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1. Introduction

This lecture is concerned with quasiperiodic and disordered interfaces in nanos

tructured materials. The notion of quasiperiodic interfaces is rather new in both

solid state physics and materials science. In particular, it is not widespread among

experts in the area of nanostructured materials. Therefore, the most attention in

this lecture will be paid to the structure and properties of quasiperiodic interfaces

as well as to their contribution to macroscopic properties of nanostructured ma

terials. In doing so, for brevity, we will concentrate our theoretical consideration

on final results, while intermediate mathematical details will be only outlined.

It should be noted that studies of quasiperiodic interfaces in nanostructured
materials are just at the starting point. In these circumstances, the lecture puts

more new questions than answers to previously stated questions in this field. The

main conclusions of this lecture are as follows: first, quasiperiodic interfaces are

inherent elements of the nanostructured materials structure; second, quasiperiodic

interfaces represent the special type of interfaces exhibiting the properties which,

generally speaking, are different from those of periodic and disordered interfaces;

third, quasiperiodic interfaces are capable of significantly contributing to macro

scopic (at least, mechanical) properties of nanostructured materials; fourth, quasi

nanocrystalline materials (consisting of nanocrystallites and quasiperiodic grain

boundaries) represent a new class of nanostructured materials.

In addition, here we will discuss the features of disordered interfaces in nanos

tructured materials. In doing so, the special attention will be paid to transfor

mations of disordered interfaces into ordered (periodic and quasiperiodic) ones

in nanocrystalline materials as well as to spreading of disordered interfaces in

nanoamorphous materials (nanoglasses).
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The lecture is organized as follows. In section 2 definitions of periodic, quasiperi
odic and disordered solid state structures are considered. Section 3 deals with d,~

scription of quasiperiodic interfaces in film-substrate systems. In section 4 we e'(

amine quasiperiodic tilt boundaries in nanostructured polycrystals and discuss the

notion of quasinanocrystalline materials. Section 5 is concerned with disordend

interfaces in nanostructured materials. Section 6 contains concluding remarks.

2. Periodic, Quasiperiodic and Disordered Structures

Solid state structures are specified by their mass distributions in space. In th IS

context, p(r), a mass density at position r in a d-dimensional space, serves ;,s

the main characteristic of a d-dimensional solid. In general, there are the thrfe
basic categories of solid state structures: periodic, quasiperiodic, and disorderEd

ones. Periodic and quasiperiodic structures exhibit a long-range translation,tl

ordering, in which case their diffraction patterns consist of sharp peaks. Disordered

structures do not have any long-range translational order.

A periodic solid is by definition specified by mass density p(r) that is periodio::

p(r) =p(r +R) (] )

for every vector R in some periodic lattice L. Due to periodicity in d-dimension,d
coordinate space, p(r) can be expressed as a discrete Fourier series:

p(r) = L Pq(r)exp{iqr}
qEQ

with q being vectors in a d-dimensional periodic lattice Q reciprocal to the d

dimensional periodic lattice L of vectors R. The reciprocal lattice Q is generated
by d basis vectors. Crystalline materials are examples of periodic solids.
A d-dimensional quasiperiodic solid is by definition specified by mass density

p(r) which can be expressed as a discrete Fourier series:

p(r) =L Pq(r)exp{iqr},
qEQ

(3)

with q being vectors in a reciprocal lattice Q generated by J basis vectors, wherl~
J> d, e.g. [1,2]. That is the number J of basis vectors of the reciprocal lattice (j
is larger than dimension d of quasiperiodic solid. Quasicrystals serve as the most
known example of quasiperiodic solids, e.g. [1-3].
Disordered solids do not exhibit any long-range translational order, in which

case their diffraction patterns do not contain sharp peaks; such patterns consist of
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continuous extended regions. A disordered solid is specified by mass density p( r)
which can be expressed as a Fourier integral:

p(r) = r pq(r)exp{iqr}dq,JQ ,
(4)

where Pq is a non-zero function in the continuous extended regions Q' of reciprocal
space. Amorphous solids serve as well-known examples of disordered solid state

structures.

3. Quasiperiodic Interfaces in Film-Substrate Systems

This lecture is concerned mostly with quasiperiodic interfaces. Let us start our

discussion of quasiperiodic interfaces with description of such interfaces in film

substrate systems (in particular, in nanostructured-film-substrate systems). Such

interfaces serve as the simplest example of quasiperiodic interfaces and, on the

other hand, have the same basic features as more complicately structured, quasiperi·

odic grain boundaries in polycrystalline and nanocrystalline materials.

3.1. STRUCTURAL FEATURES OF QUASIPERIODIC INTERFACES

Let us consider a one-dimensional infinite interface between a two-dimensional

film and substrate both having square lattices with different parameters. Such in

terfaces can be used as effective models of real interfaces in film-substrate systems,

in which case analysis of model interfaces allows one to reveal the basic peculiar

ities of real interfaces, e.g. [4-7]. Let a and c be the square lattice parameters of
film and substrate, respectively. For definiteness, we assume that c > a. Misfit

parameter f = 1 - a/c characterizes misfit between lattices of film and substrate.
Formation of ensemble of misfit dislocations at interface (Fig.l) is the effective

way for relaxation of misfit stresses which is most often realized in real film
substrate systems [4-7J. Usually models of interfaces containing misfit dislocations

deal with infinite interfaces between lattices with relatively rational parameters a

and c, that is, cia = n/m, where nand m are co-prime integers. In this situation,
equilibrium spatial organization of misfit dislocation ensemble is periodic at an

infinite interface with period na =mc (Fig.la).
However, in general, ratio c/a which characterizes infinite interface is either

rational or irrational. In the second situation, interface with its misfit dislocations

is quasiperiodically ordered (Fig.l b). As to details, let us determine and examine

the quasiperiodic ordering of an interface with irrational a/ c (and irrational f =
1 - a / c) by means of the geometric model.
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Fig.I. Misfit dislocations at interface. (a) Periodically and (b) quasiperiodicall/
ordered ensembles of misfit dislocations.

Within the framework of the geometric model, an interface is treated as the two
non-interacting atomic layers of film and substrate (Fig.2). This model directl:'
deals with the symmetry properties of the interface, related to long-range orderinr;
in adjacent film and substrate. In this model, atoms belonging to different layer;;
do not interact, that is, each atom of the film (substrate) layer "feels" only th.:
atoms of the film (substrate) layer.
When atoms of film and substrate are modeled as point balls with masses m j

and m s , respectively, the atomic (mass) density function of the interface is

p(x) = L[mfb(x - Uf - aa) + msb(x - Us - ,8e)],
<:>,/3

(51

where a and ,8 are integers, Uf and Us define the origins of the atomic chains o'
film and substrate, respectively, x denotes the coordinate along the interface line
Since eja is irrational, the basis one-dimensional vectors e and a of the mode

interface are relatively irrational. As a corollary, Fourier image of the interfau

(Fig.2) is a reciprocal lattice (determined by convolution of reciprocal lattices oj

film and substrate) having the two relatively irrational basic vectors, 2rr j a and
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Fig.2. Quasiperiodic interface as a line with superimposed atomic layers of film

and substrate. Atoms of film and substrate are shown as full and open circles,

respectively.

2rr / c. Then the atomic density function of the interface can be represented as:

'" i2rrpi x i2rrP2X. .
p(x) = L...J PPIP2 exP(-- +-- + ~'Pi + ~'P2)

a c
PI,P2

(6)

where Pi and P2 are integers, 'Pi(= 2rrUJla) and 'P2(= 2rrUs /c) are the phases
such that a displacement (along the interface line) of the atomic layer of the film

(substrate, respectively) as a whole corresponds to a shift in the phase 'Pi ('P2,
respectively). The atomic density function (6) of the one-dimensional interface

is quasiperiodic having the two relatively irrational basis vectors of its Fourier

transform.

As to beyond the geometric model, analysis which takes into account both

the symmetry properties of the interface and a short-range interaction between

atoms belonging to film and substrate leads to the same conclusion: the interface is

quasiperiodic having the reciprocal lattice generated by the two relatively irrational

basic vectors (for details, see [1]).

The spatial positions of misfit dislocations are determined as follows. First,
one connects each atom of the substrate with the nearest atom of the film (Fig. 1).

After this procedure, some atoms of the film are extracted which are not in the

connection with atoms of the substrate. Such atoms of the film are treated to be

associated with cores of misfit dislocations. As a result, we have a quasiperiodic

interface as an interface with the smoothest (but non-periodic) arrangement of

misfit dislocations separated by either distance n'a or distance (n' + 1)a, where n'
is the positive integer such that n'af < a < (n' + I)af (Fig.Ib). It is related to
the fact that misfits -n'af and -(n' + I)af accumulated at respective distances
n'a and (n' + I)a can not be completely compensated by a misfit dislocation
with Burgers vector a. Though n' is by definition the positive integer such that
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(irrational) quantities n'l and (n' +1)1 are closest to 1, n'al -# a and (n' +1)al F
a, because 1 is irrational. In this situation, the maximum that is possible in
compensating misfit between film and substrate lattices with relatively irrationtl
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expansion contains products of the form:

27rX 27rX
Ipll s

1 Ip2I S 'exp{ i(ZI - + Z2 -)}exp{ i(ZI!Pl + Z2!P2)} - (c.c.), (7)
a c

where ZI and Z2 are integers, 51,2 = 0, ... , k, IZl,21 ~ 51,2, and 51 + 52 = k.
To obtain an expression for the free energy, it is necessary to integrate the

products of the form (7) with respect to the space coordinate x. For the case

Z127r / a + Z2 27r / C :j:. 0, all integrals of products of the form (7) with respect to x

are equal to zero. The integrals of expressions (7) with ZI27r/a + Z227r/c =0, on
the other hand, have non-zero values. However, since (one-dimensional) vectors

27r / a and 27r / c are relatively irrational, the linear combination of such vectors

with the coefficients Zl is equal to zero only if ZI = Z2 =O. As a result, we find
that only a product of the form (7) with parameters ZI =0 and Z2 = 0 are not
transformed into zero by integration with respect to x. For such products, the

factor exp i(ZI!Pl + Z2!P2) = 1 for any values of the phases !PI and !P2. In this way,
the free energy L is invariant with respect to changes in the two phases !Pi and !P2,

which correspond to displacements of film and substrate, respectively. The phases

!PI and !P2 are hydrodynamic (Goldstone) modes or, in other words, the degrees

of freedom of a quasiperiodic interface.

As noted above, hydrodynamic modes !PI and !P2 parametrize respectively dis

placement of film Us = a!Pd27r and displacement of substrate Uf = C!p2/27r. Since
the free energy of the quasiperiodic interface is invariant at any variations of the
phases !PI and !P2, it also is invariant for any changes of the joint displacement

U = b(Uf + Us) and relative displacement 6.U = b(Uf - Us) of film and sub
strate. So, the free energy is the same for any relative displacement 6.U of film
and substrate. It is a very interesting feature that emphasizes the difference be

tween quasiperiodic and periodic interfaces. In geometric terms, this feature is
equivalent to the statement that the displacement-shift-complete (DSC) lattice of
the one-dimensional quasiperiodic interface is the interface line. (One-dimensional
periodic interfaces have rows of isolated points as their DSC lattices.)
Displacements of film relative to substrate. In spite of the fact that the free

energy of a quasiperiodic interface is the same for any value of 6.U = Uf - Us,
any displacement of the film relative to the substrate is related to overcoming an

energetic barrier. As to details, let us consider the layer of film atoms placed
in a periodic potential of substrate atoms, when the film and the substrate have
relatively irrational periods (Fig.3a).

For a moment, let atoms of the film be assumed to do not interact with atoms

of the substrate, that is, atoms of the film do not "feel" the periodic potential.

In this situation (which corresponds to geometric model), as shown in the theory

of incommensurate systems (e.g., [1,2]), the set of distances 6. cx {3 = x fa - X s{3

between film atoms (with coordinates Xja) and periodic potential maxima (with
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Fig.3. Atoms of film in potential created by atoms of substrate: (a) atoms of
film do not "feel" the potential; (b) atoms of film "feel" the potential; (c) and (d)
displacement of film occurs via jumps of film atoms.

coordinates xsfJ) forms a DSC lattice being simply a line. As a corollary, for
every distance fj.OIfJ in the range from 0 to c/2, one can find a pair of atom Cl:

and its neighbouring maximum f3 of the periodic potential, which are separeted
by distance fj.OIfJ'

Now let us return to the situation with the interaction between the atomic
layers of the film and the substrate taken into account. This interaction causes
atoms of the film and the substrate to be shifted to new positions, in which case the

coordinates xfOl and xsfJ transform into x fOl and x~fJ' respectively (Fig.3b). New
coordinates x fOl (x~fJ' resp.) depend on parameters of interaction between film
(substrate, resp.) atoms, film-substrate interaction, and the coordinate x fOl (XsfJ,

resp.). For any realistic values of the above parameters, there is the following

obvious tendency: the larger/smaller values of fj.OIfJ = xfOl - xsfJ correspond to

larger/smaller values of fj.~fJ = x fOl - x~fJ' In turn, a film atom characterized by
a larger/smaller value of fj.~fJ are placed at a lower/higher level of the potential
(Fig.3b).



191

Let us consider a microscopic picture of a film displacement. Any such a dis

placement is realized via consequent-in-time jumps of film atoms associated with

misfit dislocations (or, in other words, via consequent-in-time displacements of

misfit dislocations) plus displacements of other atoms within" their" hollows of

the potential (Fig.3c and d). In these circumstances, first, the at.om jumps which

is placed at the highest level of the potential, that is, the atom with the low

est value of ~~,6 (corresponding to ~a,6 = 0). This atom overcomes t.he lowest
energetic barrier ~Umin, when it jumps (Fig.3c). The jump of the atom and cor

responding infinitesimal displacements of all other atoms within" their" potential

hollows provide infinitesimal displacement of the film, resulting in a new (also

quasiperiodic) configuration of the interface (Fig.3c). In this configuration a new

atom of the film has the lowest value of ~~,6 (corresponding to i1 afJ = 0). When

the film moves (by infinitesimal distance), this atom jumps and all other atoms

displace within "their" potential hollows (Fig.3d). As a result, a new configuration

of the atomic layers is formed with a new atom characterized by the lowest value

of ~x~,6 (corresponding to ~a,6 =0). Such a process repeatedly occurs providing
a displacement of the film by any distance.

In the discussed scenario, consequent-in-time displacements of misfit dislo

cations (Fig.3c and d) occur in different places of the film-substrate interface,

namely the places where the energetic barrier ~Uq for a dislocation displacement

is lowest: ~Uq = i1Umin. In this event, for any quasiperiodic configuration of

the interface (or, in other terms, for any relative displacement UJ - Us of the film
and the substrate), there is only one misfit dislocation characterized by the lowest

barrier Umin for its displacement. Other misfit dislocations are characterized by

values of ~Uq > ~Umin, where

(8)

and function h(~a,6) monotonically increases as i1 a ,6 Increases. In the first ap

proximation, we can write

(9)

where ~Umax is the maximum barrier for a misfit dislocation displacement, and

~a,6 ranges from 0 to (c - a)/2.
When a film-substrate interface is periodic, displacements of a film are ef

fectively realized via elementary displacements of misfit dislocations [8], which

(locally) break the periodic translational order (Fig.4). Such breaks lead to an

increase ~Uel in the elastic energy of the initially periodic ensemble of misfit dis

locations. In these circumstances, there is the following energetic barrier for a

misfit dislocation displacement:

(10)
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(c)
FigA. Displacement of film via transformations of initially periodic interface. (a I

Periodically ordered ensemble of misfit dislocations (initial state). (b) and (c:
Displacements of misfit dislocations, which locally break the initial periodicity.

where tlafJ = a/2 corresponds to position of a film atom associated with a misfi
dislocation core in the geometric model.

From (8)-(10) we find that tlUp > (or> >)tlUq . Hence film migration occurin~
via transformations of a quasiperiodic interface (Fig.3c and d) is more easier thar
that occuring via transformations of a periodic interface (FigA).
In paper [8] a simplified model of island film migration via displacements oj

misfit dislocations has been proposed. This model is simplified in the sense that it
does not take into account any changes in the elastic energy of misfit dislocations.
though it operates with displacements of either isolated misfit dislocations or their
periodically ordered ensemble, which are undoubtedly related to changes in the

elastic energy. At the same time, predictions of the model [8] are in a good

agreement with experimental data (e.g., [9, 10]) on island film migration. This

contradiction can be explained, if we accept that the model [8], in reality, describes

island film migration occuring via transformations of quasiperiodic interfaces, in
which case the contribution of tlUel to the energetic barrier for a dislocation

displacement actually should be neglected. In this context, the agreement between

theoretical estimates [8] and experimental data [9, 10] on island film migration can

be treated as an indication of the specific properties of quasiperiodic interfaces.
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3.3. QUASIPERIODIC INTERFACES OF FINITE EXTENT.

FORMATION OF QUASIPERIODIC INTERFACES

Up to now, we have examined infinite interfaces with infinite rows of misfit dislo

cations. Real film-substrate interfaces have finite lengths. In this subsection, we

will demonstrate that interfaces of finite extent can exhibit quasiperiodic transla

tional order even when the initial ratio ale is rational. Let us consider an one
dimensional interface (consisting of the two atomic chains of a film and a substrate)

with a finite length and a rational misfit parameter f = 1 - ale = 1 - min. Let
kf and ks be respectively the numbers of atoms in the chain of the film and the
chain of the substrate, which belong to the interface. For given kf , nand m (or, in

other terms, kf , a and e), the two following situations are possible: (i) ratio kJln

is integer, and (ii) ratio ksln is non-integer. In the former situation, the inter
face is periodic, that is, misfit dislocations in the relaxed interface are periodically

arranged with spacing na(= me) (Fig.la). kJln(= kslm) indicates the number

of periods within the interface. In situation (ii), the smoothest arrangement of
misfit dislocations is provided by quasiperiodic ordering of such dislocations. It
minimizes the elastic energy density of the system 1 and, therefore, is realized
when the film-substrate system reaches its equilibrium state.

In real processes of film deposition on substrates, film sizes (and, therefore, pa
rameters k f and ks ), in general, are arbitrary. In these circumstances, situation (i)
with strict restrictions on values of nand m occurs very seldom as compared with

situation (ii). In the first approximation, frequencies of appearance of situations
(i) and (ii) are f and 1 - f, respectively, where f denotes the misfit parameter.
Usually, f << 1. As a corollary, within the framework of widely used model of
film-substrate interfaces as one-dimensional interfaces with misfit dislocations 2,
we come to conclusion that quasiperiodic interfaces are inherent elements of real
film-su bstrate systems (at equilibri urn).

3.4. CONCLUDING REMARKS

Thus quasiperiodic interfaces are theoretically revealed here to be inherent struc

tural elements of film-substrate systems. In order to verify definitely this conclu
sion, the corresponding experimental investigations in future are of utmost inter

est, namely investigations which use the concept of quasiperiodic interfaces. (At

1 In general, film edges influence on spatial positions of misfit dislocations, in which case this
effect can violate the quasiperiodic arrangement of dislocations near the edges. Since the effect

in question manifests itself near film edges only, hereafter, for simplicity, we will not take it into
account.
2This model, being convenient for analysis, takes into account the basic features of real inter

faces in film-substrate systems [4, 5].
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present, in fact, most experimental studies of interfaces are based on the concelit

of periodic interfaces.) In addition, interpretation of available experimental data,

which uses the notion of quasiperiodic interfaces in film-substrate systems, is alw

important.

4. Quasiperiodic Interfaces in Nanostructured Polycrystals.
Quasinanocrystalline Materials

In this section we consider quasiperiodic grain boundaries in nanostructured poly

crystals and determine quasinanocrystalline solids (consisting of nanocrystallite:,

and quasiperiodic grain boundaries) as a new type of nanostructured materiah.

In description of quasiperiodic grain boundaries, we will focus our attention t,)

quasiperiodic tilt boundaries being a widespread type of interfaces.

4.1. STRUCTURAL-UNIT MODEL OF TILT BOUNDARIES.
QUASIPERIODIC TILT BOUNDARIES

In terms of widely used model of structural units [11], a tilt boundary in a crystal

is viewed as a packing of structural units of either one or (usually) two types.
say, A and B. In general, two types, A and B, of structural units alternate witb
each other (in a certain consequence depending on misorientation of boundary' I

in boundary plane in direction perpendicular to tilt axis. Each row of structura:
units which is parallel with tilt axis consists of units of one type (either A or B)
In these circumstances, only ordering of structural-units consequence in one direc
tion (perpendicular to tilt axis) is significant for identification of a tilt boundary

Therefore, in context of structural-unit representation [11]' hereafter we will treat
tilt boundaries as one-dimensional consequences of structural units.
There are so-called favoured tilt boundaries each consisting of one type of struc

tural units [11]. Say, boundaries described as consequences ...AAAAA... (Fig.5a)
and ...BBBBB... (Fig.5b) are favoured. A tilt boundary in the misorientation
range between two favoured boundaries is described as a consequence of deformed

structural units of the favoured boundaries [11]. For example, tilt boundaries

in the misorientation range between the favoured boundaries of ...AAAAA... and
... BBBBB ... types can be represented as consequences of both A and B units

(Fig.5c and d).
First, let us consider a periodic tilt boundary consisting of A and B units. It

is effectively modeled as a periodic consequence of deformed units A and B, with
r units A and s units B composing each one-period fragment of this boundary
(Fig.5c). As with any periodic tilt boundary, value of rls is rational, and period
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A A A A A A A A A A A A A A A
(a)

B B B B B B B B B B B B B B B
(b)

B B A B B A B B A B B A B B A
(c)

B B B B A B B B B A B B B B A
(d)

Fig.5. Structural-unit-representation of tilt boundaries. (a) and (b) Favoured tilt

boundaries. (c) and (d) General tilt boundaries.

is finite.

Structural units (A or B) whose number is lower in a tilt boundary are called
minority units. Hereafter, for definiteness, we will assume A units as the minority

ones. With each minority unit a secondary grain boundary dislocation is associ

ated [11]. Elastic fields of such dislocations determine the elastic energy of a tilt

boundary.

Misorientation Bof a tilt boundary with the periodic structure is related to the
characteristics of structural units and favoured boundaries as follows [12]:

sin(B/2) = rdA sin(BA /2) + sdB sin(BB/2)
H

(11 )

where dA and dB are the lengths of non-deformed A and B units, respectively; BA
and BB are misorientations of the favoured boundaries consisting of only A units

and only B units, respectively; H is the period of the tilt boundary. Since there
are r deformed units A (each having length d~) and s deformed units B (each

having the length d~) within one period of the tilt boundary, we find

H =rd~ + sd~ (12)

The lengths d~ and d~ are the projections of respectively dA and dB on the
boundary plane:

d~ = dA cos(B + K. - BA )

d~ = dB cos(B + K. - BB)

(13)

(14)

Here K. denotes the inclination angle characterizing assymetry of the boundary, in

which case B+ K. - BA (B + K. - BB) is the tilt angle of the boundary plane relative
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A B A B B A B A B B A B A B A

Fig.6. Quasiperiodic tilt boundary as a quasiperiodic consequence of structuml

units A and B.

to the plane of the symmetric tilt boundary consisting of only non-deformed A

units (B units, respectively).
For periodic boundaries, the characteristic angle B+ /'C is rational. When it IS

irrational, d~ and d'B are relatively irrational (see formulae (13) and (14)). In this
case, a tilt boundary is quasiperiodic with its mass density expressed as:

p(x) = L PPIP,exp{i21r(PIXld~ + P2xld~) + i<PI + i<p2} (15)
PI,P,

where PI and P2 are integers, <PI and <P2 are the phases.
In terms of structural-unit model, a quasiperiodic tilt boundary with infinit:~

length can be modeled as a quasiperiodic consequence of f units A and s unit',
B with f and s being infinite and fls being irrational [13, 14]. Minority unit·;
A in the quasiperiodic consequence are separated by either n' or n' + 1 unit;
B, where n' is the smallest positive integer such that 1/(n' + 1) < fls < lin'
(Fig.6). For given f Is, the quasiperiodic ordering in arrangement of fA and sH
units provides the smoothest arrangement of minority units with corresponding
boundary dislocations. Since such dislocations repel each other, their smoothes,
arrangement related to quasiperiodicity of tilt boundary provides minimization 01:
its elastic energy (associated with elastic fields of the dislocations) (13].
Let us consider a quasiperiodic tilt boundary with a finite length, which i~

naturally defined as a finite-length fragment of an infinite quasiperiodic boundar)
characterized by irrational values of fls and B+ /'C. For given finite length t
misorientation B and inclination /'C, one finds the characteristic finite numbers
rand s, of structural units as those satisfying relationships (11)-(14) with H
substituted by t. In this event, the rational value of rIs should be closest tc
irrational value of f I s. Ordering in arrangement of A and B units in quasiperiodic
boundary with finite length is caused by the demand that elastic energy of the

boundary is minimal for given rIs or, in other words, that arrangement of minority
units with corresponding grain boundary dislocations) is smoothest for given rls.
Let us consider briefly the properties (stress field, symmetry and grain bound

ary sliding) of infinite quasiperiodic tilt boundaries.
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Stress field. In general, stress field components of quasiperiodic tilt boundaries

are more homogeneously distributed along boundary planes as compared with

periodic boundaries [15, 16].

Symmetry. Grain boundary dislocations. A DSC lattice of a quasiperiodic tilt

boundary is simply a line lattice parallel to the tilt axsis [13, 17]. Since Burgers

vectors of grain boundary dislocations are those of a DSC lattice, such disloca

tions can have any Burgers vector component normal to the boundary plane or

perpendicular to the tilt axis in the boundary plane [13, 15].

Grain boundary sliding. Due to the symmetry reflected in a DSC lattice, a free

energy of a quasiperiodic tilt boundary is invariant, in particular, at relative dis

placements of adjacent grains in the direction perpendicular to the tilt axis in the

boundary plane [18, 19]. These relative displacements are realized via such rear

rangements (A +-> B) of structural units that preserve the quasiperiodic ordering
of the boundary [19]. Energetic barriers for such rearrangements are essentially

lower than those for A +-> B rearrangements in a periodic boundary. Summing
up, quasiperiodic tilt boundaries are capable of effectively carrying integrain slid

ing even without any involvement of grain boundary defects (dislocations). This

special attribute distinguishes quasiperiodic from periodic boundaries.

4.2. QUASIPERIODIC TILT BOUNDARIES IN NANOSTRUCTURED

POLYCRYSTALS

Let us consider conditions at which quasiperiodic boundaries with finite lengths

are formed in polycrystalline and nanocrystalline materials. First, for example,

we examine formation of grain boundaries in the highly nonequilibrium process of

compacting of crystalline nanoparticles. Let a straight tilt boundary with length

I be formed in cold welding of two crystalline particles. In general, inclination K,
misorientation f) and length I of this boundary can have arbitrary values as those
determined by randomly varied geometric parameters of particles and their con

tact. Randomly-varied-in-specimen values of geometric parameters K, f) and I of
tilt boundaries, in turn, determine randomly-varied-in-specimen values of struc

tural parameters rand s of tilt boundaries. In these circumstances, the two

following basic situations can occur: (1) sir is integer, and (2) sir is non-integer.
Since cold welding of particles is a highly nonequilibrium process, rA units and sB

units in both situations (1) and (2) usually are disorderedly arranged in boundary

sharing two just welded particles. More than that, the third following situation is

also possible: a tilt boundary can contain structural units of other type(s), neither

A or B. In all these events, a tilt boundary should be treated as a nonequilibrium
(or defected) boundary.

However, relaxation processes driven by decrease in elastic energy of a tilt
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boundary, after some relaxation period, will result in equilibrium, ordered arrang'~

ment of structural units, A and B, in this boundary. In a relaxed state, orderir g
in arrangement of A and B units is either periodic or quasiperiodic, depending en
the characteristic numbers rand s. If sir is integer (situation (1)), a boundary
is periodic. If sir is non-integer (situation (2)), a periodic arrangement is impo;
sible, and structural units of a tilt boundary of finite extent are quasiperiodicalJ y

arranged.

Of utmost interest is the question: how many periodic and quasiperiod c

boundaries do exist in compacted aggregates of particles, in particular, in nano::

tructured materials? Let us estimate ratio I/pll/q of densities, I/p and I/q, of respe(

tively periodic and quasiperiodic tilt boundaries 3 existing in a nanostructured

material with the grain sizes in the range from 5 to 20 nm. For every tilt bouncl

ary in such a material, the quantity r + s of structural units ranges tentatively
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nanostructured polycrystals is determinitive. This allows us to view that nanos

tructured polycrystals with quasiperiodic grain boundaries as representing a new

type of nanostructured materials with the structure and properties being differ

ent from those of conventional nanocrystalline materials with disordered and/or

periodic boundaries (and of other nanostructured solids).

In order to emphasize the fact that the nanoscale structure and quasiperiodic
elements are the definitive structural features of nanostructured polycrystals with
quasiperiodic grain boundaries, we shall call such polycrystals as quasinanocrys

talline materials.

Synthesis of quasinanocrystalline materials is an open technological problem.

In any event, however, nanostructured polycrystals synthesized by presently avail

able methods can be effectively treated as composites consisting of the quasi

nanocrystalline phase and the conventional nanocrystalline phase. Therefore, the

notion of quasinanocrystalline materials is of importance in analysis of both the

structure and the macroscopic properties of such nanostructured polycrystals. In

this context, we will study in next subsection a contribution of quasiperiodic
boundaries to the plastic properties of nanostructured polycrystals.

4.4. QUASIPERIODIC BOUNDARIES AND PLASTIC FLOW IN

NANOSTRUCTURED POLYCRYSTALS

Let us discuss the features of plastic flow in nanostructured polycrystals related to

quasiperiodic boundaries. In nanostructured solids, in which the activity of mobile

lattice dislocations in nanocrystallites is low (owing to image forces that act on

lattice dislocations near surfaces and hence in confined media [22]), grain bound
ary sliding provides an essential contribution to plastic deformation processes, e.g.

[23-25J. The grain boundary sliding in quasiperiodic boundaries occurs via rear
rangements of structural units or via motion of grain boundary dislocations having
the features which differ from boundary dislocations in periodic boundaries. In
particular, the spectrum of admissible Burgers vectors of boundary dislocations

(or, in other terms, DSC lattice) in quasiperiodic boundaries usually is essentially

richer than that in periodic boundaries [13, 17J. For instance, as shown in [13],

dislocations in a quasiperiodic tilt boundary can have any Burgers vector compo

nent b' perpendicular to the tilt axis in the boundary plane (in contrast to periodic
boundaries in which dislocation Burgers vectors are quantized). For definiteness,

hereafter we confine ourself to analysis of boundary dislocations characterized by

small Burgers vectors of b'-type in quasiperiodic tilt boundaries, since (as shown

below) they are easily generated and easily move in quasiperiodic tilt boundaries,

causing specific plastic properties of the boundaries.

As to details, let us consider a dislocation in a quasiperiodic tilt boundary,
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having the Burgers vector b' which is perpendicular to the tilt axis in the boundalY
plane and obeys the inequality: b' << b, where b is the characteristic Burgers
vector of dislocations in periodic boundaries. Dislocations with (small) Burgers

vectors b' can be generated in a quasiperiodic tilt boundary by Frank-Read souret'S

at critical shear stresses T' =Gb'I L (here L denotes the Frank-Read source length

and G the shear modulus, e.g. [26]) being essentially smaller than the critical shec,r

stress T =Gbl L which activates Frank-Read sources in a periodic boundary. Sa/,

for b = allO [27], b' = alSO and L = lOa (here a denotes the crystal lattice
parameter), we find T' =G/500 « T =G/lOO.
Dislocations with small Burgers vectors b', generated in a quasiperiodic til t

boundary at low values T' of the shear stress, form pile-ups which are capabl,~

of effectively moving in the boundary at the same low values of the shear stres3

(owing to the effect of stress concentration in dislocation pile-up heads, e.g. [26]:,.

As a result, boundary sliding processes intensively occur (via motion of dislocatiol

pile-ups) in quasiperiodic tilt boundaries at low shear stresses T', in which cas~

such boundaries serve as plastic elements of a nanostructured polycrystal.

Let us estimate a contribution of quasiperiodic tilt boundaries to plastic proper·

ties of nanocrystalline materials comprising both periodic and quasiperiodic graill

boundaries. In doing so, we model such materials as composites consisting of th,~
matrix, being a nanocrystalline solid with periodic boundaries, and the quasiperi·

odic tilt boundary phase elements. In the first approximation, the yield stres:,
S of a nanocrystalline material modeled as the composite can be estimated wit!.

the help of the standard additive mixing formula for mechanical characteristics 01'

composites as follows:

S = 'ljJS' + (1 - 'IjJ)S" (16 1

where 'IjJ is the volume fraction of the quasiperiodic tilt boundary phase, S' am
S" are the yield stresses of the quasiperiodic tilt boundary phase and the matrix
respectively.

Let us discuss consequently values of S', S" and 'IjJ appearing on the r.h.s
of formula (16). In the light of our previous analysis, S' is determined by thE

critical shear stress T' which activates Frank-Read sources in quasiperiodic tilt
boundaries: S' =T' 1M, where M is the standard orientation factor.

In our model all the features of the nanoscale structure of the nanocrystallinE
material are assumed to be related to only the presence of a high-density ensemble

of quasiperiodic tilt boundaries in the material. Therefore, we consider the yield

stress S" of the matrix to be the same as for polycrystalline solids with periodic
grain boundaries, in which case S" depends on the grain size d in the standard

Hall-Petch form:
S" =S· + kd- 1/

2 (17)
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Here S· denotes the intrinsic stress resisting crystal lattice dislocation motion and
k the Hall-Petch constant.
The volume fraction 'ljJ of the quasiperiodic boundary phase can be represented

as 'ljJ =gh, where 9 is the volume fraction of quasiperiodic tilt boundaries in the

grain boundary phase and h is the volume fraction of the grain boundary phase

in the nanostructured polycrystal. In nanostructured polycrystals h :::::: 9ald [28].
Then we find

'ljJ::::::9gald (18)

With (17) and (18) substituted to (16), one obtains the following approximate

formula:
5:::::: S· + kd- 1/ 2 + 9ga(T'1M - S· )d- 1

- 9gakd- 3
/ 2 (19)

For characteristic values of a:::::: 3· lO-lOm, T' :::::: G/500, M :::::: 0.5, G:::::: 65GPa,
S· :::::: 66MPa(:::::: G/I000), k :::::: 26447MPa· nm1/ 2 (see data [29] for Fe) and
9 = 0.1,0.5 and 1, the dependences S(d) defined by formula (19) are shown in
Fig.7, where d ranges from 3 to 500nm. The curves 1, 2 and 3 correspond to
9 = 0.1,0.5 and I, respectively. (The case 9 = 1 describes quasinanocrystalline
materials with quasiperiodic tilt boundaries.)

For d:::::: 3-20nm, 5 (curves 1,2 and 3 in Fig.7) is the yield stress ofnanocrys
talline materials with quasiperiodic boundaries. For d > 20nm, 5 (curves 1, 2 and
3 in Fig.7) plays the role as the yield stress of polycrystalline solids with quasiperi

odic boundaries. The dependencies S(d) with different values of parameter 9 have

similar features which are as follows. For large values of d, the dependences S(d)
(Fig.7) are close to the standard Hall- Petch relationship (dashed line in Fig.7). For

small values of d, the dependences S(d) deviate from the Hall-Petch relationship.
Similar deviations are inherent to dependencies (observed experimentally; for a

review, see [24, 25]) for mechanical characteristics (yield stress, microhardeness)
of real nanostructured polycrystals. This allows us to think that the presence of
quasiperiodic boundaries in nanostructured polycrystals is capable of effectively

contributing to the experimentally observed deviations of the yield stress depen
dence on d from the Hall-Petch relationship.

4.5. INTERFACES IN QUASICRYSTALS

Quasicrystals are solids with long-range quasiperiodic translational ordering and

non-crystallographic rotational symmetries, e.g. [1-3]. Quasicrystals (synthesized

as aggregates of quasicrystalline grains [30] or nanoparticles [31]) usually contain

high-density ensembles of interfaces. Quasiperiodicity in grains/nanoparticles im

poses a quasiperiodic translational order to exist in such interfaces [32]. Theo

retical and experimental examinations of quasiperiodic interfaces are just at the

starting point.
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Fig.7. Dependence of the yield stress 5 on grain size d for 9 = 0.1 (curve 1),
9 =0.5 (curve 2) and 9 = 1 (curve 3). The standard Hall-Petch dependence S(d)
is shown as dashed line.

4.6. CONCLUDING REMARKS

To briefly summarize this section, theoretical analysis indicates about quasiperi
odic tilt boundaries as inherent elements of nanostructural polycrystals. Of course,
this statement needs to be verified experimentally. However, at that moment, ex

istence of quasiperiodic grain boundaries in nanostructured polycrystals can not
and should not be ignored.

5. Disordered Interfaces in Nanostructured Materials

Disordered interfaces are usually formed in nanostructured polycrystals just syn

thesized in highly nonequilibrium conditions, e.g. [23]. Such interfaces con

tain high-density ensembles of interfacial defects and serve as sources of internal

stresses in just synthesized nanostructured polycrystals [23]. After some relax
ation period, disordered interfaces transform into ordered, periodic or quasiperi-
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odic, ones. This process is accompanied by relaxation of internal stresses, leading

to decrease of the elastic energy stored in a nanostructured polycrystal. For more

details about disordered interfaces in nanostructured polycrystals, see lecture [33]

and references therein.
Now let us turn to discussion of nanoamorphous alloys (firstly synthesized in

1989 [34]) which represent a new class of nanostructured materials. Nanoamor

phous alloys are synthesized as high-pressure compacted aggregates of amorphous
nanoparticles divided by disordered (amorphous) interfaces characterized by higher

free-volume density [34, 35]. Just synthesized nanoamorphous alloys specified by

nano-scale inhomogeneities of free-volume density can gradually transform into
homogeneous amorphous alloys [35, 36].

So, disordered interfaces are unstable elements of the nanostructured materials

structure. Disordered interfaces in nanostructured polycrystals transform into

periodic or quasiperiodic interfaces. Disordered interfaces in nanoamorphous alloys

gradually disappear (diffusionally spread), in which case the nanoamorphous phase

transforms into the homogeneous amorphous one.

6. Conclusion

The basic conclusions of this lecture are as follows:
(a) Quasiperiodic film-substrate interfaces and quasiperiodic tilt boundaries

are inherent structural elements of nanostructured materials.

(b) Quasiperiodic interfaces represent the special type of ordered interfaces with
both the structure and the properties being different from those of periodically

ordered interfaces.
(c) Quasiperiodic film-substrate interfaces are capable of contri buting to mo

bility of island films.
(d) Quasiperiodic tilt boundaries serve as plastic deformation elements in nanos

tructured polycrystals. Their contribution induces deviations of the yield stress
dependence on the grain size from the standard Hall-Petch relationship.

(e) Quasinanocrystalline materials (consisting of nanocrystallites and only quasiperi
odic interfaces) represent a new class of nanostructured materials.

The following points of development in studies of quasiperiodic interfaces are

of primary interest:
(i) Experimental identification of quasiperiodic interfaces in thin films, nanos

tructured and polycrystalline materials.

(ii) Experimental and theoretical examinations of the properties (in particular,
migration, conductivity, magnetic characteristics) of quasiperiodic interfaces as

well as contribution of quasiperiodic interfaces to the macroscopic properties of
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thin films, nanostructured and polycrystalline materials.
(iii) Synthesis of quasinanocrystalline materials.
(iv) Theoretical analysis of quasiperiodicity in twist and twist-tilt boundarie;

in nanostructured and polycrystalline materials.
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