Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 61))

  • 932 Accesses

Abstract

The development of various lithium insertion compounds over the years has made lithium-ion batteries a commercial reality. This chapter provides an overview of the various cathode and anode hosts after providing an introduction to lithium insertion compounds and the principles of lithium-ion cells. Transition metal oxides crystallizing in a rock salt-based layer and the spinel structures and having highly oxidized M3+/4+ (M=Mn, Co and Ni) redox couples have emerged as the leading candidates for cathodes while the lightweight carbon has emerged as the leading anode for lithium-ion cells. However, chemical and structural instabilities limit the practical capacities of some of the cathodes while carbon exhibits an irreversible capacity loss. The challenge is to develop high capacity cathode hosts with compatible anodes for the next generation lithium-ion cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whittingham, M. S. (1976), Science 192, 1126.

    Article  Google Scholar 

  2. Aydinol, M. K. and Ceder, G. (1997), J. Electrochem. Soc. 144, 3832.

    Article  Google Scholar 

  3. Mizushima, K., Jones, P. C., Wiseman, P. J. and Goodenough, J.B. (1980), Mat. Res. Bull. 15, 783.

    Article  Google Scholar 

  4. Goodenough, J. B., Mizushima, K. and Takeda, T. (1983), Jap. J. Appl. Phys. 19, 305.

    Google Scholar 

  5. Thackeray, M. M., David, W. I. F., Bruce, P. G. and Goodenough, J. B. (1983), Mat. Res. Bull. 18, 461.

    Article  Google Scholar 

  6. Whittingham, M. S. and Jacobson, A. J. (1982), Intercalation Chemistry, Academic Press, New York.

    Google Scholar 

  7. Gabano, J. P. (1983), Lithium Batteries, Academic Press, London.

    Google Scholar 

  8. Venkatasetty, H. V. (1984), Lithium Battery Technology, John Wiley, New York.

    Google Scholar 

  9. Pistoia, G. (ed.) (1994), Lithium Batteries: New Materials, Developments and Perspectives, Vol. 5, Elsevier, Amsterdam.

    Google Scholar 

  10. Julien, C. and Nazri, G. A. (1994), Solid State Batteries: Materials Design and Optimization, Kluwer, Boston.

    Book  Google Scholar 

  11. Wakihara, M. and Yamamoto, O. (ed.) (1998), Lithium Ion Batteries: Fundamentals and Performance, Wiley-VCH, Weinheim.

    Google Scholar 

  12. Thackeray, M. M. (1997), Prog. Solid State Chem. 25, 1.

    Article  Google Scholar 

  13. Manthiram, A. and Kim, J. (1998), Chem. Mat. 10, 2895.

    Article  Google Scholar 

  14. Manthiram, A. and Kim, J. (1999), Recent Res. Devel. Electrochem. 2, 31.

    Google Scholar 

  15. Reimers, J. N. and Dahn, J. R. (1992), J. Electrochem. Soc. 139, 2091.

    Article  Google Scholar 

  16. Chebiam, R. V., Prado, F. and Manthiram, A. (2001), Chem. Mater. 13, 2951.

    Article  Google Scholar 

  17. Chebiam, R. V., Kannan, A. M., Prado, F. and Manthiram, A. (2001), Electrochem. Commun. 3, 624.

    Article  Google Scholar 

  18. Dutta, G., Manthiram, A. and Goodenough, J.B. (1992), J. Solid State Chem. 96, 123.

    Article  Google Scholar 

  19. Hirano, A., Kanno, R., Kawamoto, Y., Takeda, Y., Yamamura, K., Takano, M., Ohyama, K, Ohashi, M. and Yamaguchi, Y. (1995), Solid State Ionics 78, 123.

    Article  Google Scholar 

  20. Kanno, R., Kubo, H., Kawamoto, Y., Kamiyama, T., Izumi, F., Takeda, Y. and Takano, M. (1994), J. Solid State Chem. 110, 216.

    Article  Google Scholar 

  21. Nakai, I. and Nakagome, T. (1998), Electrochem. Solid State Lett. 1,259.

    Article  Google Scholar 

  22. Nakai, I., Takahashi, K., Shiraishi, Y., Nakagome, T. and Nishikawa, F. (1998), J. Solid State Chem. 140, 145.

    Article  Google Scholar 

  23. Ohzuku, T., Ueda, A., Nagayama, M., Iwakashi, Y. and Komori, H. (1993), Electrochim. Acta 38, 1159.

    Article  Google Scholar 

  24. Amatucci, G. G., Tarascon, J. M. and Klein, L. C. (1996), J. Electrochem. Soc. 143, 1114.

    Article  Google Scholar 

  25. Dahn, J. R., Fuller, E. W., Obrovac, M. and von Sacken, U. (1994), Solid State Ionics 69, 265.

    Article  Google Scholar 

  26. Zhang, Z., Fouchard, D. and Rea, J. R. (1998), J. Power Sources, 70, 16.

    Article  Google Scholar 

  27. Li, W. and Curie, J. (1997), J. Electrochem. Soc. 144, 2773.

    Article  Google Scholar 

  28. Chebiam, R. V., Prado, F. and Manthiram, A. (2001), J. Electrochem. Soc. 148, A49.

    Article  Google Scholar 

  29. Kannan, A. M. and Manthiram, A., 200th Meeting of the Electrochemical Society, San Francisco, CA, September 2-7, 2001, Abstract No. 179.

    Google Scholar 

  30. Choi, S. and Manthiram, A., J. Electrochem. Soc. (submitted).

    Google Scholar 

  31. Wen, S. J., Richardson, T. J., Ma, L., Striebel, K. A., Ross, P. N. and Cairns, E.J. (1996), J. Electrochem. Soc. 143, L136.

    Article  Google Scholar 

  32. Thackeray, M. M., Shao-Horn, Y., Kahaian, A. J., Kepler, K. D., Skinner, E., Vaughey, J. T. and Hackney, S. A. (1998), Electrochem. Solid State Lett. 1, 7.

    Article  Google Scholar 

  33. Thackeray, M. M., de Kock, A., Rossouw, M. H., Liles, D. C., Hoge, D. and Bittihn, R. (1992), J. Electrochem. Soc. 139, 363.

    Article  Google Scholar 

  34. Gummow, R. J., de Kock, A. and Thackeray, M. M. (1994), Solid State Ionics 69, 59.

    Article  Google Scholar 

  35. Kim, J. and Manthiram, A. (1998), J. Electrochem. Soc. 145, L53.

    Article  Google Scholar 

  36. Choi, S. and Manthiram, A. (2000), J. Electrochem. Soc. 147, 1623.

    Article  Google Scholar 

  37. Sigala, C., Guyomard, D., Verbaere, A., Piffard, Y. and Tournoux, M. (1995), Solid State Ionics 81, 167.

    Article  Google Scholar 

  38. Kawai, H., Nagata, M., Takamoto, H. and West, A. R. (1998), Electrochem. Solid State Lett. 1, 212.

    Article  Google Scholar 

  39. Zhong, Q., Bonakdarpour, A., Zhang, M., Gao, Y. and Dahn, J. R. (1997), J. Electrochem. Soc. 144, 205.

    Article  Google Scholar 

  40. Ein-Eli, Y., Howard, Jr., W. F., Lu, S. H., Mukerjee, S., McBreen, J., Vaughey, J. T. and Thackeray, M. M. (1998), J. Electrochem. Soc. 145, 1238.

    Article  Google Scholar 

  41. Gummow, R. J., Liles, D. C. and Thackeray, M. M. (1993), Mat. Res. Bull. 28, 1249.

    Article  Google Scholar 

  42. Armstrong, A. R. and Bruce, P. G. (1996), Nature 381, 499.

    Article  Google Scholar 

  43. Davidson, I. J., McMillan, R. S. and Murray, J. J. (1995), J. Power Sources 54, 205.

    Article  Google Scholar 

  44. Doeff, M. M., Richardson, T. J. and Kepley, L. (1996), J. Electrochem. Soc. 143, 2507.

    Article  Google Scholar 

  45. Jeong, Y. U. and Manthiram, A. (1999), Electrochem. Solid State Lett. 2, 421.

    Article  Google Scholar 

  46. Kim, J. and Manthiram, A. (1997), Nature 390, 265.

    Article  Google Scholar 

  47. Kim, J. and Manthiram, A. (1999), Electrochem. Solid State Lett. 2, 55.

    Article  Google Scholar 

  48. Im, D. and Manthiram, A. (2001), ITE Letters on Batteries, New Technologies & Medicine 2, 318.

    Google Scholar 

  49. de Picciotto, L. A., Thackeray, M. M., David, W. I. F., Bruce, P. G. and Goodenough, J. B. (1984), Mat. Res. Bull. 19, 1497.

    Article  Google Scholar 

  50. de Picciotto, L. A. and Thackeray, M. M. (1985), Mat. Res. Bull. 20, 1409.

    Article  Google Scholar 

  51. Tsang, C. and Manthiram, A. (1997), J. Electrochem. Soc. 144, 520.

    Article  Google Scholar 

  52. Lampe-Onnerud, C., Thomas, J. O., Hardgrave, M. and Yde-Andersen, S. (1995), J. Electrochem. Soc. 142, 3648.

    Article  Google Scholar 

  53. Wilhelmi, K., Waltersson, K. and Kihlborg, L. (1971), Acta Chem. Scand. 25, 2675.

    Article  Google Scholar 

  54. Theobald, F., Cabala, R. and Bernard, J. (1976), J. Solid State Chem. 17, 431.

    Article  Google Scholar 

  55. Tipton, A. L., Passerini, S., Owens, B. B. and Smyrl, W. H. (1996), J. Electrochem. Soc. 143, 3473.

    Article  Google Scholar 

  56. Kumagai, N. and Yu, A. (1997), J. Electrochem. Soc. 144, 830.

    Article  Google Scholar 

  57. Takeda, Y., Kanno, R., Tsuji, Y. and Yamamoto, O. (1983), J. Power Sources 9, 325.

    Article  Google Scholar 

  58. Yamamoto, O., Takeda, Y., Kanno, R., Oyabe, Y. and Shinya, Y. (1987), J. Power Sources 20, 151.

    Article  Google Scholar 

  59. Kim, J. and Manthiram, A. (1997), J. Electrochem. Soc. 144, 3077.

    Article  Google Scholar 

  60. Manthiram, A. and Goodenough, J. B. (1989), J. Power Sources 26, 403.

    Article  Google Scholar 

  61. Manthiram, A. and Goodenough, J. B. (1987), J. Solid State Chem. 71, 349.

    Article  Google Scholar 

  62. Padhi, A. K., Nanjundaswamy, K. S. and Goodenough, J. B. (1997), J. Electrochem. Soc. 144, 1188.

    Article  Google Scholar 

  63. Yamada, A. Chung, S. C., Hinokuma, K. (2001), J. Electrochem. Soc. 148, A224.

    Article  Google Scholar 

  64. Huang, H., Yin, S-C. and Nazar, L. F., 200th Meeting of the Electrochemical Society, San Francisco, CA, September 2-7, 2001, Abstract No. 202.

    Google Scholar 

  65. Yamada, A., Hosoya, M., Chung, S. C., Kudo, Y. and Liu, K. Y., 200th Meeting of the Electrochemical Society, San Francisco, CA, September 2-7, 2001, Abstract No. 205.

    Google Scholar 

  66. Imanishi, N., Takeda, Y. and Yamamoto, O. (1998), in Lithium Ion Batteries: Fundamentals and Performance (M. Wakihara and O. Yamamoto, ed.), p. 98, Wiley-VCH, Weinheim.

    Chapter  Google Scholar 

  67. Winter, M. and Besenhard, J. O. (1998), in Lithium Ion Batteries: Fundamentals and Performance (M. Wakihara and O. Yamamoto, ed.), p. 127, Wiley-VCH, Weinheim.

    Chapter  Google Scholar 

  68. Natarajan, C., Fujimoto, H. Mabuchi, A. and Kasuh, T., 200th Meeting of the Electrochemical Society, San Francisco, CA, September 2-7, 2001, Abstract No. 224.

    Google Scholar 

  69. Murphy, D. W., Cava, R. J., Zahurak, S. M. and Santoro, A. (1983), Solid State Ionics 9 & 10, 413.

    Article  Google Scholar 

  70. Liu, W., Huang, X., Wang, Z., Li, H. and Chen, L. (1998), J. Electrochem. Soc. 145, 59.

    Article  Google Scholar 

  71. Kepler, K. D., Vaughey, J. T. and Thackeray, M. M. (1999), Electrochem. Solid State Lett. 2, 307.

    Article  Google Scholar 

  72. Vaughey, J. T., Kepler, K. D., Benedek, R. and Thackeray, M. M. (1999), Electrochem. Comm. I, 517.

    Article  Google Scholar 

  73. Hossain, S. (1995), in Handbook of Batteries (D. Linden, ed.), second edition, p. 36.1, McGraw-Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Manthiram, A. (2002). Lithium Insertion Compounds for Energy Storage. In: Julien, C., Pereira-Ramos, J.P., Momchilov, A. (eds) New Trends in Intercalation Compounds for Energy Storage. NATO Science Series, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0389-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0389-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0595-4

  • Online ISBN: 978-94-010-0389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics