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Abstract Plant lectins are a unique group of proteins and glycoproteins with 
potent biological activity and have received widespread attention for many years. 
They can be found in wheat, corn, tomatoes, peanuts, kidney beans, bananas, peas, 
lentils, soybeans, mushrooms, tubers, seeds, mistletoe and potatoes among many 
others. Due to their ability to bind reversibly with specific carbohydrate structures 
and their abundant availability, plant lectins have commonly been used as a molec-
ular tool in various disciplines of biology and medicine. Whilst once thought of 
being a dietary toxin, the focus on plant lectins has since shifted to understanding 
the useful properties of these lectins and utilizing them in medicinal applications 
to advance human health. This chapter reviews the current and potential applica-
tions of plant lectins in various areas of medically related research.

5.1  Introduction

The word “lectin” originates from the Latin word “lego” which means, “to choose” 
or “pick out” [1]. Lectins are defined as sugar-binding proteins that are neither anti-
bodies nor enzymes [2]. According to Rudiger and Gabius (2001), a glycoprotein 
must meet three distinct requirements to qualify as a lectin. Firstly, a lectin is a 
protein/glycoprotein that binds carbohydrate(s). Secondly, lectins are not immuno-
globulins (antibodies). Thirdly, lectins do not biochemically modify the carbohy-
drates which they bind [3].
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Lectins were first discovered more than 100 years ago in plants, when in 1888, 
Stillmark found that extracts of castor bean (Ricinus communis) seeds contained a 
protein that could agglutinate animal red blood cells [4]. Following the discovery 
of Stillmark, a number of other plant seed extracts demonstrated the same ability 
to agglutinate red blood cells, but escalating interest in lectins was sparked dur-
ing the Second World War as a result of the awareness of using lectins for blood 
typing. Because some lectins were found to be specific for various blood types 
(A, B or O), and others were found to have specificities for different glycans, lec-
tins were used for blood typing before blood transfusions were performed [5, 6]. 
Lectins have since been found in almost every plant species studied and are par-
ticularly abundant in the seeds of leguminous plants. They have also been found in 
various tissues and organs of many vertebrates and invertebrates [7]. Due to their 
biochemical properties, lectins have become a beneficial tool in several fields of 
biological research including immunology [8], study of membrane structure, cell 
recognition [9], cancer research [10], and clinical microbiology [11]. Chapter 2 in 
this book provides more interesting stories regarding the history of lectinology.

Despite a lack of complete understanding of their biological roles, lectins have 
been exploited for several years in many applications. The use of lectins has facili-
tated advancements in many areas of medical research. Lectins are promising 
candidates as useful therapeutic agents because they can recognize specific carbo-
hydrate structures such as proteoglycans, glycoproteins, and glycolipids, resulting 
in the regulation of various cells via glycoconjugates and their physiological and 
pathological phenomena through host-pathogen interactions and cell–cell commu-
nications [12].

5.2  Types of Plant Lectins

Plant lectins can be categorized based on their overall mature structure into  
merolectins, hololectins, chimerolectins and superlectins (Fig. 5.1a). Firstly, merolec-
tins are small monomeric lectins consisting exclusively of a single carbohydrate-
binding domain. Due to their monovalent nature, they do not possess agglutinating 
activity, such as hevein isolated from the latex of Hevea brasiliensis [13]. Figure 5.1b 
shows the crystal structure of hevein with (4s)-2-methyl-2,4-pentanediol. Next are 
hololectins, also exclusively built up of carbohydrate-binding domains but con-
taining at least two such domains that are either identical or very homologous and 
bind either the same or structurally similar sugar(s), and most plant lectins are 
included in this subgroup. One example is Concanavalin A which is a tetrameric 
protein and binds specifically α-d-mannosyl and α-d-glucosyl residues (two hex-
oses differing only by the alcohol on carbon 2). A refined structure of Concanavalin 
A with mannose at 2.0 angstroms resolution is shown in Fig. 5.1b [14]. Another 
example is peanut (Arachis hypogaea) agglutinin [15]. It is a 110-kDa, homote-
trameric non-glycosylated protein (without RIP activity) and shows a specific-
ity for the tumor-associated T-antigenic disaccharide Galβ1,3GalNAc. The third 
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Fig. 5.1  Classifications of plant lectins and the crystal structures of representative plant lectins 
under the classification standard of mature structure. Crystal data were from RCSB protein data 
bank and visualized by the UCSF chimera software as used previously [23]. Protein crystal struc-
tures were from PROTEIN DATA BANK: Hevein (PDB ID: 1Q9B); Concanavalin A (PDB ID: 
5CNA) [14]; Ricin (PDB ID: 2AAI) [16]; Peanut agglutinin (PDB ID: 1CR7); BC2L-C (N-ter-
minal domain: 2WQ4; C-terminal domain: 2XR4) [18]. Please note that BC2L-C is a bacterial 
lectin since currently no crystal structure of plant superlectin has been released. The coil, helix 
and strand are shown in dark grey, red and green, respectively



58 C. S. F. Bah et al.

group is chimerolectins, which are fusion proteins consisting of one or more  
carbohydrate-binding domain(s) tandemly arrayed to an unrelated domain. An example 
of this is ricin, which can be classified as both lectin and type II ribosome inactivating 
protein (RIP) [16]. As shown in Fig. 5.1b, ricin consists of two parts; an A chain (with 
N-glycosidase activity/RIP activity) and a B chain (hemagglutinating/lectin activity) 
with the B chain capable of binding different carbohydrates, such as β-d-glucose and 
β-d-galactose as shown in the figure. Lastly, superlectins are a type of chimerolectins 
which consist of at least two structurally different domains which recognize structur-
ally unrelated carbohydrates [17]. For instance, TxLC-I is a superlectin isolated from 
tulip bulbs, and it consists of a mannose-binding domain and an unrelated GalNAc-
binding domain. Since there is no crystal data on plant superlectin, the crystal struc-
ture of a superlectin purified from Burkholderia cepacia (a Gram-negative bacterium), 
named BC2L-A, is used for demonstration (Fig. 5.1b) [18]. The N-terminal domain of 
BC2L-A is a novel TNF-α-like fucose-binding lectin while the C-terminal is a calcium-
dependent bacterial lectin.

Plant lectins can also be grouped into different families according to some 
common features (legume lectins, type II ribosome-inactivating proteins, mono-
cot mannose-binding lectins, and other lectins) [19]. Legume lectins are the best 
known lectin family. Lectin content in seeds is higher compared to the content 
in the bark, leaves, roots and stems of leguminous plants. Other smaller families 
of plants whose lectins have been characterized are Gramineae (cereals, such as 
wheat germ) and Solanaceae (potatoes and tomatoes). Monocot-binding lectins 
exhibit an exclusive specificity towards mannose and are built up of 1, 2, 3, or 
4 subunits of about 12 kDa while chitin-binding lectins are composed of hevein 
domains [20]. For more information, readers are referred to an excellent review by 
Van Damme et al. (1998) describing in detail how plant lectins are structurally and 
evolutionarily related [21].

Because of the tremendous diversity of carbohydrate-binding specificities 
among the plant lectins, some researchers classify them according to the small 
carbohydrate haptens they recognize, e.g., galactose-binding lectins or GlcNAc-
binding lectins (Fig. 5.1a). The specificity of a lectin is usually defined in terms 
of the monosaccharide(s) or glycosaccharides that inhibit lectin-induced agglu-
tination [22]. This specificity is usually determined by comparing sugars on the 
basis of the minimum concentration needed to inhibit hemagglutination. If the 
lectin-binding carbohydrate is present freely dissolved and at a sufficiently high 
concentration, it will compete with the red cell glycoconjugates for the lectin and 
agglutination will not take place.

5.3  Medicinal Applications of Plant Lectins

Due to their versatility, lectins are frequently used in biological and medical 
research. The overwhelming success of plant lectins is based firstly on their highly 
specific carbohydrate-binding activity, and the biological effects they provoke 
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in various organisms. Being able to procure reasonable amounts of pure lectin  
preparations also contributes to their success [20]. Consequently, screening of 
plant species in the search for lectins with new and useful biological properties has 
been taking place for several decades.

5.3.1  Plant Lectins in Serology

Because of their ability to distinguish carbohydrate determinants in human blood 
cells, lectins have historically been used for blood typing. Serology was the first 
discipline of medicine that relies on the specific biological activity of lectins [24]. 
Lectins agglutinate erythrocytes by binding to a carbohydrate-containing moiety 
on the surface of the cells and forming cross-bridges between them [4]. This use-
ful property of lectins endows them the ability to discriminate between red blood 
cells that have different terminal, non-reducing sugars in the major glycoprotein 
that carries the blood group antigens [25]. For example, blood group A is deter-
mined by the presence of N-acetyl-galactosamine in the terminal, non-reducing 
end of the oligosaccharide portion of the receptor protein while group B is deter-
mined by galactose in this position. If both of these sugars are lacking, fucose is 
the terminal sugar and this determines blood group O. In this way, lectins with 
different specificities can be used in blood typing to differentiate between blood 
types. For readers seeking a comprehensive compilation of lectins that have been 
studied for blood group serology, the review by Judd (1980) is recommended [26].

5.3.2  Plant Lectins as Mitogens

A limited number of lectins from plants possess the unique ability to induce quies-
cent lymphocytes to grow and divide, a phenomenon known as mitogenic stimula-
tion [27]. Mitogenic lectins mimic the action of antigens on lymphocytes, except 
that they activate a large proportion (as much as 70–80 %) of the cells, whereas 
antigens stimulate only specific clones, each of which compromise a tiny propor-
tion, 0.1 % or less, of the total number of lymphocytes. Because of their ability 
to stimulate multiple lymphocyte clones, lectins are classified as polyclonal mito-
gens. One of the most valuable outcomes of this proliferative ability of lectins has 
been an increased understanding of the relationship between chromosomal abnor-
mality and human diseases, which has tremendously helped in diagnosis [28]. 
Besides other cells, lymphocytes have been the usual target cells for mitogenic 
assays, and the study of lectin-lymphocyte interaction has made a significant con-
tribution to elucidating the mechanism of lymphocyte activation and its control, 
further contributing to the understanding of cell growth and development.

The discovery of the first mitogenic lectin was made by Nowell in 1960, 
who found that the lectin of red kidney bean (Phaseolus vulgaris), known as 
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phytohemagglutinin (PHA), possessed the ability to stimulate lymphocytes to 
undergo mitosis [29]. This discovery had a groundbreaking impact on immunol-
ogy as it shattered the then prevailing opinion that lymphocytes were dead-end 
cells incapable of dividing or differentiating further [29]. Within a short time 
thereafter, several other lectins were proven to be mitogenic. Table 5.1 provides 
a few examples of plant lectins with mitogenic activity as such a lectin from the 
tuber of wild cobra lily [30], red kidney bean lectin [31], mushroom lectins [32, 
33], Brazilian camaratu bean lectin [34], and jackfruit seed lectin [35] .

Concanavalin A, a lectin from the Jack bean, is an important mitogen because, 
in contrast to PHA, its activity can be inhibited by low concentrations of monosac-
charides, for example, mannose. This finding provided proof that mitogenic stimu-
lation is the result of binding of lectins to sugars on the surface of the lymphocytes 
and was among the earliest demonstrations for a biological role of cell surface 
sugars [36]. It has been suggested that mitogenic lectins interact with unique 
membrane components that may act as ‘stimulating receptors’, and that non-mito-
genic lectins may not bind to these membrane components [28]. Mitogenic lectins 
are now tools for the study of signal transmission into cells and for the analysis 
of the biochemical events that occur during lymphocyte stimulation in vitro [36]. 
Such properties make them useful tools for the isolation and characterization of 
polysaccharides and glycoconjugates, in cancer research, as diagnostic tools for 
the investigation of early cell-membrane alterations and carbohydrate changes that 
accompany neoplastic processes, and in immunological studies.

Table 5.1  Mitogenic activity of selected plant lectins

Lectin MW (kDa) Carbohydrate 
specificity

Cells Activity References

AFL 13.5 Asialofetuin BALB/c  
splenocytes

increase in IL-2 [30]

DRKBL 67 – BALB/c  
splenocytes

Lower than Con 
A

[31]

GCL 18 Galactose BALB/c  
splenocytes

More potent than 
Con A

[32]

VVL 12.6 Thyroglobulin Mouse T cells 10 fold more 
effective than 
Con A

[33]

CML – Mannose/Glucose Human  
lymphocytes

Similar activity 
to Con A at 
0.78 – 25 μg/
ml dosage

[34]

Jacalin 50 Galactose Human lympho-
cytes

33.7 ± 15 × 103 
ct/min

[35]
Mannose

 AFL a lectin from tubers of Arisaema flavum (Schott.); DRKBL a lectin from Phaseolus vulgaris 
cv. Dark Red Kidney Bean; GCL Ganoderma capense lectin; Con A Concanavalin A; VVL Volva-
riella volvacea lectin; CML Cratylia mollis seed lectin; Jacalin Jackfruit (Artocarpus heterophyl-
lus) seed lectin
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5.3.3  Plant Lectins in Cancer Therapy

Cancer is one of the leading causes of death worldwide. Cancer is a deadly 
 disease, where the abnormal behavior of a single cell type is difficult to treat by 
chemotherapy. It is important in cancer therapy that the treatment targets only the 
affected cells, leaving the normal cells undisturbed, which is quite difficult, espe-
cially in chemotherapy. Anti-cancer drugs available in the current market are not 
 target-specific and elicit several side-effects and complications encountered in the 
clinical management of various forms of cancer, which highlights the urgent need 
for novel effective and less-toxic therapeutic approaches [37]. Recently, focus has 
shifted from using lectins to detect cancer to actually using lectins to combat cancer.

Evidence is now emerging that lectins are dynamic contributors to tumor cell 
recognition (surface markers), cell adhesion and localization, signal transduction 
across membranes, mitogenic stimulation, augmentation of host immune defense, 
cytotoxicity, and apoptosis [38]. A review by De Mejia and Prisecaru (2005) pro-
vides a comprehensive appraisal of the inhibitory effects of plant lectins on malig-
nant cells in vitro and vivo [39]. Table 5.2 below adds some more recent selected 
plant lectins and lists their inhibitory effects on malignant cells.

Small glossy black soybean (Glycine max) lectin inhibited the proliferation of 
breast cancer and hepatoma cells [48]. An anti-tumor action mechanism of soy-
bean lectins has been proposed involving the action of the lectins on tumor cell 
membranes, the reduction of tumor cell proliferation, the induction of tumor-
specific cytotoxicity of macrophages, and apoptosis. Thus, tumor cells are more 
susceptible to attack by macrophages after treatment with lectins. Furthermore, 
lectins exert an immunomodulatory effect by altering interleukins production [54].

Mistletoe lectin (ML) is one of the most studied lectins in clinical trials and 
has demonstrated beneficial effects against cancer development. Additionally their 
mechanisms of action towards cancer treatment have been extensively studied. For 
example, in a study using European mistletoe lectin which demonstrated antiprolif-
erative activity towards human melanoma cells, a significant number of melanoma 
cells started rounding up and exhibited cell shrinkage, chromatin condensation and 
nuclear fragmentation typical for apoptotic body formation indicating apoptotic cell 
death [45]. Three mistletoe lectins, I, II and III (ML-I, II, III) have been isolated 
[55]. Mistletoe lectin-I, which belongs to the type II ribosome-inactivating pro-
tein (RIP II) family and is composed of a catalytically active A-chain with rRNA 
N-glycosidase activity and a B-chain with carbohydrate binding properties, exerted 
potent cytotoxic effects on tumor cells. It also induced apoptosis through both cas-
pase-8/FLICE independent of a death receptor pathway and via a p53- independent 
pathway following ionizing radiation. Meanwhile, mistletoe lectin-II induced 
apoptotic death in cancer cells involving the generation of intracellular hydrogen  
peroxide (H2O2) and activation of a caspase- 9-caspase-3 cascade [46].

The oral consumption of mistletoe lectins as an alternative therapy towards 
cancer therapy has been advocated by some parties as these lectins are resistant 
towards low pH in the stomach and are not affected by proteolytic enzymes in 
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the stomach [56]. Pryme et al. (2007) provide a meticulous case report with more 
information on this topic [56]. However, the usefulness of mistletoe extracts in the 
treatment of malignant melanoma is still controversial for some. This may be in 
part due to the fact that the full molecular mechanisms underlying mistletoe treat-
ment and how it works in vivo are still not completely clarified.

Lectins from several types of mushroom have demonstrated anti-proliferative 
activity including those from Flammulina velutipes [41], Ganoderma capense 
[32], Pholiota adipose [42] and Clitocybe nebularis [43]. A homodimeric 32.4-
kDa lectin was isolated from fresh fruiting bodies of the mushroom Pleurotus 
citrinopileatus [57]. The lectin exerted strong anti-tumor activity in mice bearing 
sarcoma 180, and caused approximately 80 % inhibition of tumor growth when 
administered intraperitoneally at 5 mg/kg daily for a period of 20 days.

As many plant lectins have demonstrated anticancer properties in vitro, and in 
vivo, there clearly is a huge potential for their use as therapeutic agents in can-
cer treatment. Mechanisms of plant lectin action elucidated thus far include pref-
erential binding to cancer cell membranes or their receptors, causing cytotoxicity, 
apoptosis, and inhibition of tumor growth. Plant lectins can be internalized into 
cells, causing cancer cell agglutination and/or aggregation [54]. Ingested lectins 
can also sequester the available body pool of polyamines, in this manner they 
prevent cancer cell growth. The immune system is also affected by alterations in 
the production of various interleukins, or by activation of certain protein kinases. 
Additionally, lectins can bind to ribosomes and inhibit protein synthesis. They also 
alter the cell cycle by inducing non-apoptotic G1-phase accumulation mechanisms, 
G2/M phase cell cycle arrest and apoptosis, and can trigger the caspase cascade. 
Lectins can also down-regulate telomerase activity and inhibit angiogenesis [54].

Future advances in cancer prevention, detection, and treatment could poten-
tially be achieved by using plant lectins. These substances possess antitumor activ-
ity and anti-carcinogenic activity that could be beneficial in cancer treatment.

5.3.4  Plant Lectins as Antiviral Agents

Compounds with antiviral activity are generally of great medical interest and differ-
ent modes of pharmaceutical actions have been described. The antiviral activity of 
plant lectins can be based on several mechanisms. The surfaces of retroviruses such 
as human immunodeficiency virus (HIV) and many other enveloped viruses are 
covered by virally-encoded glycoproteins. Glycoproteins gp120 and gp41 present 
on the HIV envelope are heavily glycosylated, with glycans estimated to contribute 
almost 50 % of the molecular weight of gp120. Agents that specifically and strongly 
interact with the glycans may disturb interactions between the proteins of the viral 
envelope and the cells of the host [58]. Sugar-binding proteins can crosslink glycans 
on the viral surface and prevent further interactions with the co-receptors.

HIV RT is a key enzyme of the HIV life cycle. Screening of HIV RT inhibitors 
is currently a strategy to search for anti-HIV drugs. Strikingly, the vast majority of 
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plant lectins that are active against HIV possess carbohydrate specificity directed 
against mannose oligomers. Most HIV-inhibitory plant lectins are derived from the 
monocot families Amaryllidaceae, Orchidaceae and Alliaceae or the dicot families 
Fabaceae, Moraceae, Urticaceae and Cecropiaceae [58]. Table 5.3 lists several 
plant lectins such as Phaseolus vulgaris cv. Extralong autumn purple bean lectin 
[50], Del Monte banana lectin [49], black soybean lectin [48] and Pholiota adi-
pose mushroom lectin [42] which all possessed anti-HIV RT activity.

Studies on plant lectins such as those from leek (Table 5.3) have shown that they 
can be potent inhibitors of coronaviruses by interfering with two targets in the viral 
replication cycle [59]. The first target was located early in the replication cycle, 
most probably viral attachment, and the second target was located at the end of the 
infectious virus cycle. The antiviral activity spectrum of plant lectins varies consid-
erably, depending on the nature of their sugar specificity. In general, the mannose-
specific plant lectins were found to be highly effective against coronaviruses [59].

A lectin from blue green algae (CV-N) exhibited a broad range of antiviral activi-
ties. It has been shown that CV-N binds with high affinity to HIV envelope protein 
gp120 [61] and also interacts with another surface glycoprotein, gp41 [63]. The spec-
ificity of CV-N, however, is not limited only to different strains of HIV and related 
retroviruses. CV-N inhibited the development of viral cytopathic effects of Ebola 
virus, binding to its surface envelope glycoprotein [62] and also blocked influenza A 
and B strains by binding to the hemagglutinin surface glycoprotein [63]. The results 
of viral pretreatment studies indicated that CV-N directly neutralized both influenza 
A and B viruses, including both H1N1 and H3N2 strains. However, the CV-N resist-
ant influenza virus strain A/PR/8/34 was completely resistant to any direct neutral-
izing activity. Results suggested that CV-N bound directly to and inactivated the viral 
particle, preventing subsequent infection, and that both the likely molecular target for 
CV-N and the basis of CV-N resistance resided in the viral particle [63].

Unlike the majority of current antiviral therapeutics that act through inhibi-
tion of the viral life cycle, lectins can prevent penetration of the host cells by the 
viruses [60]. Antiviral lectins are best suited to topical applications and can exhibit 
lower toxicity than many currently used antiviral therapeutics. Additionally, these 
proteins are often resistant to high temperatures and low pH, as well as being 
odorless, which are favorable properties for potential microbicide drugs [60]. The 
mechanistic details on how lectins operate at a molecular level to inhibit virus 
growth need to be further explored to know the basis of their biological activity.

5.3.5  Plant Lectins as Antibacterial and Antifungal Agents

The growing resistance of microorganisms to convectional antimicrobial agents is a 
source of concern to clinical microbiologists all over the world. As a result, efforts 
are being made to develop antimicrobial agents from local sources for better chem-
otherapeutic effects. Lectins from plants could satisfy the demand for more natural 
antimicrobials as several studies have demonstrated the effectiveness of lectins as 
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inhibitory compounds towards bacterial and fungal growth such as the examples 
listed in Table 5.4. Plant lectins have demonstrated antibacterial activity against 
many pathogens including Escherichia coli, Shigella dysenteriae, Staphylococcus 
aureus, Pseudomonas aeruginosa, Bacillus subtilis, and Klebsiella sp. Lectins have 
also demonstrated antifungal activity towards Aspergillus flavus, Trichoderma vir-
ide, Fusarium oxysporum, Fusarium moniliforme, Coprinus comatus, Rhizoctonia 
olani, Penicillium digitatum, Alternaria alternata, and Valsa mali. The use of lec-
tins in clinical microbiology in a review by Slifkin and Doyle (1990) [11] as well 
as the antimicrobial activity from plant lectins article by Paiva et al. (2010) [65] is 
recommended for readers who seek further detailed information.

The cell wall of bacteria not only precludes any interaction between the glyco-
conjugates on their membrane and carbohydrate-binding proteins but also prevents 
these proteins from penetrating the cytoplasm. Therefore, plant lectins cannot alter 
the structure and/or permeability of the membrane or disturb the normal intracel-
lular processes of invading microbes. Therefore, if lectins play a role in the plant’s 
defense against bacteria, it must be through an indirect mechanism that is based on 
interactions with cell wall carbohydrates or extracellular glycans [73].

Similarly, plant lectins are not capable of binding to glycoconjugates on the 
fungal membranes or penetrating the cytoplasm due to the barrier formed by the 
cell wall. Thus, it is not likely that lectins directly inhibit fungal growth by chang-
ing the structure and/or permeability of the fungal membrane. However, there may 
be indirect effects produced by the binding of lectins to carbohydrates on the sur-
face of the fungal cell wall [74].

This activity was concluded to be related to the lectin carbohydrate binding 
property, that might endow lectin molecules with binding activity towards certain 
carbohydrate components in the fungal cell wall affecting its activity and viabil-
ity as most lectins recognize either N-acetylneuraminic acid, N-acetylglucosamine, 
N-acetylgalactosamine, galactose, mannose, or fucose [75]. Alternatively, it was 
stated that antifungal activity of some proteins or peptides is associated with chi-
tin binding property and the active proteins should have a specific amino acid 
sequence and a cysteine/glycine rich chitin binding domain. This chitin binding 
property might simulate the carbohydrate binding property as chitin is composed 
of modified glucose subunits (N-acetyl glucose amine) which can be equally rec-
ognized by lectin as glucose [69]. Chitin binding might lead to the disruption of 
the fungal cell wall that increases toxicity, since chitin, which is a major compo-
nent of the fungal wall, is a polymer of N-acetylglucosamine.

5.3.6  Plant Lectins in Drug Targeting

The idea to use lectins for drug delivery began when the use of tomato lectin (TL) 
to target the luminal surface of the small intestine was proposed [76]. The under-
lying principle behind lectin-mediated drug targeting is that most cell surface pro-
teins and many lipids in cell membranes are glycosylated and these glycans can 
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be the binding sites for lectins. The combination of a small number of sugars can 
produce a vast range of different chemical structures. Different cell types express 
different glycan arrays and diseased cells, such as transformed or cancerous cells, 
often express different glycans compared with their normal counterparts. Therefore, 
lectins could be used as carrier molecules to target drugs specifically to different 
cells and tissues [77]. By targeting cell types exclusively, the side effects of drugs 
could be minimized. Besides targeting specific cells, the lectin–sugar interaction can 
also been used to trigger vesicular transport into or across epithelial cells. The con-
cept of bio-adhesion via lectins may be applied not only for the gastrointestinal tract 
[76] but also for other biological barriers like the nasal mucosa, the lungs, the buccal 
cavity, the eye [78] and the blood–brain barrier [77, 79]. Table 5.5 lists some exam-
ples of plant lectins from tomato [76], potato [78], wheat germ [79] and peanut [80] 
which have been studied to investigate their potential of use as drug targeting agents.

Attempts to evaluate the binding of lectin candidates to non-histologically pro-
cessed cell surfaces, must be done in order to systematically identify the appropri-
ate receptors and lectin types for further studies. Further work will more precisely 
locate the lectin binding site on the tissue surface and will quantify the binding. 
Lectin toxicity and in vivo binding  will then be considered prior to selecting the 
most promising candidates for formulation studies [78]. Lectins such as WGA 
could be useful as specific bioadhesive ligands for lipid nanoparticles intended for 
oral administration [82] once the bioadhesive properties and oral bioavailability 
efficiency are determined.

Results from preliminary studies performed so far can be taken as an indication 
that it may indeed be possible to exploit lectins of certain carbohydrate specificities 
for oral drug delivery and intestinal targeting. However, a great deal of research 
remains to be done before lectins can be used in practice. For a more thorough 
understanding, readers are directed to reviews by Lehr (2000) and Bies et al. (2004) 
which provides more information on lectin-mediated drug delivery and targeting, 
from their history to applications [77, 83].

Table 5.5  Potential drug targeting use of selected plant lectins

Name Source Carbohydrate 
specificity

MW (kDa) Potential use References

AEL Tomato (GlcNAc)4 71 Intestinal wall [76]
Bioadhesive in the GI 

tract
[81]

STL Potato N-acetyl-D-glu-
cosamine

– Ocular (Corneal and 
conjunctival)

[78]

WGA Wheat germ N-acetyl-D-glu-
cosamine

38 Blood brain barrier [79]
Intestinal mucosal 

surfaceSialic acid [82]
PNA Peanut D-galactose 110 Intestinal mucosal 

surface
[80]

 AEL Lycopersicon esculenttun lectin; STL Solanum tuberosum lectin. WGA Wheat germ aggluti-
nin; PNA Arachis hypogaea lectin



70 C. S. F. Bah et al.

5.4  Outlooks and Perspectives

Plant lectins have been and still are a subject of intense investigation. They have 
come a long way, since their first detection in plants as hemagglutinins, to their 
present status as recognition molecules with innumerable exciting functions and 
applications. As more plant lectins are isolated and further studies are conducted 
on the biological activities and mechanisms of action of lectins, the production of 
lectins can be improved and new applications of these lectins will be found or con-
ceived. Lectins could be used as the next generation of medicines once research 
has contributed to their full understanding.

More research is still needed and a genomic and proteomic approach to eluci-
date and support the potential shown by lectins as anticancer, antimicrobial and 
drug delivery agents is warranted. The mechanistic details of how lectins operate 
at a molecular level need to be further explored to know the basis of their bio-
logical activity. Although there is still much to be learned about the effects of lec-
tins, the area of research concerning plant lectins is constantly evolving and being 
updated. Thus the medicinal applications of plant lectins hold considerable poten-
tial and exciting discoveries lie ahead.
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