Chapter 2

Ideals

A subgroup I of $(R,+)$ is called left (right) ideal if
$R \cdot I=\{r i \mid r \in R, i \in I\} \subseteq I$ (resp. $I \cdot R \subseteq I$) and ideal if it is left and right ideal. We denote by (X) $=\cap\{I$ (left or right) ideal in $R \mid X \subseteq I\}$, if $X \subseteq R$, called the (left or right) ideal generated by X. In an arbitrary ring $(X)=\left\{\sum_{i=1}^{n} r_{i} x_{i}+\sum_{k=1}^{m} x_{k}^{\prime} r_{k}^{\prime}+\sum_{s=1}^{i} r_{s}^{\prime \prime} x_{s}^{\prime \prime} r_{s}^{\prime \prime \prime}+\sum_{j=1}^{t} n_{j} y_{j}\right\}$
with $r_{i}, r_{k}^{\prime}, r_{s}^{\prime \prime}, r_{s}^{\prime \prime \prime} \in R, x_{i}, x_{k}^{\prime}, x_{s}^{\prime \prime}, y_{j} \in X, n_{j} \in \mathbb{Z}$ and the reader can provide the simplier forms if the ring has identity or is commutative (or both).

An ideal I is called finitely generated (resp. principal) if for a finite (resp. one element) subset F one has $I=(F)$. A domain R is called a principal ideal domain if all its ideals are principal.

An left ideal I of R is called
maximal if $I \neq R$ and it is not properly contained in any left ideal $\neq R$;
minimal if $I \neq(0)$ and it contains not properly any nonzero left ideal of R. Maximal, minimal right ideals and maximal, minimal ideals are defined in a similar way.

A subset $X \subseteq R$ is called
nil if each element in X is nilpotent;
nilpotent if there is a $n \in \mathbb{N}: X^{n}=X \circ X \circ . . \circ X=(0)$. The smallest n with this property is called the nilpotency index of X. Nil and nilpotent left (right) ideals or ideals are defined in a similar way.

In a ring with identity each proper (left,right) ideal is contained in a maximal (left,right) ideal.

A ring R is called regular (von Neumann) if for each element $a \in R$ there is an element $b \in R: a=a b a$.

Noether Isomorphism Theorems. (1) If $f: R \rightarrow R^{\prime}$ is a ring homomorphism then

$$
f(R) \cong R / \operatorname{ker}(f)
$$

(2) If I, J are ideals in a ring R then $(I+J) / I \cong J /(I \cap J)$.
(3) If $I \subseteq J$ are ideals in a ring R then J / I is an ideal in R / I and $(R / I) /(J / I) \cong R / J$.

A right ideal I of a ring R is called modular if there is an element $e \in R$ such that for all $r \in R$ the element $r-e r \in I$ (R has a left identity element modulo I).

The subset $l(X)=$ Ann.l. $(X)=\{r \in R \mid r x=0, \forall x \in X\}$ for a subset X of a ring R is called the left annihilator of X in R. Similarly, $r(X)=$ Ann.r. $(X)=\{r \in R \mid x r=0, \forall x \in X\}$ is called the right annihilator of X in R.

Ex. 2.1 Let $F=\{f \mid f:[-1,1] \rightarrow \mathbb{R}\}$ the commutative ring together with the usual addition and multiplication. Which of the following subsets are subrings and which are ideals:
(i) P the polynomial functions;
(ii) P_{n} the polynomial functions of degree at most $n\left(n \in \mathbb{N}^{*}\right)$;
(iii) Q_{n} the polynomial functions of degree n;
(iv) $A=\{f \in F \mid f(0)=0\}$;
(v) $B=\{f \in F \mid f(0)=1\}$.

Ex. 2.2 Let $R=\mathcal{P}(T)$, where $T=[0,1] \subseteq \mathbb{R}$, the ring together with the usual ring laws of symmetric difference and intersection (see 1.6). For $A=\left[0, \frac{1}{2}\right]$ and $B=\left\{\frac{1}{4}\right\}$ compute $(A),(B),(A, B)$ and $(A) \circ(B)$, the ideals generated by the corresponding subsets of T.

Ex. 2.3 (a) For a subset X of a ring R show that $l(X)$ is a left ideal and $r(X)$ is a right ideal in R.
(b) If X is a left (right) ideal in R then $l(X)$ (resp. $r(X))$ is an ideal in R.
(c) The following inclusions and equalities hold: (i) $X \subseteq Y \Rightarrow$ $l(Y) \subseteq l(X)$ and $r(Y) \subseteq r(X)$; (ii) $X \subseteq r(l(X))$ and $X \subseteq l(r(X))$; (iii) $l(X)=l(r(l(X)))$ and $r(X)=r(l(r(X)))$.

Ex. 2.4 Show that if $R=I+J$ holds with I, J right modular ideals then $I \cap J$ is a right modular ideal too.

Ex. 2.5 Find all the ideals of $(n \mathbb{Z},+, \cdot)$ for $n \in \mathbb{N}^{*}$.
Ex. 2.6 Let I, J, K be ideals in a ring R. Show that $I \subseteq K$ implies $(I+J) \cap K=I+(J \cap K)$.

Ex. 2.7 In \mathbb{Z} show that the set-reunion of two ideals needs not to be an ideal too.

Ex. 2.8 Give an example of ring (without identity) such that not every ideal is included in a maximal ideal.

Ex. 2.9 If M is a maximal right ideal of a ring R with identity and $a \in R \backslash M$ then verify that $a^{-1} M=\{r \in R \mid a r \in M\}$ is also a maximal right ideal.

Ex. 2.10 Show that in a Boole ring each finitely generated ideal is principal.

Ex. 2.11 For two commutative rings R and S, determine the ideals of the direct product (sum) $R \times S$. Applications: $\mathbb{Z} \times \mathbb{Z}$ and $K \times K$ for a division ring K.

Ex. 2.12 Show that the following implication is false: "if A is a left ideal and B is a right ideal in the same ring R then $A \cap B$ is an ideal of R ".

Ex. 2.13 Let $A: B$ denote $\{r \in R \mid \forall b \in B: r b \in A\}$ for A and B ideals of a ring R.
(a) Show that $A: B$ is an ideal of R;
(b) $A: B$ is the l.u.b. $\{I \unlhd R \mid I B \subseteq A\}$.
(c) Verify the following equalities : $A: A=R ;\left(A_{1} \cap . . \cap A_{n}\right): B=$ $\left(A_{1}: B\right) \cap . . \cap\left(A_{n}: B\right)$ and $A:\left(B_{1}+. .+B\right)=\left(A: B_{1}\right) \cap . . \cap\left(A: B_{n}\right)$.
(d) In \mathbb{Z} show that $n \mathbb{Z}: m \mathbb{Z}=\frac{[n ; m]}{m} \mathbb{Z}$ (here $[n ; m]$ denotes the l.c.m. (n, m)).

Ex. 2.14 In a commutative ring R prove the following properties:
(i) $(A: B) \circ B \subseteq A,(A:(A+B))=(A: B)$;
(ii) $((A: B): C)=(A:(B \circ C))=(A:(B: C))$;
(iii) if R has identity $A: B=R$ iff $B \subseteq A$.

Ex: 2.15 Let I be an ideal in a commutative ring R.
(a) Show that $\sqrt{I}=\left\{r \in R \mid \exists n \in \mathbb{N}: r^{n} \in I\right\}$ is an ideal too.
(b) Verify the following equalities: $\sqrt{\sqrt{I}}=\sqrt{I} ; \sqrt{I \cap J}=\sqrt{I} \cap$ \sqrt{J} and $\sqrt{I+J}=\sqrt{\sqrt{I}+\sqrt{J}}$.
(c) Can this exercise be used in order to show that the set of all the nilpotent elements form in a commutative ring an ideal? Is commutativity essential ?

Ex. 2.16 Let I be a left ideal and J an ideal of R. If I, J are nil (or nilpotent) ideals show that $I+J$ has the same property.

Ex. 2.17 Verify the following properties: subrings and quotient rings of nil rings are nil; for an ideal I in R, if I and R / I are nil then R is nil.

Ex. 2.18 For a prime number p and $n \in \mathbb{N}, n>1$ show that each proper ideal of $\mathbb{Z}_{p^{n}}$ is nilpotent. For each n let I_{n} be a proper ideal in $\mathbb{Z}_{p^{n}}$ and

$$
I=\left\{\left(x_{n}\right) \in \prod_{n \in \mathbb{N}^{*}} \mathbb{Z}_{p^{n}} \mid x_{n} \in I_{n} \text { and }\left(x_{n}\right) \text { has finite support }\right\}
$$

Show that I is a nilideal but is not a nilpotent ideal.

Ex. 2.19 Let U be an ideal of the ring R. We say that in R idempotents can be lifted modulo U if for each idempotent element $y \in R / U$ there is an idempotent $x \in R$ such that $x+U=y$. Show that if U is a nilideal of R then the idempotents can be lifted modulo U.

Ex. 2.20 Let R be a ring with identity.
(a) Show that every ideal in the ring of all square matrices $\mathcal{M}_{n}(R)$ has the form $\mathcal{M}_{n}(A)$ where A is an ideal of R;
(b) Verify the ring isomorphism $\mathcal{M}_{n}(R) / \mathcal{M}_{n}(A) \cong \mathcal{M}_{n}(R / A)$.
(c) In $\mathcal{M}_{2}(2 \mathbb{Z})$, using the set $S=\left\{a_{i j} \in \mathcal{M}_{2}(2 \mathbb{Z}) \mid a_{11} \in 4 \mathbb{Z}\right\}$ show that the existence of the identity of the ring is essential.
(d) The result from (a) holds for left (or right) ideals?

Ex. 2.21 Show that $\mathcal{M}_{2}(\mathbb{R})$ has no nontrivial ideals.
Ex. 2.22 Give an example of a non-commutative ring with a proper commutative quotient ring.

Ex. 2.23 Let X be a non-empty set and Y a proper subset of X. Consider $\mathcal{P}(X)$ and $\mathcal{P}(X \backslash Y)$ as (boolean) rings (see 1.6) relative to the symmetric difference and the intersection. Show that:
(a) $\mathcal{P}(X \backslash Y) \cong \mathcal{P}(X) / \mathcal{P}(Y)$;
(b) If X is finite every ideal of $\mathcal{P}(X)$ has the form $\mathcal{P}(Y)$ for a suitable subset Y of X;
(c) If X is infinite (b) fails.

Ex. 2.24 Let I and J be ideals in a ring R. Prove that the canonical ring homomorphism $R / I \cap J \rightarrow R / I \times R / J$ is an isomorphism iff $I+J=R$ (so called comaximal ideals).

Ex. 2.25 Let R be a commutative ring and $I=I^{2}$ a finitely generated ideal of R. Find an idempotent element $e \in R$ such that $I=R e$.

Ex. 2.26 Show that in a commutative regular (von Neumann) ring every finitely generated ideal is principal.

Ex. 2.27 For a prime number p let $\mathbb{Q}^{(p)}=\left\{\left.\frac{m}{n} \in \mathbb{Q} \right\rvert\,(n ; p)=1\right\}$ (as above $(n ; p)$ denotes the g.c.d. (n, p) and all fractions are irreductible). Verify the following properties:
(a) $\mathbb{Q}^{(p)}$ is a subring of \mathbb{Q};
(b) For every $x \in \mathbb{Q}$ either $x \in \mathbb{Q}^{(p)}$ or $x^{-1} \in \mathbb{Q}^{(p)}$;
(c) The only subrings of \mathbb{Q} which contain $\mathbb{Q}^{(p)}$ are $\mathbb{Q}^{(p)}$ and \mathbb{Q};
(d) Every ideal of $\mathbb{Q}^{(p)}$ has the form $\left(p^{n}\right)=p^{n} \cdot \mathbb{Q}^{(p)}$ for a suitable $n \in \mathbb{N}$;
(e) $\bigcap \mathbb{Q}^{(p)}=\mathbb{Z}$ (here \mathbb{P} denotes the set of all the prime numbers). $p \in \mathbb{P}$

