Skip to main content

Assessing Fibrosis in Kidney Biopsies

  • Reference work entry
  • First Online:
Biomarkers in Kidney Disease

Abstract

Renal interstitial fibrosis and tubular atrophy (IFTA) is one of the primary end points of kidney injury, and accurate IFTA quantitation in biopsy samples is crucial in establishing the diagnosis and assessing disease severity. Therefore, knowing the basic procedures in the preparation of biopsy for IFTA and specific staining techniques available for IFTA is pivotal to the pathologists’ practice. This chapter reviews the mechanisms of IFTA pathogenesis pertinent to biopsy evaluation and the common techniques used to evaluate biopsies for IFTA. The challenges facing IFTA evaluation in biopsies and recent technical developments in this field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMP:

Bone morphogenic protein

CCR-2:

C-C chemokine receptor type 2

CKD:

Chronic kidney disease

DC:

Dendritic cell

ECM:

Extracellular matrix

EMR-1:

EGF-like module-containing mucin-like hormone receptor-like 1

EMT:

Epithelial-mesenchymal transition

EndoMT:

Endothelial-mesenchymal transition

eNOS:

Endothelial nitric oxide synthase

ERKs:

Extracellular-signal-regulated kinases

FGF-2:

Fibroblast growth factor 2

FSP-1:

Fibroblast-specific protein 1

GFR:

Glomerular filtration rate

GSK:

Glycogen synthase kinase

HGF:

Hepatocyte growth factor

HIF:

Hypoxia-induced factor

IF:

Interstitial fibrosis

IFTA:

Interstitial fibrosis/tubular atrophy

IHC:

Immunohistochemical

ILK:

Integrin-linked kinase

JAK/STAT:

Janus kinase/signal transducer and activator of transcription

LTBP:

Latent TGF-β binding protein

miRNA:

MicroRNA

MMP:

Matrix metalloproteinase

NF-κB:

Nuclear factor κB

PAPMS:

Pathogen-associated molecular patterns

PDGF:

Platelet-derived growth factor

PKC:

Protein kinase C

SMA:

Smooth muscle actin

TA:

Tubular atrophy

TEC:

Tubular epithelial cell

TGF-β:

Transforming growth factor-beta

TIMP:

Tissue inhibitors of metalloproteinases

TLR:

Toll-like receptor

tPA:

Tissue plasminogen activator

TSP-1:

Thrombospondin-1

tTG:

Tissue transglutaminase

USAG-1:

Uterine sensitization-associated gene 1 (also known as sclerostin domain-containing protein 1)

VEGF:

Vascular endothelial growth factor

References

  • Abrass CK, Hansen KM, Patton BL. Laminin alpha4-null mutant mice develop chronic kidney disease with persistent overexpression of platelet-derived growth factor. Am J Pathol. 2010;176(2):839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal SK, Sethi S, Dinda AK. Basics of kidney biopsy: a nephrologist’s perspective. Indian J Nephrol. 2013;23(4):243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders HJ, Ryu M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 2011;80(9):915–25.

    Article  CAS  PubMed  Google Scholar 

  • Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol. 2010;6(11):643–56.

    Article  PubMed  Google Scholar 

  • Bottinger EP. TGF-beta in renal injury and disease. Semin Nephrol. 2007;27(3):309–20.

    Article  CAS  PubMed  Google Scholar 

  • Bunnag S, Einecke G, Reeve J, Jhangri GS, Mueller TF, Sis B, Hidalgo LG, Mengel M, Kayser D, Kaplan B, Halloran PF. Molecular correlates of renal function in kidney transplant biopsies. J Am Soc Nephrol. 2009;20(5):1149–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi BS, Shin MJ, Shin SJ, Kim YS, Choi YJ, Kim YS, Moon IS, Kim SY, Koh YB, Bang BK, Yang CW. Clinical significance of an early protocol biopsy in living-donor renal transplantation: ten-year experience at a single center. Am J Transplant. 2005;5(6):1354–60.

    Article  PubMed  Google Scholar 

  • Choi HY, Lee HG, Kim BS, Ahn SH, Jung A, Lee M, Lee JE, Kim HJ, Ha SK, Park HC. Mesenchymal stem cell-derived microparticles ameliorate peritubular capillary rarefaction via inhibition of endothelial-mesenchymal transition and decrease tubulointerstitial fibrosis in unilateral ureteral obstruction. Stem Cell Res Ther. 2015;6:18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung AC, Lan HY. MicroRNAs in renal fibrosis. Front Physiol. 2015;6:50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doello K. A new pentachrome method for the simultaneous staining of collagen and sulfated mucopolysaccharides. Yale J Biol Med. 2014;87(3):341–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eardley KS, Kubal C, Zehnder D, Quinkler M, Lepenies J, Savage CO, Howie AJ, Kaur K, Cooper MS, Adu D, Cockwell P. The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int. 2008;74(4):495–504.

    Article  PubMed  Google Scholar 

  • Eddy AA. Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol. 1996;7(12):2495–508.

    CAS  PubMed  Google Scholar 

  • Farris AB, Alpers CE. What is the best way to measure renal fibrosis?: A pathologist’s perspective. Kidney Int Suppl. 2014;4(1):9–15.

    Article  Google Scholar 

  • Farris AB, Colvin RB. Renal interstitial fibrosis: mechanisms and evaluation. Curr Opin Nephrol Hypertens. 2012;21(3):289–300.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farris AB, Adams CD, Brousaides N, Della Pelle PA, Collins AB, Moradi E, Smith RN, Grimm PC, Colvin RB. Morphometric and visual evaluation of fibrosis in renal biopsies. J Am Soc Nephrol. 2010;22(1):176-86.

    Google Scholar 

  • Farris AB, Adams CD, Brousaides N, Della Pelle PA, Collins AB, Moradi E, Smith RN, Grimm PC, Colvin RB. Morphometric and visual evaluation of fibrosis in renal biopsies. J Am Soc Nephrol. 2011;22(1):176–86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farris AB, Lawson D, Cohen C, Rosen S. Medullary injury in the human renal biopsy: fibrosis assessment. Lab Investig. 2013;93(Supplement 1):387A–8.

    Google Scholar 

  • Farris AB, Chan S, Climenhaga J, Adam B, Bellamy CO, Seron D, Colvin RB, Reeve J, Mengel M. Banff fibrosis study: multicenter visual assessment and computerized analysis of interstitial fibrosis in kidney biopsies. Am J Transplant. 2014;14(4):897–907.

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL, Sheppard D, Duffield JS, Violette S. Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med. 2013;5(167), 167sr161.

    Article  Google Scholar 

  • Furness PN, Taub N, Assmann KJ, Banfi G, Cosyns JP, Dorman AM, Hill CM, Kapper SK, Waldherr R, Laurinavicius A, Marcussen N, Martins AP, Nogueira M, Regele H, Seron D, Carrera M, Sund S, Taskinen EI, Paavonen T, Tihomirova T, Rosenthal R. International variation in histologic grading is large, and persistent feedback does not improve reproducibility. Am J Surg Pathol. 2003;27(6):805–10.

    Article  PubMed  Google Scholar 

  • Haas M, Sis B, Racusen LC, Solez K, Glotz D, Colvin RB, Castro MC, David DS, David-Neto E, Bagnasco SM, Cendales LC, Cornell LD, Demetris AJ, Drachenberg CB, Farver CF, Farris 3rd AB, Gibson IW, Kraus E, Liapis H, Loupy A, Nickeleit V, Randhawa P, Rodriguez ER, Rush D, Smith RN, Tan CD, Wallace WD, Mengel M, Banff meeting report writing, committee. Banff 2013 meeting report: inclusion of C4d-negative antibody-mediated rejection and antibody-associated arterial lesions. Am J Transplant. 2014;14(2):272–83.

    Article  CAS  PubMed  Google Scholar 

  • Habuka M, Fagerberg L, Hallstrom BM, Kampf C, Edlund K, Sivertsson A, Yamamoto T, Ponten F, Uhlen M, Odeberg J. The kidney transcriptome and proteome defined by transcriptomics and antibody-based profiling. PLoS One. 2014;9(12), e116125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Higgins DF, Kimura K, Iwano M, Haase VH. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle. 2008;7(9):1128–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howie AJ, Brewer DB, Howell D, Jones AP. Physical basis of colors seen in Congo red-stained amyloid in polarized light. Lab Invest. 2008;88(3):232–42.

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Haylor JL, Hau Z, Jones RA, Vickers ME, Wagner B, Griffin M, Saint RE, Coutts IG, El Nahas AM, Johnson TS. Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int. 2009;76(4):383–94.

    Article  CAS  PubMed  Google Scholar 

  • Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176(1):85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan F, Sar A, Gonul I, Benediktsson H, Doulla J, Yilmaz S, Berka N. Graft inflammation and histologic indicators of kidney chronic allograft failure: low-expressing interleukin-10 genotypes cannot be ignored. Transplantation. 2010;90(6):630–8.

    Article  CAS  PubMed  Google Scholar 

  • Klein J, Kavvadas P, Prakoura N, Karagianni F, Schanstra JP, Bascands JL, Charonis A. Renal fibrosis: insight from proteomics in animal models and human disease. Proteomics. 2011;11(4):805–15.

    Article  CAS  PubMed  Google Scholar 

  • Konvalinka A, Scholey JW, Diamandis EP. The quest for renal disease proteomic signatures: where should we look? Clin Proteom. 2010;6:45–51.

    Google Scholar 

  • Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest. 2011;121(2):468–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger T, Benke D, Eitner F, Lang A, Wirtz M, Hamilton-Williams EE, Engel D, Giese B, Muller-Newen G, Floege J, Kurts C. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J Am Soc Nephrol. 2004;15(3):613–21.

    Article  PubMed  Google Scholar 

  • Lattouf R, Younes R, Lutomski D, Naaman N, Godeau G, Senni K, Changotade S. Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem. 2014;62(10):751–8.

    Article  PubMed  Google Scholar 

  • LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H, Kalluri R. Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 2013;19(8):1047–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian YG, Zhou QG, Zhang YJ, Zheng FL. VEGF ameliorates tubulointerstitial fibrosis in unilateral ureteral obstruction mice via inhibition of epithelial-mesenchymal transition. Acta Pharmacol Sin. 2011;32:1513–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SL, Kisseleva T, Brenner DA, Duffield JS. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 2008;173(6):1617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 2006;69(2):213–7.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Kou P, Zeng Q, Pei G, Li Y, Liang H, Xu G, Chen S. CD4+ T Lymphocytes, especially Th2 cells, contribute to the progress of renal fibrosis. Am J Nephrol. 2012;36(4):386–96.

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Liu YZ, Feng Y, Xu YF, Che JP, Wang GC, Zheng JH. Novel evidence demonstrates that epithelial-mesenchymal transition contributes to nephrolithiasis-induced renal fibrosis. J Surg Res. 2013;182(1):146–52.

    Article  CAS  PubMed  Google Scholar 

  • Mack M, Rosenkranz AR. Basophils and mast cells in renal injury. Kidney Int. 2009;76(11):1142–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maluf DG, Mas VR, Archer KJ, Yanek K, Gibney EM, King AL, Cotterell A, Fisher RA, Posner MP. Molecular pathways involved in loss of kidney graft function with tubular atrophy and interstitial fibrosis. Mol Med. 2008;14(5–6):276–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol. 2003;14(5):1358–73.

    Article  CAS  PubMed  Google Scholar 

  • Meas-Yedid V, Servais A, Noel LH, Panterne C, Landais P, Herve N, Brousse N, Kreis H, Legendre C, Thervet E, Olivo-Marin JC, Morelon E. New computerized color image analysis for the quantification of interstitial fibrosis in renal transplantation. Transplantation. 2011;92(8):890–9.

    Article  PubMed  Google Scholar 

  • Mezzano S, Aros C, Droguett A, Burgos ME, Ardiles L, Flores C, Schneider H, Ruiz-Ortega M, Egido J. NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant. 2004;19(10):2505–12.

    Article  CAS  PubMed  Google Scholar 

  • Moreso F, Lopez M, Vallejos A, Giordani C, Riera L, Fulladosa X, Hueso M, Alsina J, Grinyo JM, Seron D. Serial protocol biopsies to quantify the progression of chronic transplant nephropathy in stable renal allografts. Am J Transplant. 2001;1(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  • Naito T, Ma LJ, Yang H, Zuo Y, Tang Y, Han JY, Kon V, Fogo AB. Angiotensin type 2 receptor actions contribute to angiotensin type 1 receptor blocker effects on kidney fibrosis. Am J Physiol Renal Physiol. 2010;298(3):F683–91.

    Article  CAS  PubMed  Google Scholar 

  • Niedermeier M, Reich B, Rodriguez Gomez M, Denzel A, Schmidbauer K, Gobel N, Talke Y, Schweda F, Mack M. CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc Natl Acad Sci U S A. 2009;106(42):17892–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paust HJ, Ostmann A, Erhardt A, Turner JE, Velden J, Mittrucker HW, Sparwasser T, Panzer U, Tiegs G. Regulatory T cells control the Th1 immune response in murine crescentic glomerulonephritis. Kidney Int. 2011;80(2):154–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilling D, Fan T, Huang D, Kaul B, Gomer RH. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One. 2009;4(10), e7475.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prunotto M, Ghiggeri G, Bruschi M, Gabbiani G, Lescuyer P, Hocher B, Chaykovska L, Berrera M, Moll S. Renal fibrosis and proteomics: current knowledge and still key open questions for proteomic investigation. J Proteomics. 2011;74(10):1855–70.

    Article  CAS  PubMed  Google Scholar 

  • Reich B, Schmidbauer K, Rodriguez Gomez M, Johannes Hermann F, Gobel N, Bruhl H, Ketelsen I, Talke Y, Mack M. Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model. Kidney Int. 2013;84(1):78–89.

    Article  CAS  PubMed  Google Scholar 

  • Reinders ME, Bank JR, Dreyer GJ, Roelofs H, Heidt S, Roelen DL, Al Huurman V, Lindeman J, van Kooten C, Claas FH, Fibbe WE, Rabelink TJ, de Fijter JW. Autologous bone marrow derived mesenchymal stromal cell therapy in combination with everolimus to preserve renal structure and function in renal transplant recipients. J Transl Med. 2014;12:331.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers NM, Ferenbach DA, Isenberg JS, Thomson AW, Hughes J. Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nat Rev Nephrol. 2014;10(11):625–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rybinski B, Franco-Barraza J, Cukierman E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol Genomics. 2014;46(7):223–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh M, Kashihara N, Yamasaki Y, Maruyama K, Okamoto K, Maeshima Y, Sugiyama H, Sugaya T, Murakami K, Makino H. Renal interstitial fibrosis is reduced in angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol. 2001;12(2):317–25.

    CAS  PubMed  Google Scholar 

  • Schrimpf C, Xin C, Campanholle G, Gill SE, Stallcup W, Lin SL, Davis GE, Gharib SA, Humphreys BD, Duffield JS. Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. J Am Soc Nephrol. 2012;23(5):868–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scian MJ, Maluf DG, Archer KJ, Suh JL, Massey D, Fassnacht RC, Whitehill B, Sharma A, King A, Gehr T, Cotterell A, Posner MP, Mas V. Gene expression changes are associated with loss of kidney graft function and interstitial fibrosis and tubular atrophy: diagnosis versus prediction. Transplantation. 2011;91(6):657–65.

    Article  PubMed  Google Scholar 

  • Semedo P, Donizetti-Oliveira C, Burgos-Silva M, Cenedeze MA, Avancini Costa Malheiros DM, Pacheco-Silva A, Camara NO. Bone marrow mononuclear cells attenuate fibrosis development after severe acute kidney injury. Lab Invest J Tech Methods Pathol. 2010;90(5):685–95.

    Article  Google Scholar 

  • Sethi S, Vrana JA, Theis JD, Dogan A. Mass spectrometry based proteomics in the diagnosis of kidney disease. Curr Opin Nephrol Hypertens. 2013;22(3):273–80.

    Article  CAS  PubMed  Google Scholar 

  • Snelgrove SL, Kausman JY, Lo C, Ooi JD, Coates PT, Hickey MJ, Holdsworth SR, Kurts C, Engel DR, Kitching AR. Renal dendritic cells adopt a pro-inflammatory phenotype in obstructive uropathy to activate T cells, but do not directly contribute to fibrosis. Am J Pathol. 2011;180(1):91–103

    Google Scholar 

  • Sorensen I, Susnik N, Inhester T, Degen JL, Melk A, Haller H, Schmitt R. Fibrinogen, acting as a mitogen for tubulointerstitial fibroblasts, promotes renal fibrosis. Kidney Int. 2011;80(10):1035–44.

    Article  PubMed  Google Scholar 

  • Street JM, Souza AC, Alvarez-Prats A, Horino T, Hu X, Yuen PS, Star RA. Automated quantification of renal fibrosis with Sirius Red and polarization contrast microscopy. Physiol Rep. 2014;2(7):e12088:1–9.

    Google Scholar 

  • Sun S, Ning X, Zhai Y, Du R, Lu Y, He L, Li R, Wu W, Sun W, Wang H. Egr-1 mediates chronic hypoxia-induced renal interstitial fibrosis via the PKC/ERK pathway. Am J Nephrol. 2014;39(5):436–48.

    CAS  PubMed  Google Scholar 

  • Sund S, Grimm P, Reisaeter AV, Hovig T. Computerized image analysis vs semiquantitative scoring in evaluation of kidney allograft fibrosis and prognosis. Nephrol Dial Transplant. 2004;19(11):2838–45.

    Article  PubMed  Google Scholar 

  • Tapmeier TT, Fearn A, Brown K, Chowdhury P, Sacks SH, Sheerin NS, Wong W. Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney Int. 2010;78(4):351–62.

    Article  CAS  PubMed  Google Scholar 

  • Vilayur E, Harris DC. Emerging therapies for chronic kidney disease: what is their role? Nat Rev Nephrol. 2009;5(7):375–83.

    Article  CAS  PubMed  Google Scholar 

  • Walker PD, Cavallo T, Bonsib SM, Ad Hoc Committee on Renal Biopsy Guidelines of the Renal Pathology, Society. Practice guidelines for the renal biopsy. Mod Pathol. 2004;17(12):1555–63.

    Article  PubMed  Google Scholar 

  • Wang X, Zhou Y, Tan R, Xiong M, He W, Fang L, Wen P, Jiang L, Yang J. Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol. 2010;299(5):F973–82.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang B, Du F, Su X, Sun G, Zhou G, Bian X, Liu N. Epigallocatechin-3-gallate attenuates unilateral ureteral obstruction-induced renal interstitial fibrosis in mice. J Histochem Cytochem. 2015;63(4):270–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson L, Gilbert T, Sipos A, Toma I, Pennisi DJ, Peti-Peterdi J, Little MH. Loss of renal microvascular integrity in postnatal Crim1 hypomorphic transgenic mice. Kidney Int. 2009;76(11):1161–71.

    Article  PubMed  Google Scholar 

  • Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Roberts IS, Cook HT, Troyanov S, Alpers CE, Amore A, Barratt J, Berthoux F, Bonsib S, Bruijn JA, Cattran DC, Coppo R, D’Agati V, D’Amico G, Emancipator S, Emma F, Feehally J, Ferrario F, Fervenza FC, Florquin S, Fogo A, Geddes CC, Groene HJ, Haas M, Herzenberg AM, Hill PA, Hogg RJ, Hsu SI, Jennette JC, Joh K, Julian BA, Kawamura T, Lai FM, Li LS, Li PK, Liu ZH, Mackinnon B, Mezzano S, Schena FP, Tomino Y, Walker PD, Wang H, Weening JJ, Yoshikawa N, Zhang H. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 2009;76(5):546–56.

    Article  Google Scholar 

  • Xia Y, Entman ML, Wang Y. CCR2 regulates the uptake of bone marrow-derived fibroblasts in renal fibrosis. PLoS One. 2013;8(10), e77493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Shultz RW, Mars WM, Wegner RE, Li Y, Dai C, Nejak K, Liu Y. Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J Clin Invest. 2002;110(10):1525–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16(5):535–43. 531p following 143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol JASN. 2010;21(11):1819–34.

    Article  CAS  PubMed  Google Scholar 

  • Zununi Vahed S, Samadi N, Ardalan M. Diagnosis of interstitial fibrosis and tubular atrophy in kidney allograft: implementation of microRNAs. Iran J Kidney Dis. 2014;8(1):4–12.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alton B. Farris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Nezami, B.G., Farris, A.B. (2016). Assessing Fibrosis in Kidney Biopsies. In: Patel, V., Preedy, V. (eds) Biomarkers in Kidney Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7699-9_51

Download citation

Publish with us

Policies and ethics