lack of covariance of the phase space variables
themselves (as for the quantum wave function, they become mixed with the time
parameter).

On the other hand, observed interference phenomena, such as the Davisson-
Germer experiment (Davisson 1927), showing the interference pattern due to the
coherence of the wave function over the spatial variables at a given time, clearly
should remain when observed from a moving frame. In this case, the parts of the
wave function that interfere appear to pass the scattering centers (or slits, in a dou-
ble slit experiment) at different times,and would not be coherent in the framework
of the nonrelativistic theory. Hence one would expect that there is a more general,
covariant, description of the state of a system, with Hilbert space based on a scalar
product of the form, for example, for scalar wave functions,

∫
d4xψ∗

τ (x, t)ψτ (x, t)
(for which the time t is considered as an observable), instead of the nonrelativistic
form

∫
d3xψ∗

τ (x)ψτ (x), where τ is a parameter that we shall discuss below, which
would predict such an interference pattern, modified only by the laws of special
relativity when observed from a moving frame. In the succeeding chapters, I shall
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discuss such a theory based on the original work of Stueckelberg (1941) and Horwitz
and Piron (1973), and describe some important results that have been achieved in
this framework.

1.2 The Problem of Localization for the Solutions
of RelativisticWave Equations

Attempts to take into account the required relativistic covariance of the quantum
theory by means of relativistic wave equations such as the Klein-Gordon equation
(Schrödinger 1926) for spin zero particles, and the Dirac equation (Dirac 1930) for
spin 1/2 particles, have not succeeded in resolving the difficulties associated with the
definition and evolution of quantum states. These equations are of manifestly covari-
ant form, with the potential interpretation of providing a description of a quantum
state, with spatial properties, in each frame, evolving according to the time parameter
associated with that frame. The well-known problem posed by the lack of a positive
definite probability density for the Klein-Gordon equation (Schweber 1964) is for-
mally managed by passing to the second quantized formalism (Pauli 1934); the Dirac
equation admits a positive definite density, but the problem of localization remains.
In both cases, in the second quantized formalism, the vacuum to one particle matrix
element of the field operator, which should have a quantum mechanical interpreta-
tion (the one-particle sector), poses the same problem of localization. Predictions of
particle detection which follow from the formation of interference patterns remain
ambiguous in this framework.

Foldy-Wouthuysen type (Foldy 1950) transformations (for both spin zero and spin
1/2 cases) restore the local property of the wave functions, but in this representation,
manifest Lorentz covariance is lost. It is clear that the problem of localization is a
fundamental difficulty in realizing a covariant quantum theory by means of the usual
wave equations confining the energy momentum to a definite value of mass m. I
describe the problem of localization in the following.

Newton and Wigner (1949), showed that the solution φ(x), for example, of the
Klein-Gordon equation, cannot have the interpretation of an amplitude for a local
probability density. The function φ0(x), corresponding to a particle localized at
x = 0, at t = 0, has support in a range of x of order 1/m, where m is the mass of
the particle. The argument of Newton and Wigner is as follows. The Klein-Gordon
equation (we use indices μ = 0, 1, 2, 3 for time and space, with Minkowski metric
ημν = diag(−1,+1,+1,+1); x ≡ t, x), and ∂μ = ∂/∂xμ, with � = c = 1)

(−∂μ∂μ + m2)φ(x) = (∂2
t − ∇2 + m2)φ(x) = 0 (1.1)

has the conserved current

Jμ(x) = i

2
(φ∗(x)∂μφ(x) − (∂μφ∗(x))φ(x)). (1.2)



4 1 Introduction and Some Problems Encountered…

The scalar function φ(x) has the Fourier representation

φ(x) =
∫

d4 pδ(−pμ pμ − m2)eipμxμφ(p)

=
∫

d4 pδ

((

E −
√

p2 + m2

) (

E +
√

p2 + m2

))

eip·x−i Etφ(p, E) (1.3)

=
∫

d3p
2E

{eip·x−i Etφ(p, E) + eip·x+i Etφ(p,−E)},

where in the last equality, E ≡ +√
p2 + m2, and, with the δ-function in the first

term, we have confined the integration to the “mass shell” m. The two terms in the
first equality correspond to the contributions from the positive and negative values
of energy in the integration. Assuming that the wave function has contributions only
from positive energy, the scalar product may be derived from the positive definite
norm obtained by integrating the fourth component of the current (1.2) over all space
(a Lorentz invariant construction), i.e., using just the first term of (1.3) (containing
the positive energy part)

∫
d3xJ0(x) =

∫
d3p
2E

|φ(p, E)|2, (1.4)

This norm is associated with a scalar product

(φ1,φ2) =
∫

d3p
2E

φ∗
1(p)φ2(p). (1.5)

Newton and Wigner then assume that φ1 ≡ φ0 corresponds to the wave function in
momentum space describing a particle known to be with certainty at the point x = 0,
and φ2 = eip·aφ0, i.e., translated by a. Since the two points are separated for a �= 0,
the scalar product must be zero. It is a basic theorem in quantum mechanics that two
macroscopically separated systems are in orthogonal quantum states. It then follows
from (1.5) that

∫
d3p
2E

|φ0(p)|2eip·a = 0. (1.6)

This result has the form of a Fourier transform of the function |φ(p)|2/2E which
must vanish for all a �= 0, and therefore it must be a constant. Newton and Wigner
argue that since it must be a representation of the Poincaré group, up to an overall
constant phase,

φ0(p) = C
√
2E,

where C is some constant, and therefore the state of a particle known to be precisely
at the point x̂ is

φx̂(p) = C
√
2Ee−ip·x̂. (1.7)
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This implies that the wave function in space, the inverse Fourier transform (with
weight factor 1/2E is given by

φx̂(x) = C
∫

d3p√
2E

eip·x, (1.8)

This function, due to the momentum dependent denominator, is not localized, but
rather spread out in a somewhat oscillatory way (a form of Bessel function), with a
width for the central peak of the order of 1/m. One learns from this that a particlewith
very small mass is very nonlocalized (this result gives rise to the common statement
that the photon is not a localized particle). The operator for which the wave function
(1.7) has eigenvalue x is

xNW = i

(
∂

∂p
− p

2E2

)

, (1.9)

known as theNewton-Wigner operator. It is aHermitian operator in the scalar product
(1.5), the second term compensating for the derivative of the weight factor in the
process of integrating by parts. We remark the for the scalar function discussed
above, the Foldy Wouthuysen transformation corresponds to a map on the vector
space by the factor 1/

√
2E , which returns the scalar product to the usual form, and

the representation of x as i∂/∂p as well as the locality of the theory, but, as in the
case of the Dirac spinor theory, destroys its covariance. We remark that in the limit
c → ∞, i.e., the nonrelativistic limit, themomentum dependence in the denominator
of (1.8) becomes negligible, and thewave function goes over to the local Schrödinger
form.

One concludes from this discussion that the Klein Gordon wave function cannot
represent a proper quantum theory, since the square of the wave function, which
should correspond to a probability distribution, does not vanish in regions where the
particle is known with certainty not to be present.

A similar conclusion was found for the solutions of the spin 1/2 Dirac equation
(Newton 1949).

In this chapter we have discussed some of the fundamental issues involved in
developing a relativistic quantum theory which have been encountered historically.
We shall see in the next chapter that these difficult conceptual problems have a
simple and natural resolution in the framework of a consistent manifestly covariant
quantum theory. We furthermore discuss a relation closely related to the Newton-
Wigner problem derived by Landau and Peierls (1931) that further illustrates the
utility and content of the relativistic theory.

InChap.3we treat the induced representation for the spin of a relativistic particle in
the framework of the relativistic quantum theory, and discuss the associated quantum
field theory for identical particles. It is shown that there is necessarily a universality of
the orbit parameter on the whole set of identical particles, and that the nonrelativistic
Clebsch-Gordan coefficients may be applied to compute angular momentum states
independently of the state if motion of the particles.

In Chap.4, we discuss the 5Dgauge fields associatedwith the Stueckelberg theory.
Along with the current of charged events, the field equations of the 5D theory reduce

http://dx.doi.org/10.1007/978-94-017-7261-7_3
http://dx.doi.org/10.1007/978-94-017-7261-7_4
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to the standard Maxwell form under integration over the invariant world time para-
meter. The Lorentz force, however, is not of linear form, and therefore integration
over τ introduces a convolution, indicating that the particle does not stay on “mass
shell” during the interaction.

The generalization of the classical radiation reaction problem for the relativistic
charged particle is then formulated, and it is shown that the resulting Abraham-
Dirac-Lorentz (Abraham 1903) equation is highly nonlinear, and the solution has
chaotic behavior. Although it is highly unstable, as is the solution of the standard
Abraham-Dirac-Lorentz equation (which has the so-called runaway solutions), the
attractor that exists in this very non-linear equation appears to stabilize the macro-
scopic behavior of the classical solutions, as well as to provide a mechanism, under
certain conditions, for the stability of the observed mass of a charged particle.

We also show in Chap.4 how a simple description of flavor oscillations for neu-
trinos can emerge from a simple extension of the basic Stueckelberg semi-classical
picture. The Lorentz force for both abelian and non-abelian gauge fields are treated.1

In Chap.5, we shall show that the two-body bound state in an invariant phenom-
enological action-at-a-distance potential has a solution with spectrum in agreement
with the corresponding non-relativistic two body problems, up to relativistic cor-
rections, showing that the theory is a proper generalization of the non-relativistic
Schrödinger quantum theory. The two body scattering amplitude is discussed in
Chap.7, providing further insights into how the relativistic theory can provide results
consistent with the usual nonrelativistic structure.

In Chap.6, we describe the experiment of Lindner et al. (2005) which demon-
strates the existence of coherence in time, a fundamental property of the covariant
relativistic theory. Calculating the effect in the framework of the covariant quantum
theory, using the conditions of the experiment, one finds very good agreement with
experimental results. We discuss in some depth as well why this result is not con-
sistent with the nonrelativistic quantum theory. The formulas were actually obtained
many years earlier by Horwitz and Rabin (1976) in their early investigations of the
consequences of the relativistic theory, but at that time the necessary experimental
tools for confirming the predictions were not available. A similar, but somewhat
more complex problem occurs in the proposed experiment of Palacios et al. (2009)
where spin correlations presumed to be maintained between particles at different
times. The application of Wigner’s induced representation theory (Wigner 1939),
discussed on Chap.3, to the spin of a many body system, accounting for correlations
between spins of particle at different times, may be applied to discuss this experiment
in much the same way as the description of the Lindner et al. experiment; the point
is that the wave functions, carrying information on the particle spin, are extended
in time as well as space, and therefore entanglement can occur between particles
located at different times t .

1Shnerb and Horwitz (1993) have carried out the full canonical second quantization of the U (1)
gauge theory following the methods discussed by Henneaux and Teitelboim (1992) and Haller
(1972).

http://dx.doi.org/10.1007/978-94-017-7261-7_4
http://dx.doi.org/10.1007/978-94-017-7261-7_5
http://dx.doi.org/10.1007/978-94-017-7261-7_7
http://dx.doi.org/10.1007/978-94-017-7261-7_6
http://dx.doi.org/10.1007/978-94-017-7261-7_3
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In Chap.6, I also discuss the consequences of the construction of a spacetime
lattice, which one might imagine as the picture of an electromagnetic standing wave
in a cavity, periodic in both space and time; the corresponding Stueckelberg wave
function, like the Bloch waves in a crystal, has forbidden bands which could, in
principle, be seen experimentally (Engelberg 2009).

Chapter 7 discusses scattering theory. Since the structure of the Stueckelberg
theory is based on the existence of a Hamiltonian, the scattering theory has a very
strong parallel to the nonrelativistic scattering theory, and in the same way makes
accessible the use of rigorous mathematical techniques. We show that the partial
wave expansion for scattering theory for potential models can be achieved in a form
close to that of the non-relativistic theory. The problem of describing resonances in
scattering theory for which a semigroup decay law can be achieved is described in
the framework of the relatively recently developed theory of Lax and Phillips (1967),
Strauss (2000), is here extended to systems of relativistic particles. A relativistic Lee-
Friedrichs model (Horwitz 1995) is worked out (Strauss 2000a) as an illustration of
this very powerful technique.

Since the Stueckelberg quantum theory is covariant, there is an open and important
question of how the theory can be applied to problems previously only accessible to
quantum field theory.

In Chap.8, we show that the anomalous moment of the electron can be computed
in this framework without resort to quantum yield theory (Bennett 2012), and that it
therefore carries some of the information usually attributed to the effects of vacuum
polarization. Some further results of this type are also discussed. In this chapter, we
discuss also the existence of Berry (1984), Bahar (2014) phases for the perturbed
relativistic oscillator problem.

Chapter 9 discusses the existence of a conformal map in the framework of general
relativity that results in a description of Milgrom’s approach (Milgrom 1983) to
the modification of Newton’s law to account for the radiation curves of galaxies as
an alternative to dark matter; the TeVeS theory of Bekenstein and Sanders (1994),
Bekenstein (2004) emerges froma nonabelian gauge construction in the Stueckelberg
theory (Horwitz 2010).

In Chap.10, the statistical mechanics of the N-body problem is worked out, dis-
cussing both the Gibbs ensembles and the non-equilibrium generalization to the
Boltzmann equation (Horwitz 1981). The general H -theorem that follows from this
equation shows that there is an entropy increase monotonically in τ ; an increase
in entropy in the Einstein t variable follows, in general, only if there is no pair
formation or annihilation. All of the standard thermodynamic relations are obtained
in this framework, with some new features. In particular, there may be a high temper-
atureBose-Einstein condensation (Burakovsky 1996) to a statewith a sharp (average)
mass determined by a chemical potential.

In Chap.11, there is a review of the main ideas underlying the theory and their
phenomenological basis, and some discussion pointing to possible future develop-
ments.

http://dx.doi.org/10.1007/978-94-017-7261-7_6
http://dx.doi.org/10.1007/978-94-017-7261-7_7
http://dx.doi.org/10.1007/978-94-017-7261-7_8
http://dx.doi.org/10.1007/978-94-017-7261-7_9
http://dx.doi.org/10.1007/978-94-017-7261-7_10
http://dx.doi.org/10.1007/978-94-017-7261-7_11
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