Chapter 2

Ideals

A subgroup I of (R, +) is called left (right) ideal if

 $R \cdot I = \{ri | r \in R, i \in I\} \subseteq I \text{ (resp. } I \cdot R \subseteq I) \text{ and } ideal \text{ if it is left and right ideal.}$ We denote by $(X) = \bigcap \{I \text{ (left or right) ideal in } R | X \subseteq I\}$, if $X \subseteq R$, called the (left or right) ideal generated by X. In an arbitrary

ring
$$(X) = \{\sum_{i=1}^{n} r_i x_i + \sum_{k=1}^{m} x'_k r'_k + \sum_{s=1}^{l} r''_s x''_s r'''_s + \sum_{j=1}^{t} n_j y_j \}$$

with $r_i, r'_k, r''_s, r'''_s \in R$, $x_i, x'_k, x''_s, y_j \in X$, $n_j \in \mathbb{Z}$ and the reader can provide the simplier forms if the ring has identity or is commutative (or both).

An ideal I is called finitely generated (resp. principal) if for a finite (resp. one element) subset F one has I = (F). A domain R is called a principal ideal domain if all its ideals are principal.

An left ideal I of R is called

maximal if $I \neq R$ and it is not properly contained in any left ideal $\neq R$;

minimal if $I \neq (0)$ and it contains not properly any nonzero left ideal of R. Maximal, minimal right ideals and maximal, minimal ideals are defined in a similar way.

A subset $X \subseteq R$ is called

nil if each element in X is nilpotent;

nilpotent if there is a $n \in \mathbb{N}$: $X^n = X \circ X \circ ... \circ X = (0)$. The smallest n with this property is called the nilpotency index of X. Nil and nilpotent left (right) ideals or ideals are defined in a similar way.

In a ring with identity each proper (left, right) ideal is contained in a maximal (left, right) ideal.

A ring R is called regular (von Neumann) if for each element $a \in R$ there is an element $b \in R : a = aba$.

Noether Isomorphism Theorems. (1) If $f: R \to R'$ is a ring homomorphism then

$$f(R) \cong R/\ker(f)$$
.

- (2) If I, J are ideals in a ring R then $(I + J)/I \cong J/(I \cap J)$.
- (3) If $I \subseteq J$ are ideals in a ring R then J/I is an ideal in R/I and $(R/I)/(J/I) \cong R/J$.

A right ideal I of a ring R is called modular if there is an element $e \in R$ such that for all $r \in R$ the element $r - er \in I$ (R has a left identity element modulo I).

The subset $l(X) = Ann.l.(X) = \{r \in R | rx = 0, \forall x \in X\}$ for a subset X of a ring R is called the *left annihilator of X in R*. Similarly,

 $r(X) = Ann.r.(X) = \{r \in R | xr = 0, \forall x \in X\}$ is called the right annihilator of X in R.

- **Ex. 2.1** Let $F = \{f | f : [-1,1] \to \mathbb{R}\}$ the commutative ring together with the usual addition and multiplication. Which of the following subsets are subrings and which are ideals:
 - (i) P the polynomial functions;
 - (ii) P_n the polynomial functions of degree at most n $(n \in \mathbb{N}^*)$;
 - (iii) Q_n the polynomial functions of degree n;
 - (iv) $A = \{ f \in F | f(0) = 0 \};$
 - (v) $B = \{ f \in F | f(0) = 1 \}$.
- **Ex. 2.2** Let $R = \mathcal{P}(T)$, where $T = [0,1] \subseteq \mathbb{R}$, the ring together with the usual ring laws of symmetric difference and intersection (see 1.6). For $A = \left[0, \frac{1}{2}\right]$ and $B = \left\{\frac{1}{4}\right\}$ compute (A), (B), (A, B) and $(A) \circ (B)$, the ideals generated by the corresponding subsets of T.
- **Ex. 2.3** (a) For a subset X of a ring R show that l(X) is a left ideal and r(X) is a right ideal in R.
- (b) If X is a left (right) ideal in R then l(X) (resp. r(X)) is an ideal in R.
- (c) The following inclusions and equalities hold: (i) $X \subseteq Y \Rightarrow l(Y) \subseteq l(X)$ and $r(Y) \subseteq r(X)$; (ii) $X \subseteq r(l(X))$ and $X \subseteq l(r(X))$; (iii) l(X) = l(r(l(X))) and r(X) = r(l(r(X))).
- **Ex. 2.4** Show that if R = I + J holds with I, J right modular ideals then $I \cap J$ is a right modular ideal too.
- **Ex. 2.5** Find all the ideals of $(n\mathbb{Z}, +, \cdot)$ for $n \in \mathbb{N}^*$.
- **Ex. 2.6** Let I, J, K be ideals in a ring R. Show that $I \subseteq K$ implies $(I+J) \cap K = I + (J \cap K)$.
- Ex. 2.7 In Z show that the set-reunion of two ideals needs not to be an ideal too.
- Ex. 2.8 Give an example of ring (without identity) such that not every ideal is included in a maximal ideal.
- Ex. 2.9 If M is a maximal right ideal of a ring R with identity and $a \in R \setminus M$ then verify that $a^{-1}M = \{r \in R | ar \in M\}$ is also a maximal right ideal.

- Ex. 2.10 Show that in a Boole ring each finitely generated ideal is principal.
- **Ex. 2.11** For two commutative rings R and S, determine the ideals of the direct product (sum) $R \times S$. Applications: $\mathbb{Z} \times \mathbb{Z}$ and $K \times K$ for a division ring K.
- **Ex. 2.12** Show that the following implication is false: "if A is a left ideal and B is a right ideal in the same ring R then $A \cap B$ is an ideal of R".
- **Ex.** 2.13 Let A: B denote $\{r \in R | \forall b \in B : rb \in A\}$ for A and B ideals of a ring R.
 - (a) Show that A:B is an ideal of R;
 - (b) A: B is the l.u.b. $\{I \leq R | IB \subseteq A\}$.
- (c) Verify the following equalities: A:A=R; $(A_1\cap...\cap A_n):B=(A_1:B)\cap...\cap (A_n:B)$ and $A:(B_1+...+B)=(A:B_1)\cap...\cap (A:B_n)$.
- (d) In \mathbb{Z} show that $n\mathbb{Z}$: $m\mathbb{Z} = \frac{[n;m]}{m}\mathbb{Z}$ (here [n;m] denotes the l.c.m.(n,m)).
- Ex. 2.14 In a commutative ring R prove the following properties:
 - (i) $(A:B) \circ B \subseteq A, (A:(A+B)) = (A:B);$
 - (ii) $((A:B):C) = (A:(B \circ C)) = (A:(B:C));$
 - (iii) if R has identity A: B = R iff $B \subseteq A$.
- Ex: 2.15 Let I be an ideal in a commutative ring R.
 - (a) Show that $\sqrt{I} = \{r \in R | \exists n \in \mathbb{N} : r^n \in I\}$ is an ideal too.
- (b) Verify the following equalities: $\sqrt{\sqrt{I}} = \sqrt{I}$; $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$ and $\sqrt{I+J} = \sqrt{\sqrt{I}+\sqrt{J}}$.
- (c) Can this exercise be used in order to show that the set of all the nilpotent elements form in a commutative ring an ideal? Is commutativity essential?
- Ex. 2.16 Let I be a left ideal and J an ideal of R. If I, J are nil (or nilpotent) ideals show that I + J has the same property.

- Ex. 2.17 Verify the following properties: subrings and quotient rings of nil rings are nil; for an ideal I in R, if I and R/I are nil then R is nil.
- **Ex. 2.18** For a prime number p and $n \in \mathbb{N}, n > 1$ show that each proper ideal of \mathbb{Z}_{p^n} is nilpotent. For each n let I_n be a proper ideal in \mathbb{Z}_{p^n} and

$$I = \left\{ (x_n) \in \prod_{n \in \mathbb{N}^*} \mathbb{Z}_{p^n} | x_n \in I_n \text{ and } (x_n) \text{ has finite support } \right\}.$$

Show that I is a nilideal but is not a nilpotent ideal.

- **Ex. 2.19** Let U be an ideal of the ring R. We say that in R idempotents can be *lifted* modulo U if for each idempotent element $y \in R/U$ there is an idempotent $x \in R$ such that x + U = y. Show that if U is a nilideal of R then the idempotents can be lifted modulo U.
- **Ex. 2.20** Let R be a ring with identity.
- (a) Show that every ideal in the ring of all square matrices $\mathcal{M}_n(R)$ has the form $\mathcal{M}_n(A)$ where A is an ideal of R;
 - (b) Verify the ring isomorphism $\mathcal{M}_n(R)/\mathcal{M}_n(A) \cong \mathcal{M}_n(R/A)$.
- (c) In $\mathcal{M}_2(2\mathbb{Z})$, using the set $S = \{a_{ij} \in \mathcal{M}_2(2\mathbb{Z}) | a_{11} \in 4\mathbb{Z}\}$ show that the existence of the identity of the ring is essential.
 - (d) The result from (a) holds for left (or right) ideals?
- **Ex. 2.21** Show that $\mathcal{M}_2(\mathbb{R})$ has no nontrivial ideals.
- Ex. 2.22 Give an example of a non-commutative ring with a proper commutative quotient ring.
- Ex. 2.23 Let X be a non-empty set and Y a proper subset of X. Consider $\mathcal{P}(X)$ and $\mathcal{P}(X \setminus Y)$ as (boolean) rings (see 1.6) relative to the symmetric difference and the intersection. Show that:
 - (a) $\mathcal{P}(X \setminus Y) \cong \mathcal{P}(X)/\mathcal{P}(Y)$;
- (b) If X is finite every ideal of $\mathcal{P}(X)$ has the form $\mathcal{P}(Y)$ for a suitable subset Y of X;
 - (c) If X is infinite (b) fails.

- **Ex. 2.24** Let I and J be ideals in a ring R. Prove that the canonical ring homomorphism $R / I \cap J \to R/I \times R/J$ is an isomorphism iff I + J = R (so called *comaximal* ideals).
- **Ex. 2.25** Let R be a commutative ring and $I = I^2$ a finitely generated ideal of R. Find an idempotent element $e \in R$ such that I = Re.
- Ex. 2.26 Show that in a commutative regular (von Neumann) ring every finitely generated ideal is principal.
- **Ex. 2.27** For a prime number $p \operatorname{let} \mathbb{Q}^{(p)} = \left\{ \frac{m}{n} \in \mathbb{Q} | (n; p) = 1 \right\}$ (as above (n; p) denotes the g.c.d.(n, p) and all fractions are irreductible). Verify the following properties:
 - (a) $\mathbb{Q}^{(p)}$ is a subring of \mathbb{Q} ;
 - (b) For every $x \in \mathbb{Q}$ either $x \in \mathbb{Q}^{(p)}$ or $x^{-1} \in \mathbb{Q}^{(p)}$;
 - (c) The only subrings of \mathbb{Q} which contain $\mathbb{Q}^{(p)}$ are $\mathbb{Q}^{(p)}$ and \mathbb{Q} ;
- (d) Every ideal of $\mathbb{Q}^{(p)}$ has the form $(p^n) = p^n \mathbb{Q}^{(p)}$ for a suitable $n \in \mathbb{N}$;
 - (e) $\bigcap_{p \in \mathbb{P}} \mathbb{Q}^{(p)} = \mathbb{Z}$ (here \mathbb{P} denotes the set of all the prime numbers).