Skip to main content

Decomposition and Multilevel Optimization

  • Chapter
Elements of Structural Optimization

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 1))

  • 368 Accesses

Abstract

The resources required for the solution of an optimization problem typically increase with the dimensionality of the problem at a rate which is more than linear. That is, if we double the number of design variables in a problem, the cost of solution will typically more than double. Large problems may also require excessive computer memory allocations. For these reasons we often seek ways of breaking a large optimization problem into a series of smaller problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Giles, G.L. “Procedure for Automated Aircraft Wing Structural Design,” J. of the Structural Division, ASCE, 97, pp. 99–113, 1971.

    Google Scholar 

  2. Sobieszczanski, J. and Loendorf, D. D., “A Mixed Optimization Method for Au- tomated Design of Fuselage Structures”, J. of Aircraft, 9, pp. 805–811, 1972.

    Article  Google Scholar 

  3. Sobieszczanski-Sobieski, J., James, B.B., and Dovi, A.R., “Structural Optimization by Multilevel Decomposition”, AIAA J., 23, 11, pp. 1775–1782, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  4. Thareja, R., and Haftka, R. T., “Efficient Single-Level Solution of Hierarchical Problems in Structural Optimization”, Proceedings, AIAA/ASME/ASCE/AHS 28th Structures, Structural Dynamics and Materials Conference, Monterey California, April, 1987.

    Google Scholar 

  5. Thareja, R., and Haftka, R.T., “Numerical Difficulties Associated with using Equality Constraints to Achieve Multilevel Decomposition in Structural Optimization,” AIAA Paper No. 86–0854CP, Proceedings of the AIAA/ASME/ASCE/ AHS 27th Structures, Structural Dynamics and Materials Conference, San Antonio, Texas, May 1986.

    Google Scholar 

  6. Schmit L.A., and Mehrinfar, M., “Multilevel Optimum Design of Structures with Fiber-Composite Stiffened Panel Components”, AIAA J., 20,1, pp. 138–147, 1982.

    Google Scholar 

  7. Kirsch, U., “Multilevel Optimal Design of Reinforced Concrete Structures”, Engineering Optimization, 6, pp. 207–212, 1983.

    Article  Google Scholar 

  8. Kirsch, U., “An Improved Multilevel Structural Synthesis”, J. Structural Mechanics, 13, pp. 123–144, 1985.

    Article  Google Scholar 

  9. Rosen, J.B., “Primal Partition Programming for Block Diagonal Matrices”, Numerische Mathematik, 6, pp. 250–260, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  10. Geoffrion, A.M., “Elements of Large-Scale Mathematical Programming”, in Perspectives on Optimization (A.M. Geoffrion, editor) Addison Wesley, 1972.

    Google Scholar 

  11. Barthelemy, J.F.M., and Sobiesczanski-Sobieski, J., “Extrapolation of Optimum Designs based on Sensitivity Derivatives,” AIAA J., 21, pp. 797–799, 1983.

    Article  Google Scholar 

  12. Haftka, R.T., “An Improved Computational Approach for Multilevel Optimum Design”, J. of Structural Mechanics, 12, 2, pp. 245–261, 1984.

    Article  MathSciNet  Google Scholar 

  13. Barthelemy, J-F. M., and Riley, M. F., “An Improved Multilevel Optimization Approach for the Design of Complex Engineering Systems”, AIAA J., 26, pp. 353–360, 1988.

    Article  Google Scholar 

  14. Sobieszczanski-Sobieski, J., James, B. B., and Riley, M. F., “Structural Sizing by Generalized Multilevel Optimization”, AIAA J., 25, 1, pp. 139–145, 1987.

    Article  Google Scholar 

  15. Fox, R. L., and Schmit, L. A., “Advances in the Integrated Approach to Structural Synthesis”, J. of Spacecraft and Rockets, 3, pp. 858–866, 1966.

    Article  Google Scholar 

  16. Haftka, R.T., “Simultaneous Analysis and Design”, AIAA J., 23, 7, pp. 1099–1103, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  17. Haftka, R. T., and Kamat, M. P., “Simultaneous Nonlinear Analysis and Design”, Computational Mechanics, 4, 6, pp. 409–416, 1989.

    Article  MATH  Google Scholar 

  18. Shin, Y., Haftka, R. T., and Plaut, R. H., “Simultaneous Analysis and Design for Eigenvalue Maximization”, AIAA J., 26, 6, pp. 738–744, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  19. Pedersen, P., “On the Minimum Mass Layout of Trusses, AGARD Conference Proceedings, No. 36 on Symposium on Structural Optimization, Turkey, October, 1969, pp. 11. 1–11. 18, 1971.

    Google Scholar 

  20. Vanderplaats, G.N., and Moses, F., “Automated Design of Trusses for Optimum Geometry”, J. of the Structural Division, ASCE, 98, ST3, pp. 671–690, 1972.

    Google Scholar 

  21. Spillers, W.R., “Iterative Design for Optimal Geometry, J. of the Structural Division, ASCE, 101, ST7, pp. 1435–1442, 1975.

    Google Scholar 

  22. Kirsch, U., “Synthesis of Structural Geometry using Approximation Concepts”, Computers and Structures, 15, 3, pp. 305–314, 1982.

    Article  MATH  Google Scholar 

  23. Ginsburg, S., and Kirsch, U., “Design of Protective Structures against Blasts”, J. of the Structural Division, ASCE, 109, pp. 1490–1506, 1983.

    Article  Google Scholar 

  24. Kirsch, U., “Multilevel Synthesis of Standard Building Structures,” Engineering Optimization, 7, pp. 105–120, 1984.

    Article  Google Scholar 

  25. Kirsch, U., “A Bounding Procedure for Synthesis of Prestressed Systems,” Computers and Structures, 20, pp. 885–895, 1985.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haftka, R.T., Gürdal, Z., Kamat, M.P. (1990). Decomposition and Multilevel Optimization. In: Elements of Structural Optimization. Solid Mechanics and Its Applications, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7862-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7862-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7864-6

  • Online ISBN: 978-94-015-7862-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics