Skip to main content

Minimal Ideals and Clifford Algebras in the Phase Space Representation of Spin-1/2 Fields

  • Chapter
Clifford Algebras and Their Applications in Mathematical Physics

Part of the book series: NATO ASI Series ((ASIC,volume 183))

Abstract

The Liouville superoperator representation of spin-1/2 wave equations (Dirac, Feynman-Gell-Mann) is studied following the phase space approach of Prigogine, Wigner-Moyal, Bohm and Schönberg. We give the conditions for the phase space tensor theory to reproduce the usual formalism in terms of a restriction of states to minimal ideals in the spacetime Dirac and Jordan-Wigner Clifford Algebras. Consequences of these results are discussed.

Royal Society/SERC European Fellow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Prigogine, C. George, F. Henin and L. Rosenfeld, Chem. Scripta 4, 5 (1973). C. George, F. Henin, F. Mayné and I. Prigogine, Hadronic J. 1, 520 (1978). C. George and I. Prigogine, Physica 99A, 369 (1979). B. Misra, I. Prigogine and M. Courbage, Proc. Nat. Acad. Sci. USA 76, 4768 (1979). I. Prigogine, From Being to Becoming (W.H. Freeman, San Francisco, 1980).

    Google Scholar 

  2. E. Wigner, Phys.Rev. 40, 749 (1932). J. E. Moyal, Proc. Camb. Phil. Soc. 45, 99 (1949). P.R. Holland, A. Kyprianidis, Z. Maric and J.P. Vigier, Phys. Rev. A (1986, in press).

    Article  MATH  Google Scholar 

  3. M. Riesz, C.R. 10ème Cong. Math. Scand. (Copenhague, 1946) 123; C.R. 12ème Cong. Math. Scand. (Lund, 1953) 241.

    Google Scholar 

  4. D. Bohm and B.J. Hiley, in Old and New Questions in Physics, Cosmology, Philosophy and Theoretical Biology ed. A. van der Merwe (Plenum, London, 1983). p.67.

    Google Scholar 

  5. P.R. Holland, J. Phys. A: Math. Gen. 16, 2363 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  6. P.R. Holland, Found. Phys. 16, (1986, in press).

    Google Scholar 

  7. A.S. Eddington, Fundamental Theory (University Press, Cambridge 1946).

    MATH  Google Scholar 

  8. I.R. Porteous, Topological Geometry (Van Nostrand, Lond. 1969).

    MATH  Google Scholar 

  9. S. Teitler, J. Math. Phys. 7. 1730 (1966). P. Lounesto, Report — HTKK-MAT-A113 (1977); Found. Phys. 11, 721 (1981).

    Article  MathSciNet  Google Scholar 

  10. D. Hestenes, Space-Time Algebra (Gordon & Breach, New York, 1966).

    MATH  Google Scholar 

  11. R. Ablamowicz, Z. Oziewicz and J. Rzewuski, J. Math. Phys. 22, 231 (1982). R. Ablamowicz and N. Salingaros, Lett. Math. Phys. 9, 149, (1985)

    Article  MathSciNet  Google Scholar 

  12. T. Takabayasi, Prog. Theor. Phys. Suppl. N°4 (1957).

    Google Scholar 

  13. R. Penrose and W. Rindler, Spinors and Space-Time, Vol 1. (University Press, Cambridge, 1984).

    Book  MATH  Google Scholar 

  14. J.P. Crawford, J. Math. Phys. 26, 1439 (1985)

    Article  MathSciNet  Google Scholar 

  15. J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964). K.R. Greider, Found. Phys. 14, 467 (1984).

    Google Scholar 

  16. M. Schönberg, An. Acad. Bras. Ci. 28, 11 (1956); 29, 473 (1957); 30, 1, 117, 259, 429 (1958); Suppl. Nuovo Cimento (X) 6, 356 (1957); in Max-Planck-Festchrift 1958 (veb Deutscher Verlag der Wissenschaften, Berlin).

    Google Scholar 

  17. J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton, University Press, 1983).

    MATH  Google Scholar 

  18. E. Kahler, Rend. Mate. Roma, 21, 425 (1962) P. Becher and H. Joos, Z. Phys. C15, 343 (1982).

    MathSciNet  Google Scholar 

  19. R.P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958). Ph. Guéret, P.R. Holland, A. Kyprianidis and J.P. Vigier, Phys. Lett. 107A, 379 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  20. P.R. Holland, A. Kyprianidis and J.P. Vigier, IHP preprint(1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Holland, P.R. (1986). Minimal Ideals and Clifford Algebras in the Phase Space Representation of Spin-1/2 Fields. In: Chisholm, J.S.R., Common, A.K. (eds) Clifford Algebras and Their Applications in Mathematical Physics. NATO ASI Series, vol 183. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4728-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4728-3_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8602-8

  • Online ISBN: 978-94-009-4728-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics