Skip to main content

Probing the Genes Expressed in Developing Seed of Oilseed Plants: Brassica Napus (L.) as A Case Example

  • Chapter
  • First Online:
Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield

Abstract

Seed development is controlled by complex regulatory interactions involving transcriptional, biochemical, and metabolic processes. In this chapter, we will briefly discuss the major changes in molecular components involved in the process of seed development using Brassica napus as a case example. The two major groups of storage compounds that accumulate during seed development in B. napus are lipids (∼ 60 %) and proteins (∼ 37 %). The accumulation of secondary metabolites also occurs around the same time as lipid accumulation. It is also worth noting that even though B. napus seeds are exalbuminous, there is considerable accumulation of carbohydrates during the initial stages of seed development. These carbohydrates contribute to fatty acid accumulation during the later stages of development. Several regulatory machineries, including transcription factors, chromatin remodeling elements, ubiquitination, and phosphoregulation by protein kinases are involved in this process. Transcripts of genes responsible for photosynthetic activities and hormonal regulation were also detected in the developing seed, but these processes are not covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, Mujin T, Takaiwa F, Wu CY, Tada Y, Satozawa T, Sakamoto M, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development. Plant Cell 14:619–628

    Article  PubMed  CAS  Google Scholar 

  • Auger B, Marnet N, Gautier V, Maia-Grondard A, Leprince F, Renard M, Guyot S, Nesi N, Routaboul JM (2010) A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L. J Agric Food Chem 58:6246–6256

    Article  PubMed  CAS  Google Scholar 

  • Baker RT, Tobias JW, Varshavsky A (1992) Ubiquitin-specific proteases of Saccharomyces cerevisiae. Cloning of UBP2 and UBP3, and functional analysis of the UBP gene family. J Biol Chem 267:23364–23375

    PubMed  CAS  Google Scholar 

  • Baroux C, Pien S, Grossniklaus U (2007) Chromatin modification and remodeling during early seed development. Curr Opin Genet Dev 17:473–479

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Boutin JP, Miquel M, Lepiniec L, Rochat C (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 40:151–160

    Article  CAS  Google Scholar 

  • Baumert A, Milkowski C, Schmidt J, Nimtz M, Wray V, Strack D (2005) Formation of a complex pattern of sinapate esters in Brassica napus seeds, catalyzed by enzymes of a serine carboxypeptidase-like acyltransferase family? Phytochemistry 66:1334–1345

    Article  PubMed  CAS  Google Scholar 

  • Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism: a 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697

    Article  PubMed  CAS  Google Scholar 

  • Bhinu VS, Schäfer UA, Li R, Huang J, Hannoufa A (2009) Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in Brassica napus. Transgenic Res 18:31–44

    Article  PubMed  CAS  Google Scholar 

  • Blair R, Reichert RD (1984) Carbohydrate and phenolic constituents in a comprehensive range of rapeseed and canola fractions: nutritional significance for animals. J Sci Food Agric 35:29–35

    Article  PubMed  CAS  Google Scholar 

  • Botella-Pavía P, Rodríguez-Concepción M (2006) Carotenoid biotechnology in plants for nutritionally improved foods. Physiol Plant 126:369–381

    Google Scholar 

  • Britton G (1998) Overview of carotenoid biosynthesis. In: Britton G, Liaaen Jensen S, Pfander H (eds) Carotenoids. Birkhauser, Basel, pp 13–147

    Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci U S A 101:4706–4711

    Article  PubMed  CAS  Google Scholar 

  • Chevalier D, Walker JC (2005) Functional genomics of protein kinases in plants. Brief Funct Genomic Proteomic 3:362–371

    Article  PubMed  CAS  Google Scholar 

  • Chia TY, Pike MJ, Rawsthorne S (2005) Storage oil breakdown during embryo development of Brassica napus (L.). J Exp Bot 56:1285–1296

    Article  PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Crouch ML, Sussex IM (1981) Development and storage-protein synthesis in Brassica napus L. embryos in vivo and in vitro. Planta 153:64–74

    Article  CAS  Google Scholar 

  • da Silva PMFR, Eastmond PJ, Hill LM, Smith AM, Rawthorne S (1997) Starch metabolism in developing embryos of oilseed rape. Planta 203:480–487

    Article  Google Scholar 

  • DeLisle AL, Crouch ML (1989) Seed storage protein transcription and mRNA levels in Brassica napus during development and in response to exogenous abscisic acid. Plant Physiol 91:617–623

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Keller WA, Yan W, Georges F (2004) Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed-abundant cDNAs. Planta 218:483–491

    Article  PubMed  CAS  Google Scholar 

  • Eastmond PJ, Rawsthorne S (2000) Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryos. Plant Physiol 122:767–774

    Article  PubMed  CAS  Google Scholar 

  • Fei H, Tsang E, Cutler AJ (2007) Gene expression during seed maturation in Brassica napusin relation to the induction of secondary dormancy. Genomics 89:419–428

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–610

    PubMed  CAS  Google Scholar 

  • Fischer K, Weber A (2002) Transport of carbon in non-green plastids. Trends Plant Sci 7:345–351

    Article  PubMed  CAS  Google Scholar 

  • Frandsen GI, Mundy J, Tzen JTC (2001) Oil bodies and their associated proteins, oleosin and caleosin. Physiol Plant 112:301–307

    Article  PubMed  CAS  Google Scholar 

  • Frankel EN (2005) Lipid oxidation, 2nd Edition. The Oily, Bridgewater

    Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  PubMed  CAS  Google Scholar 

  • Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581

    Article  PubMed  CAS  Google Scholar 

  • Goldberg RB, Barker SJ, Perez-Grau L (1989) Regulation of gene expression during plant embryogenesis. Cell 56:149–160

    Article  PubMed  CAS  Google Scholar 

  • Gullett NP, Ruhul Amin AR, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, Aggarwal BB, Surh YJ, Kucuk O (2010) Cancer prevention with natural compounds. Semin Oncol 37:258–281

    Article  PubMed  CAS  Google Scholar 

  • Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ (2006) Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol 141:32–46

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • Huang AHC (1992) Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol 43:177–200

    Article  CAS  Google Scholar 

  • Huang J, Bhinu VS, Li X, Dallal Bashi Z, Zhou R, Hannoufa A (2009a) Pleiotropic changes in Arabidopsisf5h and sct mutants revealed by large-scale gene expression and metabolite analysis. Planta 230:1057–1069

    Article  CAS  Google Scholar 

  • Huang Y, Chen L, Wang L, Vijayan K, Phan S, Liu Z, Wan L, Ross A, Xiang D, Datla R, Pan Y, Zou J (2009b) Probing the endosperm gene expression landscape in Brassica napus. BMC Genomics 10:256

    Article  Google Scholar 

  • Hüsken A, Baumert A, Milkowski C, Becker HC, Strack D, Möllers C (2005) Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). Theor Appl Genet 111:1553–1562

    Article  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Kang F, Rawsthorne S (1994) Starch and fatty acid synthesis in plastids from developing embryos of oilseed rape (Brassica napus L.). Plant J 6:795–805

    Article  CAS  Google Scholar 

  • King SP, Lunn JE, Furbank RT (1997) Carbohydrate content and enzyme metabolism in developing canola siliques. Plant Physiol 114:153–160

    PubMed  CAS  Google Scholar 

  • Leprince O, Bronchart R, Deltour R (1990) Changes in starch and soluble sugars in relation to the acquisition of desiccation tolerance during maturation of Brassica campestris seed. Plant Cell Environ 13:539–546

    Article  CAS  Google Scholar 

  • Li X, Westcott N, Links, M, Gruber MY (2010) Seed coat phenolics and the developing silique transcriptome of Brassica carinata. J Agric Food Chem 58:10918–10928

    Article  CAS  Google Scholar 

  • Marles MAS, Gruber MY, Scoles GJ, Muir AD (2003) Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry 62:663–672

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Paz-Ares J (1997) MYB transcription factors in plants. Trends Genet 13:67–73

    Article  PubMed  CAS  Google Scholar 

  • Matilla AJ (2000) Ethylene in seed formation and germination. Seed Sci Res 10:111–126

    CAS  Google Scholar 

  • Meinke DW, Franzmann LH, Nickle TC, Yeung EC (1994) Leafy cotyledon mutants of Arabidopsis. Plant Cell 6:1049–1064

    Google Scholar 

  • Milkowski C, Baumert A, Schmidt D, Nehlin L, Strack D (2004) Molecular regulation of sinapate ester metabolism in Brassica napus: expression of genes, properties of the encoded proteins and correlation of enzyme activities with metabolite accumulation. Plant J 38:80–92

    Article  PubMed  CAS  Google Scholar 

  • Nair RB, Joy RW 4th, Kurylo E, Shi X, Schnaider J, Datla RSS, Keller WA, Selvaraj G (2000) Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds. Plant Physiol 123:1623–1634

    Article  PubMed  CAS  Google Scholar 

  • Niu Y, Wu GH, Ye R, Lin WH, Shi QM, Xue LJ, Xu XD, Li Y, Du YG, Xue HW (2009) Global analysis of gene expression profiles in Brassica napus developing seeds reveals a conserved lipid metabolism regulation with Arabidopsis thaliana. Mol Plant 2:1107–1122

    Article  PubMed  CAS  Google Scholar 

  • Norton G, Harris JF (1975) Compositional changes in developing rape seed (Brassica napus L.). Planta 123:163–174

    Article  CAS  Google Scholar 

  • O’Hara P, Slabas AR, Fawcett T (2002) Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis. Plant Physiol 129:310–320

    Article  PubMed  Google Scholar 

  • Obermeier C, Hosseini B, Friedt W, Snowdon R (2009) Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus. BMC Genomics 10:295

    Article  PubMed  Google Scholar 

  • Okada T, Endo M, Singh MB, Bhalla PL (2005) Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3. Plant J 44:557–568

    Article  PubMed  CAS  Google Scholar 

  • Pang PP, Pruitt RE, Meyerowitz EM (1988) Molecular cloning, genomic organization, expression and evolution of 12s seed storage protein genes of Arabidopsis thaliana. Plant Mol Biol 11:805–820

    Article  CAS  Google Scholar 

  • Park YS, Kwak JM, Kwon OY, Kim YS, Lee DS, Cho MJ, Lee HH, Nam HG (1993) Generation of expressed sequence tags of random root cDNA clones of Brassica napus by single-run partial sequencing. Plant Physiol 103:359–370

    Article  PubMed  CAS  Google Scholar 

  • Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899

    Article  PubMed  CAS  Google Scholar 

  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3:423–434

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu GL (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    Article  PubMed  CAS  Google Scholar 

  • Santos-Mendoza M, Dubreucq B, Miquel M, Caboche M, Lepiniec L (2005) LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett 579:4666–4670

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  • Schwenke KD, Raab B, Plietz P, Damaschun G (1983) The structure of the 12S globulin from rapeseed (Brassica napus L.). Die Nahrung 27:165–175

    Article  CAS  Google Scholar 

  • Scofield SR, Crouch ML (1987) Nucleotide sequence of a member of the napin storage protein family from Brassica napus. J Biol Chem 262:12202–12208

    PubMed  CAS  Google Scholar 

  • Sjödahl S, Gustavsson HO, Rödin J, Lenman M, Höglund AS, Rask L (1993) Cruciferin gene families are expressed coordinately but with tissue-specific differences during Brassica napus seed development. Plant Mol Biol 23:1165–1176

    Article  PubMed  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci U S A 98:11806–11811

    Article  PubMed  CAS  Google Scholar 

  • Taylor M, Ramsay G (2005) Carotenoid biosynthesis in plant storage organs: recent advances and prospects for improving plant food quality. Physiol Plant 124:143–151

    Google Scholar 

  • Taylor NL, Heazlewood JL, Day DA, Millar AH (2005) Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics 4:1122–1133

    Article  PubMed  CAS  Google Scholar 

  • Thomas TL (1993) Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5:1401–1410

    PubMed  CAS  Google Scholar 

  • Velasco L, Möllers C (1998) Nondestructive assessment of sinapic acid esters in Brassica species: II. Evaluation of germplasm and identification of phenotypes with reduced levels. Crop Sci 38:1650–1654

    Article  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Carbajosa J, Carbonero P (2005) Seed maturation: developing an intrusive phase to accomplish a quiescent state. Int J Dev Biol 49:645–651

    Google Scholar 

  • Vigeolas H, Möhlmann T, Martini N, Neuhaus HE, Geigenberger P (2004) Embryo-specific reduction of ADP–Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Plant Physiol 136:2676–2686

    Article  PubMed  CAS  Google Scholar 

  • Wang SX, Oomah BD, McGregor DI, Downey RK (1998) Genetic and seasonal variation in the sinapine content of seed from Brassica and Sinapis species. Can J Plant Sci 78:395–400

    Article  CAS  Google Scholar 

  • Weselake RJ, Pomeroy MK, Furukawa TL, Golden JL, Little DB, Laroche A (1993) Developmental profile of diacylglycerol acyltransferase in maturing seeds of oilseed rape and safflower and microspore-derived cultures of oilseed rape. Plant Physiol 102:565–571

    PubMed  CAS  Google Scholar 

  • White JA, Todd J, Newman T, Focks N, Girke T, de Ilarduya OM, Jaworski JG, Ohlrogge JB, Benning C (2000) A new set of Arabidopsis expressed sequence tags form developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol 124:1582–1594

    Article  PubMed  Google Scholar 

  • Wu GZ, Shi QM, Niu Y, Xing MQ, Xue HW (2008) Shanghai RAPESEED Database: a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica. Nucl Acids Res 36:D1044–D1047

    Article  PubMed  CAS  Google Scholar 

  • Xiang D, Datla R, Li F, Cutler A, Malik MR, Krochko JE, Sharma N, Fobert P, Georges F, Selvaraj G, Tsang E, Klassen D, Koh C, Deneault JS, Nantel A, Nowak J, Keller W, Bekkaoui F (2008) Development of a Brassica seed cDNA microarray. Genome 51:236–242

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yu O, Jez JM (2008) Nature’s assembly line: biosynthesis of simple phenylpropanoids and polyketides. Plant J 54:750–762

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Lydiate DJ, Young LW, Schäfer UA, Hannoufa A (2008) Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res 17:573–585

    Google Scholar 

  • Yu B, Gruber M, Khachatourians GG, Hegedus DD, Hannoufa A (2010) Gene expression profiling of developing Brassica napus seed in relation to changes in major storage compounds. Plant Sci 178:381–389

    Article  CAS  Google Scholar 

  • Zou J, Abrams GD, Barton DL, Taylor DC, Pomeroy MK, Abrams SR (1995) Induction of lipid and oleosin biosynthesis by ( + )-abscisic acid and its metabolites in microspore-derived embryos of Brassica napus L. cv Reston. Biological responses in the presence of 8′-hydroxyabscisic acid. Plant Physiol 108:563–571

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelali Hannoufa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chellamma, S., Pillai, B., Hannoufa, A. (2012). Probing the Genes Expressed in Developing Seed of Oilseed Plants: Brassica Napus (L.) as A Case Example. In: Agrawal, G., Rakwal, R. (eds) Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4749-4_10

Download citation

Publish with us

Policies and ethics