Skip to main content

The Use of Chemical Sensor Systems for Sampling, Selectivity and Speciation

  • Chapter
Biosensors for Direct Monitoring of Environmental Pollutants in Field

Part of the book series: NATO ASI Series ((ASEN2,volume 38))

  • 242 Accesses

Abstract

Chemical sensors are ideally suited to miniaturisation and reformatting in order to conform to particular types of flowing, static and low volume samples. An important additional need is the complementary tailoring of a measurement cell in order to create a functional, integrated sensor-based measuring system. In this context the importance of sampling, membrane barriers, electrode modification and transduction strategy have been outlined and specific examples provided. A description of the sampling technique, open micoflow, is given which demonstrates how measurements can be performed in colloid containing samples without associated sensor fouling. The permselectivity and porosity of microporous and homogeneous barrier membranes can be tailored by addition of suitable modifiers (eg. surfactant) to alter hydrophilic/hydrophobic properties. Specifically, this has facilitated the control of solute flux and permselectivity towards neutral, charged, polar or non-polar species. Ultrathin non-conducting electropolymerised films are an alternative route in creating permselectivity barriers. It is shown that by judicious choice of monomer derivative both permselectivity and functionality can be achieved. Impedance spectroscopy and spectral reflectance as sensor transduction strategies have been explored in specific relation to ligand containing conducting polymer films. Such techniques have enabled enhanced sensitivity and selectivity to be achieved which can be extended to a wide range of chemical sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. H. Treloar, I. M. Christie. and P. M. Vadgama (1995). Engineering the right membranes for electrodes at the biological interface; solvent cast and electropolymerised. Biosens.Bioelectron., 10 (1995) 195–201.

    Article  CAS  Google Scholar 

  2. H. Benveniste and P. C. Huttemeir (1990). Micodialysis-theory and application, Prog. Neurobiol., 35, 195215.

    Google Scholar 

  3. P. Rolfe, S. Zhang and Y. Benmakroha (1994). EC Concerted Action, Chemical Sensors for in vivo monitoring I I, Design and Fabrication of Sensing Systems,Femey-Voltaire, France.

    Google Scholar 

  4. Williams, D. (1995) In: Medical Device Technology, ed. Ellerton, A., Advanstar, Chester, UK.

    Google Scholar 

  5. G. P. Rigby, P. Crump and P. Vadgama (1995a). Open flow microperfusion:approach to in vivo glucose monitoring, Med. Biol. Eng. Comput., 33, 231–234.

    Google Scholar 

  6. G. P. Rigby, P. Crump. and P. Vadgama (1996). Stabilized needle electrode system for in vivo glucose monitoring based on open flow microperfusion. Analyst, 121, 871–875.

    Article  CAS  Google Scholar 

  7. G. Rigby, M. Desai, and P. Vadgama (19956). Microdialysis and open microflow-related systems:for tissuer access and glucose monitoring by enzyme electrode, Pharmaceutical Sci. 1, 585–588.

    Google Scholar 

  8. L. X. Tang (1990). Ph. D Thesis: Permability studies of polymer membranes within enzyme electrodes. University of Manchester.

    Google Scholar 

  9. W. H. Mullen, F. H. Keedy, S. J. Churchouse and P. M. Vadgama (1986). Glucose enzyme electrode with extended linearity; application to undiluted blood measurement. Anal. Chim. Acta, 183, 59–66.

    Article  CAS  Google Scholar 

  10. S. P. J. Higson and P. M. Vadgama (1993). Diamond-like carbon coated microporous polycarbonate as a composite barrier for a glucose enzyme electrode, Anal. Chem. Acta, 271, 125–133.

    Article  Google Scholar 

  11. A. Maines, D. Ashworth, and P. Vadgama (1996e) Diffusion restricting outer membranes for greatly extended linearity measurements with glucose oxidase enzyme electrodes. Anal. Chim. Acta, 333, 223–231.

    Google Scholar 

  12. Y. Benmakroha, I. Christie, M. Desai and P. Vadgama (1996). Poly(vinyl chloride), polysulfone and sulfonated polyether-ether sulfone composite membranes for glucose and hydrogen peroxide perm-selectivity in amperometric biosensors, Analyst, 121, 521–526.

    Article  CAS  Google Scholar 

  13. S. M. Reddy (1995). Development of modified membrane systems for electrochemical biosensors. Ph.D thesis. University of Manchester.

    Google Scholar 

  14. P. Vadgama, J. Spoors, L. X. Tang and C. Battersby (1989). The needle glucose electrode: in vivo performance and optimisation for implantation. Biomed. Biochem. Acta,48 11/12 935–942.

    Google Scholar 

  15. P. H Treloar, I. M. Christie, J. W. Kane, P.Crump, A. T. Nkohkwo and P. M. Vadgama (1995). Mediated amperometric detection of glucose 6-phosphate dehydrogenase at a poly(vinyl chloride covered electrode using 1, 4-benzoquinone and diaphorase. Electroanlysis, 7, 216–220.

    CAS  Google Scholar 

  16. I. Christie and P. Vadgama (1994). Materials for in vivo sensors. Chem. Sens. Technol., 5, 131–156.

    Google Scholar 

  17. Z. Koochaski, I. Christie and P. Vadgama. (1991). Electrode reponse of phenolic species through cellulosic membranes, J. Membrane. Sci., 57, 83–94.

    Article  Google Scholar 

  18. M. A. Desai, S. Ghosh, P. W. Crump., Y. Benmakroha and P. Vadgama (1993). Internal membranes and laminates for adaption of amperometric enzyme electrodes to direct fluid analysis, Scand. J. Clin. Lab. Invest., 214, 53–60.

    Article  CAS  Google Scholar 

  19. A. Maines, A Cambias, L. Delfino, G. Verreschi, I. Christie and P. Vadgama (19966). Use of surfactant-modified cellulose acetate for high linearity and pH-resistant glucose electrode. Anal. Comm., 33, 27–30.

    Google Scholar 

  20. P. N. Bartlrtt and J. M. Cooper. (1993). A review of the immobilisation of enzymes in electropolymerised films, J. Electro. Chem,. 362, 1–12.

    Article  Google Scholar 

  21. I. Christie and P. Vadgama. (1993) Modification of electrode surfaces with oxidised phenols to confer selectivity to amperometric biosensors for glucose determination, Anal. Chim. Acta, 274, 191–199.

    Article  CAS  Google Scholar 

  22. S. Eddy, K. Warriner, I. Christie, D. Ashworth, C. Purkiss and P. Vadgama (1995). The modification of enzyme electrode properties with non-conducting electropolymerised films, Biosens. Bioelectron., 10, 83 1839.

    Google Scholar 

  23. K. Warriner, S. Higson., I. Christie, D. Ashworth and P. Vadgama (1996). Electrochemical characterisation of two model electropolymerised films for enzyme electrodes. Biosens.Bioelectron., 11, 615–623.

    Article  CAS  Google Scholar 

  24. M. E. G. Lyons, C. H. Lyons, C. Fitzgerald and T. Bannon (1993). Poly(pyrrole) based amperometric sensors. Theory and Characterisation. Analyst, 118, 361–369.

    Article  CAS  Google Scholar 

  25. S. B. Adeloju and G. G. Wallace (1996). Conducting polymers and the bianalytical sciences: New tools for biomolecular communications, Analyst, 121, 699–703.

    Article  CAS  Google Scholar 

  26. F.Chao, M. Costa and C. Tian (1993). Different steps in electrodeposition of poly(3-methylthiophene) films on platinum-electrodes studied by ellipsometry. Synth. Met., 53, 127–147.

    Article  Google Scholar 

  27. O. A. Semenikhin, L. Jiang, T. Iyoda, K. Hashimoto and A. Fujishima (1996). Atomic-Force microscopy and kelvin probe force microscopy evidence of local structural inhomogeneity and non-uniform dopant distribution in conducting polybithiophene. J. Phys. Chem., 100, 18603–18606.

    Article  CAS  Google Scholar 

  28. J. M. Ko, S. Kim, K. M. Kim and I. J. Chung (1994). Electrochemical properties of dodecyl-sulfate-doped polypyrrole films in aqueous solution containing NH4C1 and ZnCl2, Synth. Met., 64, 9–15.

    Article  CAS  Google Scholar 

  29. P. A. Christensen and A. Hamnett (1991). In situ spectroscopic investigation of the growth, electrochemical cycling and overoxidation of polypyrrole in aqueous solution, Electrochem. Acta., 36, 1263–1286.

    Article  CAS  Google Scholar 

  30. R. G. Davidson and T. G. Turner (1995). An IR spectroscopic study of the electrochemical reduction of polypyrrole doped with dodecylsulphate anion Synth. Met., 72, 121–128.

    Article  CAS  Google Scholar 

  31. M. Nishizawa, Y. Miwa, T. Matsue and I. Uchida. (1994). Ultrathin polypyrrole formed at a twin-micoband electrode in the presence of dodecyl sulphate J. Electroanal. Chem., 371 273–275.

    Article  CAS  Google Scholar 

  32. A. Griffith, A. Glidle, G. Beamson and J. M. Cooper (1997). Determination of the biomolecular composition of an enzyme-polymer biosensor. J. Phys. Chem., 101, 2092–2100.

    CAS  Google Scholar 

  33. K. Warriner, S. Higson., D. Ashworth, I. Christie, and P. Vadgama (1997). Stability of dodecyl sulphate-doped poly(pyrrole)/glucose oxidase modified electrodes exposed in human blood serum. ed. Engin. Comp. (submitted).

    Google Scholar 

  34. A. A. Pud (1994). Stability and degradation of conducting polymers in electrochemical systems Synth. Met., 66, 1–18.

    Article  CAS  Google Scholar 

  35. Z. Goa and A. Ivaska (1993). Electrochemical behaviour of dopamine and ascorbic acid at overoxidised polypyrrole(dodecyl sulphate) film coated electrodes Anal. Chico. Acta, 284, 393–404

    Article  Google Scholar 

  36. P. N. Bartlett and P. R. Birkin (1993). The application of conducting polymer biosensors, Synth. Met., 61, 15–21.

    Article  CAS  Google Scholar 

  37. M. Nishizawa, T. Matsue and I. Uchida (1992). Penicillin sensor based on microarray electrode coated with pH responsive poly(pyrrole). Anal. Chem., 64, 2642–2644.

    Article  CAS  Google Scholar 

  38. J. R. MacDonald (ed) Impedance spectroscopy: Emphasizing solid materials and systems, John Wiley and Sons, NY, 1987.

    Google Scholar 

  39. C. J. McNeil, D. Athey, M. Ball, W. 0. Ho, S. Krause, R. D. Armstrong, J. D. Wright and K. Rawson (1995). Electrochemical sensors based on impedance measurement of enzyme-catalysed polymer dissolution: Theory and application, Anal. Chem., 67, 3928–3935.

    CAS  Google Scholar 

  40. E. Souteyrand, J. R. Martin and C. Martelet (1994). Direct detection of biomolecules by electrochemical impedance measurements. Sensors and Actuators B, 20, 63–69.

    Article  CAS  Google Scholar 

  41. G. S. Popkirov, E. Barsoukov, and R. N. Schindler (1995). Electrochemical impedance spectroscopy of twin working electrodes bridged with conducting polymer film layer Electrochmica. Acta., 40, 1857–1862.

    Article  CAS  Google Scholar 

  42. K. Warriner and P. Vadgama (1996). Impedimetric reagentless enzyme electrodes. (UK patent application, 9622304. 5 ).

    Google Scholar 

  43. P. Englebienne and M. Weiland (1996). Synthesis of water soluble carboxylic and acetic acid-substituted poly(thiophene) and the application of their photochemical properties in homogenous competitive immunoassays, Chem. Commun., 1651–1652.

    Google Scholar 

  44. P. Y. Huang and C. S. Lee (1992). Mechanistic studies of electrostatic potentials on antigen-antibody complexes for bioanalysis. Anal. Chem., 64, 977–980.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Christie, I.M. et al. (1998). The Use of Chemical Sensor Systems for Sampling, Selectivity and Speciation. In: Nikolelis, D.P., Krull, U.J., Wang, J., Mascini, M. (eds) Biosensors for Direct Monitoring of Environmental Pollutants in Field. NATO ASI Series, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8973-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8973-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4959-9

  • Online ISBN: 978-94-015-8973-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics