Skip to main content

Arithmetic of Ordered Sets

  • Conference paper
Ordered Sets

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 83))

Abstract

The fundamental operations of ordinal and cardinal arithmetic have been extended to arbitrary binary relations and their isomorphism types. (Whitehead and Russell [1912], pp. 291 ff.) When applied to (partially) ordered sets, these operations yield new ordered sets. A unified treatment of these operations was initiated in Birkhoff [1937] and [1942], where it was shown that most of the basic laws of arithmetic apply in this general setting. See also Birkhoff [1967], pp. 55 ff.

Many of the deeper properties of ordered addition were listed without proofs in Lindenbaum and Tarski [1926], and these properties were developed axiomatically in Tarski [1956]. More specifically, the operations treated there were ordinal addition, as applied to pairs of types and to ω-sequences of types, and conversion. The axioms for ordinal algebras hold for the isomorphism types of arbitrary binary relations, and most of the known properties of these operations are consequences of the axioms. However, some facts about ordinal addition cannot even be formulated within this framework. A notable example is Aronszajn’s [1952] characterization of commuting pairs of isomorphism types.

The lexicographic product has an important role in the development of the arithmetic of ordinal numbers, and in the study of total order (Hausdorff [1914]). For finite reflexive relations (digraphs) this operation was investigated in Dorfler and Imrich [1972].

Every relation has a unique representation as the cardinal sum (disjoint union) of connected relations, and the study of cardinal addition therefore largely reduces to the study of cardinal numbers. The most important fact about direct (or cardinal, or Cartesian) products is Hashimoto’s [1951] result that any two representations of a connected ordered set as a direct product have isomorphic refinements. From this various cancellation and unique factorization results follow. Without the assumption of connectedness, the unique factorization property fails, even for finite ordered sets, but the cancellation property holds for arbitrary finite relations with a reflexive element (Lovász [1967]).

The (cardinal) power A B , where A and B are ordered sets, is defined (Birkhoff [1937]), to be the set of all isotone maps from B to A with the order inherited from the direct power A B As Birkhoff noted, this operation satisfies the usual laws for exponents. More difficult problems arise when we consider conditions under which the cancellation laws for the bases and for exponents hold:

$${A^C} \simeq {A^D}{\text{ implies }}C \simeq D,$$
$${A^C} \simeq {B^C}{\text{ implies }}A \simeq B,$$

and conditions which insure that two representations

$$P \simeq {A^C}{\text{ and }}P \simeq {B^D}$$

have common refinements

$$A \simeq {E^X},B \simeq {E^Y},C \simeq YZ,D \simeq XZ.$$

These problems were investigated in Bergman, McKenzie and Nagý [a], Duffus [1978], Duffus, Jónsson and Rival [1978], Duffus and Rival [1978], Duffus and Wille [1979], Fuchs [1965], Jonsson and McKenzie [a], Novotný [1960], and Wille [1980].

This work was supported by NSF Grant MCS 7901735.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • N. Aronszajn (1952) Characterization of types of order satisfying α0+α1 = α1+α0, Fund. Math. 31, 65–96.

    MathSciNet  Google Scholar 

  • B. Banaschewski (1956) Hüllensysteme und Erweiterungen von Quasi-Ordnungen, Z. Math. Logik, Grundlagen Math. 2, 117–130.

    Article  MathSciNet  MATH  Google Scholar 

  • H. Bauer (a) Garben und Automorphismen geordneter Mengen, preprint.

    Google Scholar 

  • C. Bergman, R. McKenzie and Sz. Nagý (a), How to cancel exponents, to appear.

    Google Scholar 

  • G. Birkhoff (1937), Extended arithmetic, Duke Math, J. 3, 311–316.

    Article  MathSciNet  Google Scholar 

  • G. Birkhoff (1933) On the combination of subalgebras, Proc. Camb. Phil. Soc. 29, 441–464.

    Article  Google Scholar 

  • G. Birkhoff (1934) On the lattice theory of ideals, Bull. Amer. Math. Soc. 40, 613–619.

    Article  MathSciNet  Google Scholar 

  • G. Birkhoff (1937a) Rings of sets, Duke Math. J. 3, 443–454.

    Article  MathSciNet  Google Scholar 

  • G. Birkhoff (1940) Lattice theory, Amer. Math. Soc. Colloq. Publ. 35.

    Google Scholar 

  • G. Birkhoff (1942) Generalized arithmetic, Duke Math. J. 9, 283–302.

    Article  MathSciNet  Google Scholar 

  • G. Birkhoff (1948), Lattice theory, Amer. Math. Soc. Colloq. Publ. 25, 2nd ed.; 3rd ed. (1967).

    Google Scholar 

  • N.G. de Bruijn (1943) Gemeenschappelijke Representantensystemen van twee Klassenindeelingen van een Versameling, Niew Archief voor Wiskunde, 22, 48–52.

    Google Scholar 

  • C.C. Chang (1955), Cardinal and ordinal factorization of relation types, Ph.D. Thesis, U.C. Berkeley.

    Google Scholar 

  • C.C. Chang (1961) Cardinal and ordinal multiplication of relational types, Proc. Symposia in Pure Math., Amer. Math. Soc., vol. 2, pp. 123–128.

    Google Scholar 

  • C.C. Chang (1961a) Ordinal factorization of finite relations, Trans. Amer. Math. Soc. 101, 259–293.

    Article  MATH  Google Scholar 

  • C.C. Chang and Anne C. Morel (1960) Some cancellation properties for ordinal products of relations, Duke Math. J. 27, 171–182.

    Article  MathSciNet  MATH  Google Scholar 

  • C.C. Chang, B. Jónsson and A. Tarski (1964) Refinement properties for relational structures, Fund. Math. 55, 249–281.

    MathSciNet  MATH  Google Scholar 

  • B.A. Davey and D. Duffus (a) Exponentiation and duality, this volume.

    Google Scholar 

  • M.M. Day (1945) Arithmetic of ordered systems, Trans. Amer. Math. Soc. 58, 1–43.

    MathSciNet  MATH  Google Scholar 

  • W. Dörfler and W. Imrich (1972), Das lexicographische Produkt gerichteter Graphen, Monatsheft für Math. 76, 21–30.

    Article  MATH  Google Scholar 

  • D. Duffus (1978) Toward a theory of partially ordered sets, Ph.D. Thesis, University of Calgary.

    Google Scholar 

  • D. Duffus, B. Jónsson and I. Rival (1978), Structure results for function lattices, Canad. J. Math. 30, 392–400.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Duffus and I. Rival (1978) A logarithmic property for exponents of partially ordered sets, Canad. J. Math. 30, 797–807.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Duffus and R. Wille (1979) A theorem on partially ordered sets of order preserving maps, Proc. Amer. Math. Soc. 76, 14–16.

    Article  MathSciNet  MATH  Google Scholar 

  • E. Fuchs (1965) Isomorphismus der Kardinalpotenzen, Arch. Math. (Brno) 1, 83–93.

    MathSciNet  Google Scholar 

  • W. Hanf (1957) On some fundamental problems concerning isomorphisms of Boolean algebras, Math. Scand. 5, 205–217.

    MathSciNet  MATH  Google Scholar 

  • J. Hashimoto (1948) On the product decomposition of partially ordered sets, Math. Japan 1, 120–123.

    MATH  Google Scholar 

  • J. Hashimoto (1951) On direct product decomposition of partially ordered sets, Ann. of Math. 54, 315–318.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Hashimoto and T.Nakayama (1950) On a problem of G. Birkhoff, Proc. Amer. Math. Soc. 1, 141–142.

    Article  MathSciNet  MATH  Google Scholar 

  • F. Hausdorff (1906–1907) Unterzuchungen liber Ördnungstypen, I-III, Ber. Math. — Phys. Kl. Kg. Sächs Ges. Wiss. 58, 106–169; IV–V, ibid 59, 84–159

    Google Scholar 

  • F. Hausdorff (1914) Grundzüge der Mengenlehre, Leipzig.

    Google Scholar 

  • W. Imrich (1972) Assoziative Produkte von Graphen, Österreich. Akad Wiss. Math.-Natur. Kl. S.-B. II 180, 203–239.

    MathSciNet  MATH  Google Scholar 

  • B. Jónsson (1956) A unique decomposition theorem for relational addition, an appendix to A. Tarski (1956).

    Google Scholar 

  • B. Jónsson and R. McKenzie (a) Powers of partially ordered sets: cancellation and refinement properties, to appear in Math. Scand.

    Google Scholar 

  • J. Ketonen (1978) The structure of countable Boolean algebras, Ann. of Math. 108, 41–89.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Kinoshita (1953) A solution of a problem of R. Sikorski, Fund. Math. 40, 39–41.

    MathSciNet  MATH  Google Scholar 

  • A. Lindenbaum and A. Tarski (1926) Communication sur les recherches de la théorie des ensembles, Comptes Rendus des Séances de la Societé des Sciences et des Lettres de Varsovie, Cl. III, 19, 299–330.

    Google Scholar 

  • L. Lovász (1967) Operations with structures, Acta Math. Acad. Sci. Hungar. 18, 321–328.

    Article  MathSciNet  MATH  Google Scholar 

  • R. McKenzie (1971) Cardinal multiplication of structures with a reflexive relation, Fund. Math. 70, 59–101.

    MathSciNet  MATH  Google Scholar 

  • T. Nakayama (1948) Remark on direct product decompositions of a partially ordered system, Math. Japan 1, 49–50.

    MathSciNet  MATH  Google Scholar 

  • M. Novotný (1960) Über gewisse Eigenschaften von Kardinaloperationen, Spisy Prîrod Fac. Univ. Brno 1960, 465–484.

    Google Scholar 

  • J. Schmidt (1955) Lexicographische Operationen, Zeitsehr. Math. Logik, Grundlagen Math. 1, 127–171.

    Article  MATH  Google Scholar 

  • J. Schmidt (1956) Zur Kennzeichnung der Dedekind-McNeilleschen Hülle einer geordneten Menge, Arch. Math. 7, 241–249.

    Article  MATH  Google Scholar 

  • A. Tarski (1949) Cardinal Algebras, Oxford University Press.

    MATH  Google Scholar 

  • A. Tarski (1956) Ordinal algebras, Studies in Logic and the Foundations of Mathematics.

    Google Scholar 

  • A.N. Whitehead and B. Russell (1912) Principia Mathematical vol. 2.

    Google Scholar 

  • R. Wille (1980) Cancellation and refinement results for function lattices, Houston J. of Math. 6, 431–437.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 D. Reidel Publishing Company

About this paper

Cite this paper

Jónsson, B. (1982). Arithmetic of Ordered Sets. In: Rival, I. (eds) Ordered Sets. NATO Advanced Study Institutes Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7798-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7798-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7800-3

  • Online ISBN: 978-94-009-7798-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics