Skip to main content

Some Possible Roles of Polyphosphate in Microorganisms

  • Chapter
Novel Biodegradable Microbial Polymers

Part of the book series: NATO ASI Series ((NSSE,volume 186))

Abstract

Excess phosphate accumulation in microorganisms has been identified with a variety of biological polymers. Prominent among these are polyphosphates (Pn) which have been associated with capsid in Neisseria gonorrhoea (Noegel and Gotschlich, 1983), outside the plasma membrane (Tijssen and von Steveninck, 1984; Umanov et a1, 1975) or as long chain cytoplasmic reserves in a variety of microorganisms (Harold, 1966). Recognized over 150 years ago as one of the earliest biopolymers, interest in this molecule was renewed when Lipman (1941) pointed out that Pn could serve as sources for high energy phosphate. Subsequent studies by Harold (1966), Mühradt (1971) and Kulaev (1975) identified a wide variety of biosynthetic reactions involving Pn. Further the recognition that selected populations of microorganisms can remove excess phosphate has led to interest in this identification and the mechanism(s) of phosphate uptake and release (Harold, 1966). As will be addressed in this workshop, the lack of sufficiently sensitive analytical methods to determine the size and concentration of Pn, as well as the absence of appropriate mutants, have limited our understanding of the role of Pn in microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer, K., Stuyve, M., Bosch, D., Benz, R., and Tommassen. J. (1989) One single lysine residue is responsible for the special interaction between polyphosphate and the outer membrane porin PhoE of Escherichia coli. J. Biol. Chem. 264, 16393–16398.

    CAS  Google Scholar 

  • Chikarmane, H., Yashphe, J., Iranzo, M., and Halvorson X.O. (1990) Inorganic phosphate transport in Acinetobacter Zwoffi. (submitted for publication).

    Google Scholar 

  • Deane, E.M. and O’Brien, R.W. (1981) Uptake of phosphate by symbiotic and free-living dinoflagellates. Arch. Microbiol. 128, 307–310.

    Article  CAS  Google Scholar 

  • Fuhs, G.W. and Chen, M. (1975) Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microb. Ecol. 2, 119–138.

    Article  CAS  Google Scholar 

  • Halvorson, H.O., Suresh, N., Roberts, M.F., Goccia, M. and Chikarmane, H.M. (1987) Metabolically active surface polyphosphate pool in Acinetobacter Zwoffi. In: Torriani-Gorini, A., Rothman, F.G., Silver, S., Wright A., and Yagil, E. (eds.), Phosphate Metabolism and Cellular Regulation in Microorganisms. Am. Soc. Microbiology Publishers, Washington, DC. pp 220–224.

    Google Scholar 

  • Halvorson, H.O., Keynan, A., and Kornberg, H.L. (1990) Utilization of calcium phosphates for microbial growth at alkaline pH. Soil Biol. and Biochem. (in press).

    Google Scholar 

  • Harold, F.M. (1966) Inorganic polyphosphates in biology structure, metabolism and function. Bacteriol. Rev. 30, 772–794.

    CAS  Google Scholar 

  • Juni, E. (1972) Interspecies transformation of Acinetobacter: Genetic evidence for a ubiquitous genus. J. Bacteriol. 12, 917–931.

    Google Scholar 

  • Kjelstad, B., Johnsson, A., Furuheim, K.M., Bergan, A.S., and Krane, J. (1989) Hyperthermia induced polyphosphate changes in Propionibacterium acnes as studies by P NMR. Z.Naturforsch. 44, 45–48.

    Google Scholar 

  • Kornberg, S.R. (1957) Adenosine triphosphate synthesis from polyphosphate by an enzyme from Escherichia coli. Biochem. Biophys. Acta, 26, 294–300.

    Article  CAS  Google Scholar 

  • Kulaev, I.S. (1975) Biochemistry of inorganic polyphosphates. Rev. Physioll. Biochem. Pharmacol. 73, 131–158.

    Article  CAS  Google Scholar 

  • Kulaev, I.S., Szymona, O.V., and Bobyk, M.A. (1968) The biosynthesis of Inorganic polyphosphates in Neurospora crassa. Biokhimiya 33, 419–434.

    CAS  Google Scholar 

  • Krueger, R.D. Harper, S.H., Campbell, J.W. and Fahrney, D.E. (1986) Kinetics of phosphate uptake, growth, and accumulation of cyclic diphosphoglycerate in a phosphate-limited continuous culture of Methanobacterium thermoautotrophicum, J. Bacteriol. 167, 49–56.

    CAS  Google Scholar 

  • Lee, P.C., Bochner, B.R., and Ames, B.N. (1983) AppppA, heat-shock stress, and cell oxidation, Proc. Natl. Acad. Sci. USA, 80, 7496–7500.

    Article  CAS  Google Scholar 

  • Lipman, F. (1941) Metabolic generation and utilization of phosphate bond energy. Advances Enzymol. 1, 99–162.

    Google Scholar 

  • Múhradt, P.F. (1971) Synthesis of high molecular weight polyphosphate with a partially purified enzyme from Salmonella. J. Gen. Microbiol. Methods 65, 115–122.

    Google Scholar 

  • Noegel, A. and Gotschlich, E.C. (1983) Isolation of a high molecular weight polyphosphate from Neissera gonorrhoea. J. Exptl. Med. 157, 2049–2060.

    Article  CAS  Google Scholar 

  • Pepin, C.A. and Wood, X.G. (1987) The mechanism of utilization of polyphosphate by polyphosphate glucokinase from Propionibacterium shermanii. J. Biol. Chem. 262, 5223–5226.

    CAS  Google Scholar 

  • Pilatus, U., Mayer, A. and Hildebrandt, A. (1989) Nuclear polyphosphate as a possible source of energy during the sporulation of Physarium polycephalum. Arch. Biochem. Biophys. 275, 215–223.

    Article  CAS  Google Scholar 

  • Rao, N.N., and Torriani, A. (1988) Utilization by Escherichia coli of a high molecular weight linear polyphosphate: roles of phosphatases and pore proteins. J. Bacteriol. 170, 5216–5223.

    CAS  Google Scholar 

  • Reusch, R.N. (1989) Poly-beta-hydroxybutyrate/calcium polyphosphate complexes in eukaryotic membranes. Proc. Soc. Exp. Biol. Med. 191, 377–381.

    CAS  Google Scholar 

  • Reusch, R.N. and Sadoff, N.L. (1988) Putative structure and functions of a poly-beta-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc. Natl. Acad. Sci. USA 85, 4176–4180.

    Article  CAS  Google Scholar 

  • Robinson, N.A., Clark, J.E., and Wood, H.G. (1987) Polyphosphate kinase from Propionibacterium shermanii. Demonstration that polyphosphates are primers, and determination of the size of the synthesized polyphosphate, J. Biol. Chem., 262, 5216–5222.

    CAS  Google Scholar 

  • Skorko, R., Osipiuk, J., and Stetter, K.O. (1989) Glycogen-bound polyphosphate kinase from the archaebacterium Sulfolobus acidocaldarius. J. Bacteriol. 171, 5162–5164.

    CAS  Google Scholar 

  • Suresh, N., Warburg, R., Timmerman, M., Wells, J., Goccia, M., Roberts, M.F. and Halvorson, H.O. (1955) New Strategies for the isolation of microorganisms responsible for phosphate accumulation. Wat. Sci. Technol. 17, 99–111.

    Google Scholar 

  • Tijssen, J.P.F. and von Steveninck, J. (1984) Detection of a yeast polyphosphate fraction located outside the plasma membrane by the method of phosphorous -31 nuclear magnetic resonance, Biochem. Biophys. Res. Comm. 119, 447–451.

    Article  CAS  Google Scholar 

  • Torriani-Gorini, A., Rothman, F.G., Silver, S., Wright, A., and Yagil, E. (1987) Phosphate Metabolism and Cellular Regulation in Microorganisms. Am. Soc. Microbiol. Publishers, Washington, DC.

    Google Scholar 

  • Umnov, A.M., Steblyak, A.G., Umnova, N.S., Mansurova, S.E. and Kulaev, I.S. (1975) Possible physiological role of the high molecular weight polyphosphate and polyphosphate phosphohydrolase system in Neurospora crassa, Mikrobiologiga, 44, 414–421.

    CAS  Google Scholar 

  • Yashphe, J., Chikarmane, H., Iranzo, M. and Halvorson, H. O. (1990) Phosphatases of Acinetobacter Iwoffi, Localization and regulation of Synthesis by Orthophosphate. Current Microbiol. 20, 273–280.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Halvorson, H.O. (1990). Some Possible Roles of Polyphosphate in Microorganisms. In: Dawes, E.A. (eds) Novel Biodegradable Microbial Polymers. NATO ASI Series, vol 186. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2129-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2129-0_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7458-2

  • Online ISBN: 978-94-009-2129-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics