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  Abstract   Many viruses have been investigated for the development of genetic 
vaccines and the ideal ones must be endowed with many properties, such as the 
quality and the quantity of the immunological response induced against the encoded 
antigens, safety and production on a large scale basis. Viral based vaccines must 
also deal with the potential problem of the pre-existing antivector immunity. Several 
viral vaccine vectors have emerged to date, all of them having relative advantages 
and limits depending on the proposed application. Recent successes re fl ect diverse 
improvements such as development of new adenovirus serotypes and prime-boost 
regimes. This chapter describes the features of four viral vector systems based on 
poxviruses, adenoviruses, alphaviruses and lentiviruses and recent results following 
their use with a particular emphasis on clinical research, highlighting the challenges 
and successes.  

  Keywords   Genetic vaccines  •  Viral-vectored vaccines  •  Adenovirus  •  Poxvirus  
•  Alphavirus  •  Lentivirus  •  Heterologous prime-boost      

    4.1   Genetic Vaccines: The New Frontier 

 Vaccines have been undeniably successful at inducing immune responses, most 
notably neutralizing antibodies that prevent viral or bacterial infections. However, 
to protect against more complex pathogens such as  Human immunode fi ciency virus  
(HIV),  Hepatitis C virus  (HCV),  Plasmodium falciparum ,  Mycobacterium tuberculosis  
(TB) or cancers it will be necessary to engage the other arm of the adaptive immune 
system: T lymphocytes. Pre-clinical and clinical evidence supports the role of T cell 
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immunity and in particular CD8 +  T cells in the control and/or clearance of these 
diseases (Kim and Ahmed  2010  ) . Therefore, a rapidly expanding  fi eld in vaccinology 
is the development of so-called genetic vaccines. These are designed to induce 
antigen-speci fi c CD4 +  and CD8 +  T cells of suf fi cient magnitude and necessary 
phenotype or effector function that directly contribute to pathogen clearance, rather 
than only CD4 +  T cell help for B cells leading to protective antibody responses. One 
way to induce a T cell response against a given antigen is to express that antigen 
intracellularly, along with suitable pathogen-derived innate activators, through 
gene delivery; genetic or gene-based vaccines attempt to use physiological antigen 
processing and Major Histocompatibility Complex (MHC) class I presentation to 
activate a CD8 +  T cell response. Genetic vaccines as being capable of stimulating 
both antibodies and CD8 +  T cells hold real promise for achieving ef fi cacy. Table  4.1  
lists  pros  and  cons  of genetic vaccines.  

 DNA vaccines were initially thought to be the ideal way to induce T cell responses 
(Liu  2010 ; Reyes-Sandoval and Ertl  2001  ) . After intramuscular or intradermal 
injection they express the encoded antigen inside the host cells resulting in both 
cellular and humoral immunity. These vaccines are simple to produce and can be 
manipulated to co-express cytokines or other molecules intended to enhance the 
immune response, and are simple to produce. Unfortunately, the early successes in 
pre-clinical studies did not translate into clinical trials, and whereas DNA vaccines 
are safe to use and do induce T cell responses in humans, these are of a very low 
magnitude. Efforts to increase immunogenicity by use of new devices such as the 
‘gene-gun’ resulted in more ef fi cient delivery such that the dose could be considerably 
reduced, but the response was not increased. Despite several efforts to  fi nd an adjuvant 
to increase the immunogenicity of DNA vaccines in humans, success has so far 
been modest (Baden et al.  2011  ) . The same holds true for peptide-based vaccines 

   Table 4.1    Advantages and disadvantages of genetic vaccines   

 Advantages  Disadvantages 

 Subunit vaccination, no risk for infection 
 MHC class I and II presentation 
 Ease of development and production 
 Stability of vaccine for storage and shipping 
 Cost-effectiveness 
 Obviates need for peptide synthesis, expression 

and puri fi cation of recombinant proteins 
and the use of adjuvants 

 Long term persistence of immunogen 
 Correct folding and post-translational 

modi fi cations of the antigens, due to 
 in vivo  expression 

 Limited to protein immunogens (not useful 
for non-protein based antigens such as 
bacterial polysaccharides) 

 Risk of affecting genes controlling cell growth 
 Lower antibody response as compared to 

protein and live-attenuated vaccines 

   MHC  Major Histocompatibility Complex  
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(Nardin  2010 ; Perez et al.  2010  ) . Other research has concentrated on developing 
adjuvants to increase the T cell immunogenicity of protein vaccines, (Foged et al. 
 2011  ) , but again although responses can be induced in preclinical studies, they are 
not of high magnitude and in many cases have not yet been tested in clinical studies. 

 Numerous viral vectors are being studied for use in gene-based vaccine strategies. 
Virus-derived vectors offer several advantages over traditional vaccine technologies, 
the  fi rst being a very ef fi cient delivery of the exogenous gene into target cells. Other 
advantages include high level production of protein antigens within cells of the 
immunized host, potential adjuvant effects of the viral vector system itself and 
the possibility of ef fi cient delivery of antigen directly to components of the immune 
system. 

 The most commonly used vectors are derived from adenoviruses, poxviruses, 
alphaviruses and lentiviruses. There is a wide consensus that the ideal vector for the 
development of genetic vaccines must be endowed with many properties, e.g. the 
quality and the quantity of the immunological response induced against the encoded 
antigens, its safety and its “productivity” in conditions compatible with the indus-
trial scale. A comparative assessment of strengths and weaknesses of various genetic 
vectors is reported in Table  4.2 .  

 Features of the four viral vector systems mentioned above and recent results 
following their use will be reviewed with a particular emphasis on clinical research, 
highlighting the challenges and successes, and looking towards their future 
deployment.  

    4.2   Viral Vector Platforms 

    4.2.1   Adenovirus Vectors 

 Among the viral vectors investigated for vaccine purposes, adenovirus (Ad) vectors 
have received considerable attention and today they stand among the most potent 
tools available for induction of antibody and CD8 +  T cell responses in mice, primates 
and humans (Barefoot et al.  2008 ; Barouch  2010 ; Bett et al.  2010 ; Harro et al.  2009 ; 
Ledgerwood et al.  2010 ; Liu et al.  2009 ; Tatsis and Ertl  2004  ) . Human adenoviruses 
are attractive viral vectors for a number of reasons. They possess a stable virion so 
that inserts of foreign genes are not deleted. Also adenoviruses have wide cell tropism 
and the transferred information remains epichromosomal, thus avoiding the risk of 
insertional mutagenesis. Replication-defective adenoviruses can be engineered by 
deletion of genes from the E1 locus, which is required for viral replication, and 
these viruses can be propagated easily with good yields in complementing cell lines 
expressing E1 from adenovirus serotype 5 (Ad5), such as HEK293 and PER.C6 
(Tatsis et al.  2006  ) . 

 Preclinical and clinical results showed superiority of adenovirus-vectored vaccines 
based on the most common human Ad5 for the induction of T cell responses in 
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animal models and in Phase I studies in humans (Casimiro et al.  2003,   2004 ; Duerr 
et al.  2006  ) . Preclinical studies of Ad5 vectors include vaccines against Ebola, 
Severe Acute Respiratory Syndrome (SARS), HIV and Anthrax (Bangari and Mittal 
 2006 ; Barouch  2010 ; Shiver et al.  2002 ; Sullivan et al.  2006  )  and clinical studies of 
Ad5 vectors encoding HIV, TB and Ebola antigens have been completed or are in 
progress (Catanzaro et al.  2006 ; Ledgerwood et al.  2010 ; McElrath et al.  2008 ; 
Priddy et al.  2008  ) . 

 However, adenovirus is highly immunogenic  per se  and Ad vector-speci fi c 
immune responses can result in a lack of prolonged expression of newly delivered 
genes upon re-administration of the same vector (Lasaro and Ertl  2009  ) . More 
importantly, a major problem is that most humans have high titres of neutralizing 
antibodies against several adenovirus serotypes including Ad5 owing to exposure 
since childhood, negatively affecting their performance as vectors (Lasaro and Ertl 
 2009  ) . Recent studies have shown that pre-existing immunity to Ad5 is capable of 
signi fi cantly blunting the immunological response induced by Ad5 vectored vaccines 
in rodents, in non-human primates and in Phase I clinical trials in humans (Casimiro 
et al.  2003 ; Catanzaro et al.  2006 ; McElrath et al.  2008 ; Priddy et al.  2008  ) . 

 Various attempts have been made to overcome the problem of pre-existing 
immunity to Ad5, and thus exploit the full potential of the adenovirus vectors for the 
development of vaccines. One strategy is the identi fi cation and development of rare 
human serotypes such as Ad11, Ad24, Ad26, Ad35 and Ad28 (Geisbert et al.  2011 ; 
Kahl et al.  2010 ; Lemckert et al.  2005 ; Radosevic et al.  2010 ; Soloff et al.  2009  ) . 
Adaptation of these alternative serotypes requires a methodical process of research 
and development, and safety testing. Furthermore, data suggests that these rare 
serotypes may be less immunogenic than Ad5 (Colloca et al.  2012  ) . 

 Another strategy is the modi fi cation of the Ad5 capsid, a protein shell that 
contains hexon and penton subunits. Because host antibodies that neutralize Ad5 
are directed against the hypervariable regions (HVRs) of the hexon subunit, Roberts 
and colleagues (Roberts et al.  2006  )  exchanged HVRs of Ad5 with those of the rare 
adenovirus serotype 48 (Ad48) generating a chimaeric adenovirus that could 
potentially evade the neutralizing antibody response against Ad5. The resulting 
virus retained its ability to grow in culture and, importantly the immunogenicity of 
the chimaera was comparable to that of Ad5. When the chimaera was administered 
to mice or monkeys that had antibody immunity to Ad5, there was no decrease in 
the immunogenicity of the vector. These data provide a proof-of-concept that viral 
vaccine vectors can be engineered to evade pre-existing immunity but vaccine 
developers will have to show that these HVR- chimaeric Ad5 viruses can be manu-
factured, that they have stable gene inserts, can pass regulatory review and,  fi nally 
are immunogenic in humans with pre-existing immunity. 

 Adenoviruses isolated from chimpanzees (ChAd) have also been well characterized 
and developed as vectors (Farina et al.  2001 ; Roy et al.  2011 ; Tatsis et al.  2006  ) . 
Simian adenoviruses are not known to cause pathological illness in humans and have 
low/no seroprevalence (0–18%) in the human population (Colloca et al.  2012 ; Lasaro 
and Ertl  2009  ) . In Equatorial Africa, the natural habitat for chimpanzees, seropreva-
lence is higher, but still signi fi cantly below that of Ad5. The  fi rst report on the use 
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of ChAd vectors involved AdC68 expressing rabies virus glycoprotein and showed 
induction of high level of protective antibodies in mice (Xiang et al.  2002  ) . Simian 
adenovectors were then utilized as T cell vaccines for HIV, inducing virus-speci fi c 
CD4 +  and CD8 +  T cell responses in mice and macaques (Fitzgerald et al.  2003 ; 
Reyes-Sandoval et al.  2004  )  and for pre-erythrocytic malaria vaccines (Capone et al. 
 2010 ;    Reyes-Sandoval et al.  2008  ) . Very recently Colloca and colleagues reported a 
large screening of several adenoviruses isolated from chimpanzees and identi fi ed 
several adenoviruses that meet the necessary requirements for vaccine development 
(Colloca et al.  2012  ) . In chimpanzee adenoviruses the E1 locus can be deleted to 
render virus replication de fi cient and to allow trans-complementation in Ad5 E1 
complementing cell line. Chimpanzee derived adenoviruses exhibit high sequence 
similarity and same genomic organization to human adenoviruses and can be classi fi ed 
in subgroups based on sequence homology of the hexon protein. Phylogenetic analysis 
of the hexons of simian and human adenoviruses shows substantial overlap indicating 
that there is no clear sequence feature that distinguished a simian from a human 
adenovirus. Indeed, these sequences suggest one large family of higher primate 
adenoviruses. The potency of chimpanzee derived Ad vectors were assessed in mice, 
macaques and, recently, in humans (Barnes et al.  2012 ; Colloca et al.  2012  ; O’Hara 
et al.  2012 ; Sheehy et al.  2011 ) . The T cell immunogenicity of some of these vectors 
matched or even exceeded the immunogenicity of the standard Ad5 vector used as a 
comparator. The safety of these vectors has been similar to that of human adenovirus 
vectors suggesting that they might be suitable for widespread use.  

    4.2.2   Poxvirus Vectors 

 In addition to adenovirus vectors, poxviruses are among the most heavily exploited 
for vaccine development. This is largely attributable to the extensive and successful 
use of the smallpox vaccine (and the related modi fi ed vaccinia Ankara, MVA) which 
provided knowledge of human safety together with a series of properties including: 
the large gene capacity for the insertion of a foreign gene; the broad tropism of the 
virus for mammalian cells; the production of antigen for a short period of time and 
the localization of the virus in the cytoplasm thus avoiding integration risk that 
might occur with a retroviral vector. Vaccines based on poxviruses are derived from 
vaccinia virus or members of the  Avipox  genus. Vaccinia-HIV recombinants have 
been evaluated in clinical trials, however largely due to concerns over use of repli-
cating vectors, safer non-replicating poxvirus vectors have been the focus of extensive 
development. These attenuated derivatives of vaccinia virus used as vaccine platforms 
include: NYVAC, derived from the Copenhagen strain of vaccinia and rendered 
replication incompetent by 18 speci fi c engineered deletions (Parrino and Graham 
 2006  ) ; the avipox vectors canarypox (ALVAC) and fowlpox (FPV) restricted to 
growth in avian cells, can infect mammalian cells but do not replicate (Franchini 
et al.  2004  )  and MVA. The latter, originally developed as a smallpox vaccine, was 
obtained following extensive serial passage on primary chicken embryo  fi broblasts. 
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During this process of attenuation, MVA underwent deletion of 31 kb (~15%) of its 
genome, as compared to its parental strain, including a number of genes that contribute 
to viral evasion from host immune responses and that determine virus host range 
(Antoine et al.  1998 ; Meyer et al.  1991  ) . As a result, MVA is unable to replicate 
productively in most mammalian cell types, including primary human cells. The 
resultant inability of MVA to undergo more than one infection cycle in a human host 
has imbued this virus with inherent safety that was demonstrated historically through 
the immunization of ~120,000 individuals during the smallpox eradication campaign. 
More recently, the safety of MVA has been demonstrated in pre-clinical studies of 
immune-de fi cient mice and immune-suppressed macaques (Stittelaar et al.  2001 ; 
Wyatt et al.  2004  )  and in Phase I clinical trial evaluations of MVA as a next-generation 
smallpox vaccine (Parrino et al.  2007  ) . The desirable safety pro fi le exhibited by 
MVA, in concert with its ability to express high levels (and large numbers) of foreign 
genes, has rendered MVA a leading candidate for evaluation as a vaccine vector 
against an array of infectious diseases and human cancers.  

    4.2.3   Alphavirus Vectors 

 Alphaviruses that are being developed as vaccine vectors include  Venezuelan equine 
encephalitis virus  (VEE),  Sindbis virus  (SIN),  Semliki forest virus  (SFV), and VEE-SIN 
chimaeras (Greer et al.  2007 ; Thornburg et al.  2007  ) . Alphaviruses are single-
stranded positive-sense RNA viruses that replicate in the cytoplasm of infected 
cells, and therefore have no potential for integrating into the host genome. Originally, 
to circumvent safety concerns, alphavirus vectors have been engineered as non-
replicating replicon particles in which genes encoding structural products are deleted 
to accommodate a foreign gene of up to 5 kb, while structural proteins are provided 
 in trans  from two helper transcripts that lack a packaging signal. Importantly, the 
vector is naturally targeted to dendritic cells (DCs) in draining lymph nodes, where 
the transgene is expressed at high levels, leading to good immune responses (Davis 
et al.  2002  ) . Immunogenicity is further enhanced as the self-ampli fi cation of the 
vector RNA occurs through double-stranded RNA intermediates which stimulate 
activation of the interferon cascade and multiple innate signaling pathways (Naslund 
et al.  2011  ) . The vector also induces apoptosis in some cells types and the release of 
apoptotic bodies that are ef fi ciently taken up by antigen presenting cells (APCs) can 
result in enhanced immune cross-priming (Perri et al.  2003  ) . These features and the 
overall lack of pre-existing immunity against alphaviruses in the human population 
underscore their potential as vaccine vehicles. 

 Three types of vector have been developed: virus-like particles (VLPs), layered 
DNA-RNA vectors and replication-competent vectors. VLPs contain replicon RNA 
that is defective since it contains a cloned gene in place of the structural protein 
genes, and thus are able to undergo only one cycle of expression. They are produced 
by transfection of vector RNA, and helper RNAs encoding the structural proteins. 
Layered DNA-RNA vectors express the SFV replicon from a cDNA copy via a 
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cytomegalovirus promoter. Replication-competent vectors contain a transgene in 
addition to the structural protein genes. VEE-based propagation-defective virus-like 
replicon particles (VRP) have been shown to induce high titers of antibodies and 
robust antigen-speci fi c T cell responses against encoded antigens in mice (Bernstein 
et al.  2009 ; Davis et al.  2002 ; Durso et al.  2007 ; Greer et al.  2007 ; Naslund et al. 
 2011 ; Perri et al.  2003  )  and more recently in healthy human subjects (Bernstein 
et al.  2009  ) . At the same time, neutralizing anti-vector immunity does not appear to 
preclude bene fi t from repetitive booster vaccinations in mice (Gupta et al.  2006  )  as 
opposed to other viral vectors. 

 VEE/SIN chimaeras have been developed because of safety concerns. VEE is patho-
genic in humans, in contrast to SIN which is non-pathogenic. In mice, chimeric vectors 
in which VEE contributes the replicon component and SIN the envelope glycoprotein 
packaging components have been shown to elicit as potent immune responses as VEE 
itself, with both being superior to SIN or a SIN-VEE chimera (containing the SIN 
replicon component and VEE packaging components) (Perri et al.  2003  ) . The greater 
responses induced by VEE may relate to greater levels of  in vivo  replication or the 
resistance of VEE to   a   and   b   interferons. Subsequent studies in macaques demonstrated 
that the chimeric VEE/SIN vectors elicited more potent systemic and mucosal 
immune responses to an inserted HIV envelope gene product compared to the SIN 
vector (Gupta et al.  2006  ) . A combination approach involving priming with VEE/SIN 
replicons encoding HIV and  Simian immunode fi ciency virus  (SIV) genes followed by 
boosting with HIV envelope protein elicited both cellular immunity and neutralizing 
antibodies and resulted in signi fi cantly lower acute viremia following exposure to 
 Simian / Human immunode fi ciency virus  (SHIV) SF162P4 (Xu et al.  2006  ) .  

    4.2.4   Lentivirus Vectors 

 Recently, recombinant lentiviral vectors (LVs) have gained substantial interest as 
an alternative method for eliciting antigen speci fi c T-cell immunity (Collins and 
Cerundolo  2004 ; Collins and Esslinger et al.  2003 ; He et al.  2005 ; Hu et al.  2011  ) . 
Immunization with LVs has been observed to induce potent and durable T cell 
responses in preclinical models. This is likely related to their capacity to transduce 
non-dividing cells, including DCs in the target tissues, and to enable persistent 
antigen presentation through high level expression of transgenes and low interfer-
ing anti-vector immune responses. It has been shown that LVs encoding HIV-1 
polyepitopes induce broad CD8 +  responses in mice (Iglesias et al.  2007  ) , and that 
a single intramuscular administration of HIV-based LVs expressing viral antigens 
elicits strong cell-mediated immune responses (Buffa et al.  2006  ) . Importantly, 
Beignon and colleagues recently provided the  fi rst evidence that an LV expressing 
SIV Gag protein was able to induce control of viral replication in monkeys 
challenged with high dose of SIV (Beignon et al.  2009  ) . To fully harness the great 
potential of DCs as the “gatekeeper” for initiating and maintaining immunity, 
Yang and colleagues (Yang et al.  2008  )  reported the generation of a LV system 
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bearing a mutated glycoprotein derived from the SIN capable of targeting DCs 
through binding to the speci fi c intercellular adhesion molecule-3-grabbing 
non-integrin (DC-SIGN). 

 Despite the desirable advantage of LVs to effectively deliver transgenes into 
DCs, vector integration in the host cell genome has provoked safety concerns over 
the consequences of insertional mutagenesis (Bokhoven et al.  2009 ; Montini et al. 
 2006  ) . In order to improve the safety pro fi le of LVs, considerable efforts have been 
made to generate integration-de fi cient LVs (IDLVs) by interrupting the function of 
integrase or its attachment sites in the vector backbone (Wanisch and Yanez-Munoz 
 2009  ) . Although the integration is speci fi cally inhibited, the resulting IDLVs can 
accomplish transient gene transfer to dividing cells and maintain durable transgene 
expression in non-dividing cells (Philippe et al.  2006  ) . Initial experiments involving 
a single dose injection of IDLV encoding the envelope protein of either HIV-1 
(Negri et al.  2007  )  or  West Nile virus  (Coutant et al.  2008  )  resulted in signi fi cant and 
prolonged immune responses against the delivered antigen. 

 Based on recent reports showing the potential of IDLVs for inducing antigen-
speci fi c immune responses upon  in vivo  immunization against viral or tumor antigens 
(Hu et al.  2009,   2010 ; Karwacz et al.  2009 ; Negri et al.  2011  )  in mouse models, 
further development in terms of bulk production (Lopes et al.  2011  )  and validation 
of IDLVs, including comparison with other vaccine protocols and use in non-human 
primate models, are warranted.   

    4.3   Enhancing Immunogenicity 

    4.3.1   Heterologous Prime-Boost Regimens 

 The main limitation of vaccination approaches based on viral vectors is linked to the 
induction of anti-vector immunity after the  fi rst immunization. In fact, repeated 
administration of both recombinant adenoviruses and MVA vaccine vectors typically 
results in an increasingly diminished ef fi cacy of such booster immunizations due to 
the elicitation of vector-speci fi c neutralizing antibody responses (Casimiro et al. 
 2004 ; Hirsch et al.  1996  ) . Several studies have shown that priming/boosting with 
different vaccine vectors elicits higher immune response to the transgene-encoded 
antigen than repeated vaccination with an individual vector. Thus the combined use 
of these vectors, generally de fi ned heterologous prime-boost regimen, is the best 
way to overcome the antiviral immunity induced by the  fi rst vaccination while 
maximizing the host response to the vaccine insert. 

 Initially, heterologous prime-boost protocols with common vaccine inserts often 
used a DNA plasmid to prime the immune system; however, more recently interest 
has grown in the combined use of different viral vectors and in how their sequence 
of administration can in fl uence the magnitude and nature of the induced immune 
response. Multiple approaches have now been tested in both animal models and 
humans, including DNA-MVA, DNA-NYVAC, FPV-MVA, Ad-MVA, heterologous 
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Ad-Ad, and DNA-Sendai virus, targeting a wide range of diseases from malaria, 
HIV-1, TB and HCV to cancers (Table  4.3 ). A consistent observation throughout all 
of these studies is the differential ability of certain vectors to prime or boost 
responses. DNA vaccines and FPV are good priming vectors, whereas poxviruses 
(MVA and NYVAC) are consistently able to boost T cell responses that are primed 
by other means. The utility of MVA-based vaccines to prime immune responses 
against foreign antigens appears to be limited due to unfavorable competition for 
immunodominance between the relatively large number of vector-speci fi c gene 
products (Antoine et al.  1998  )  and the much smaller number of intended vaccine 
antigens (Smith et al.  2005  b     ) . A large body of data now indicates that, in general, 
recombinant Ad can prime T cell and B cell responses remarkably well. Therefore, 
an optimal regimen would use adenovirus  fi rst to prime and MVA later to boost the 
previously vaccine induced immune response. An immunization protocol based on 
adenovirus as prime followed by MVA has demonstrated to be a powerful strategy 
to induce potent and durable T cell responses. This strategy enabled induction of 
protective immune response against mouse malaria (Reyes-Sandoval et al.  2010  )  
and SIV challenge in rhesus monkeys (Wang et al.  2010  ) .  

 Recent work has established the use of prime-boost immunization regimens to 
induce B cell as well as T cell responses, in particular Ad-MVA (Draper et al.  2008  ) , 
heterologous Ad-Ad (Liu et al.  2009  )  or viral vector prime followed by a protein 
boost (Draper et al.  2010 ; Durso et al.  2007  )  harnessing the ability of the viral vector 
to induce potent CD8 +  T cell response and of the protein to induce high antibody 
titers and CD4 +  T cells. The induction of both arms of the adaptive immune response 
is likely to be bene fi cial for protection against pathogen such as malaria parasites, 
and many viruses. A better understanding of how different viral vectors can affect 
the induction of B cell responses is essential to improve the rational design of vaccines 
and prime-boost strategies tailored to induce optimal antibody response.  

    4.3.2   Fusion Strategies Which Enhance T Cell Responses 

 Even though viral vector vaccines stand among the most potent platforms for induc-
tion of T cell responses, it is apparent that better vaccines are still needed to improve 
on magnitude, breadth or quality of the induced T cell response. Experimentally, 
immunogenicity may be improved by co-administration of cytokines and/or pathogen 
associated molecular patterns, and by fusion of antigen into molecular domains that 
enhances antigen presentation. For a substantial amount of time, the use of  cis  acting 
sequences for enhancing the ef fi cacy of vaccination was DNA vaccine territory and 
there are not many strategies to increase the response to adenovirus vaccine vectors 
that have been published so far (Holst et al.  2010  ) . It is tempting to speculate that 
viral vectored vaccines contain suf fi cient pathogen-associated molecular patterns 
to substitute for many cytokines co-administered with the vaccine. Compared to 
DNA vaccines, viral vectors more ef fi ciently enters and transduce cells, including 
professional antigen presenting cells, generally induce very high levels of protein 
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expression in the transduced cells, and induce substantial innate immune activation. 
In this regard, they are close to a natural infection or vaccination with live attenuated 
vaccines, but with an improved safety pro fi le. A down-side is that vector antigens 
compete with the encoded vaccine antigen and focuses the response on immu-
nodominant epitopes (Schirmbeck et al.  2008  ) . In a search for adenovirus vaccine 
modi fi cations which might lead to broader T cell responses, Holst and coworkers 
decided to improve MHC class II antigen presentation by covalently linking the 
encoded antigen to the MHC class II associated invariant chain (Holst et al.  2008  ) . 
Surprisingly, this strategy improved not only CD4 +  T cell responses, but also the 
kinetics, breadth, magnitude and durability of the CD8 +  T cell response via increased 
MHC class I presentation (Holst et al.  2011  ) . 

 A different strategy to generate more potent T cell responses using adenovirus 
vector, has been recently described (Appledorn et al.  2010  ) . This strategy uses an 
Ad5 vector expressing a potent toll-like receptor (TLR) agonist derived from  Eimeria 
tenella  (EA) as an adjuvant to improve immune responses from an Ad5-based HIV 
Gag vaccine. Expression of rEA elicited signi fi cantly increased TLR mediated innate 
immune responses as measured by the in fl ux of plasma cytokines and chemokines, 
and activation of innate immune responding cells in mice. Therefore, simultaneous 
expression of rEA, or potentially other similar TLR ligands from an Ad vector, can 
serve to enhance cell mediated immunity responses to pathogen derived antigens 
expressed from the same vectors. Other approaches to improve on viral vector-
induced immunity were based on antigen linked to the herpes virus VP22 protein and 
calreticulin which have been tested in SIN replicon particles (Cheng et al.  2002  )  and 
vaccinia vectors (Hsieh et al.  2004  ) , respectively, and the Herpes viral glycoprotein 
D, which has been tested using Ad vector (Lasaro et al.  2008  ) . 

 If highly active  cis  acting agents can be identi fi ed for viral vectors there is a theo-
retical possibility of boosting antigen speci fi c immune responses while inducing 
negligible vector immunity. Future studies are needed to determine if this theoretical 
opportunity can be exploited to allow ef fi cient and repeated administration of virus 
vectored vaccines.   

    4.4   Viral-Vectored Vaccines in Clinical Trials 

 There are no vaccines based on viral vectors or vaccines that act directly by T cell 
mediated immunity currently on the market for use in humans. However, a vaccine 
for  Japanese encephalitis virus  (JEV) using an attenuated  Jellow fever virus  
(YFV-17D) encoding the JEV preM-Env protein, developed by Sano fi  Pasteur, has 
completed Phase III trials and marketing authorization applications in endemic 
areas has been  fi led (Appaiahgari et al.  2010  ) . The JEV vaccine known as IMOJEV® 
is therefore poised to be the  fi rst human viral vectored vaccine on the market. 
There are also 12 viral vector vaccines currently in use for veterinary diseases. 
The approved vaccines include Ad, FPV, attenuated YFV, and vaccinia virus vectors, 
all of which are relevant as potential human viral vectored vaccines as witnessed by 
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the number of clinical trials now completed or underway (Draper and Heeney  2010  ) . 
Table  4.3  reports a summary of viral-vectored vaccines and prime-boost combinations 
that have advanced to clinical trials highlighting the preponderance of poxvirus and 
Ad vectors. The initial clinical experience with adenovirus as vaccine was based on 
the use of Ad5 derived vectors as candidate vaccines for HIV-1 and other pathogens 
including malaria parasite and in fl uenza virus. Despite the potent immunogenicity, 
this approach suffered a setback when an Ad5 HIV-1 vaccine (“STEP trial”) failed 
to reduce, and might even have increased, the rate of HIV infection in men who 
were uncircumcised and who had preexisting antibodies speci fi c for Ad5 (Buchbinder 
et al.  2008 ; McElrath et al.  2008  ) . However, recent analyses of this trial did not 
con fi rm the causal correlation between Ad5 serostatus and increased acquisition of 
HIV (Hutnick et al.  2009 ; O’Brien et al.  2009  )  and there is continued interest in 
pursuing Ad vectors, either in combination approaches with other vaccine vectors or 
using human serotypes with low seroprevalence, or those derived from chimpanzees. 
Recently, Barnes and colleagues showed that is possible to generate T cell responses 
against HCV of a magnitude and quality associated with protective immunity in 
healthy adults using a simian adenoviral vector vaccine (Barnes et al.  2012  ) . A 
different simian adenovirus vaccine encoding a malaria antigen also induced a very 
potent and long lasting T cell response (Colloca et al.  2012 ; O’Hara et al.  2012 ; 
Sheehy et al.  2011  )  in humans. 

 MVA-based vaccines against HIV/Acquired Immune De fi ciency Syndrome 
(Vasan et al.  2010  )  malaria (Moorthy et al.  2004a,   b  ) , TB (Hawkridge et al.  2008  ) , 
 Human papilloma virus -induced cervical intraepithelial neoplasia (Corona et al. 
 2004  )  and melanoma (Smith et al.  2005a,   b  )  are being evaluated in human clinical 
trials and a Phase I study of an alphavirus-based vaccine against cytomegalovirus 
has been completed (Bernstein et al.  2009  ) . 

 The prime-boost strategy with heterologous vectors is showing promise in clinical 
trials, as indicated by the moderately successful RV 144 trial (Rerks-Ngarm et al. 
 2009  ) . This study, conducted in Thailand with more than 16,000 study participants, 
showed a statistically signi fi cant trend towards preventing HIV infection in an at-risk 
population. The vaccine regimen employed a heterologous prime-boost strategy 
comprising a canarypox vector (ALVAC-HIV, Sano fi  Pasteur) followed by a gp120 
protein subunit in ALUM adjuvant (AIDSVAX B/E, Global Solutions for Infectious 
Diseases). As a booster vaccination, the AIDSVAX B/E vaccine achieved protective 
immunity, despite the previous lack of ef fi cacy of AIDSVAX B/E alone in a Phase 
III trial. This highlights a key property of viral vectors as vaccine platforms in that 
they can be combined in a plethora of permutations to achieve the desired immuno-
logical endpoint. 

 Another example of a prime-boost protocol in the clinic is the PAVE 100 study, 
redesigned as HVTN 505. This DNA-adenovirus prime-boost vaccine includes 
three HIV-1 envelopes (clades A, B, and C), as well as gag, pol and nef (IAVI report 
 2011  ) . The results from a Phase IIA randomized clinical trial of a multiclade HIV-1 
DNA prime followed by a multiclade Ad5 HIV-1 vaccine boost in healthy adults 
(HVTN204) has been recently published (Churchyard et al.  2011  )  showing that 
the vaccine regimen was well-tolerated and induced polyfunctional CD4 +  and CD8 +  
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T cells. Still other prime-boost strategy uses DNA and MVA vectors expressing many 
different HIV antigens (Rerks-Ngarm et al.  2009  ) . 

 Based on preclinical studies showing that adenovirus prime followed by MVA 
boost is a powerful strategy to induce potent and durable T-cell responses this pro-
tocol has now entered clinical testing with excellent results. Several recent studies 
have shown the induction of broad, potent and sustained CD4 +  and CD8 +  T cell 
responses in human volunteers after priming with simian adenoviral vectors and 
boosting with MVA encoding for antigens derived from  Plasmodium falciparum  
(Hill et al.  2010 ; O’Hara et al.  2012 ; Sheehy et al.  2011  ) .  

    4.5   Conclusions and Perspectives 

 Viral vectors can be manufactured at large scale, thermostable formulations are 
available (Alcock et al.  2010  )  and suf fi cient clinical research has now been conducted 
to establish that replication de fi cient viral vectored vaccines lead the genetic vaccine 
 fi eld in inducing strong and broad responses. Moreover, ef fi cacy studies of T cell 
inducing vaccines against a number of diseases in preclinical models are  fi nally 
demonstrating that this is a valid approach to  fi lling the gaps in our defense against 
not only infectious disease, but some forms of cancer. 

 There is an array of choices for vectored vaccine development, and it is apparent 
that success of a speci fi c vaccine application will re fl ect in large part vector selection. 
The  fi rst consideration in choosing a vector is whether it will be used in a prophy-
lactic or therapeutic application. In people already infected with an infectious agent 
such as HIV, the bene fi t of a therapeutic vaccine in an attempt to awake or strengthen 
immune response to  fi nally clear infection may outweigh some risk attributed to the 
vector itself. In contrast, prophylactic vaccines are intended for healthy people, not 
only adults, but also children and infants. Therefore, safety is of paramount impor-
tance. With regard to HIV vaccines, there is a real possibility of potential vaccinees 
in target populations being already HIV-positive and perhaps immune suppressed, 
making safety of viral vectors of great importance. 

 Vector selection also requires a thorough understanding of the biology of the 
infectious agent for which the vaccine is being developed and knowledge of the 
course of the resultant disease. Natural recovery from disease will often highlight 
immune responses correlated with control or eradication of the infectious agent, 
providing critical information with regard to the type of immune response desired: 
cellular and/or humoral, systemic or mucosal. Indeed, the various vaccine vectors 
have the ability to differentially induce immune response components, as shown in 
Table  4.2 . The mode of transmission of the infectious agent will also impact vector 
choice and vaccination route (i.e. systemic or mucosal). 

 Practical considerations are as important as the scienti fi c ones. The  fi nal goal 
once the vaccine has proven to be effective in clinical trials is to develop a manufac-
turing strategy able to provide vaccine doses for use in millions of people worldwide. 
A system for large scale production must be available, and the viral recombinant 
must be genetically stable in order to maintain its integrity through multiple 
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passages in order to reach desired quantities of vaccine material. Additionally, 
global indication of a vaccine implies use in the developing world where intact cold 
chain for shipping, distribution and storage and sophisticated equipment for vaccine 
administration are not always available. Therefore, vaccines that are physically 
stable, and that do not require freezing or even refrigeration are preferable, as are 
“needleless” vaccines, such as those that can be administered by intranasal or oral 
routes. These alternative administration routes can enhance convenience, safety, 
elicit both local and systemic immune responses; thus potentially provide protection 
from pathogens at the site of entry. Recombinant Ad5 encoding HIV-1 antigens has 
been successfully lyophilized and embedded in enteric-coated capsules that resist to 
acidic stomach environment and deliver vaccine directly to the intestinal tract. Oral 
immunization of macaques with these capsules primed antigen-speci fi c mucosal 
and systemic immune responses (Mercier et al.  2007  ) . The nasal route offers one of 
the most promising opportunities for vaccine administration and innovative strategies 
used by researchers and industry include new mucosal adjuvants, mucoadhesive 
polymers for prolonged exposure to mucosal vaccines and intranasal delivery 
systems such as the spray device of FluMist (AstraZeneca Canada Inc), the  fi rst 
intranasal in fl uenza vaccine on the market. Adenovirus-based vaccines might be 
among the best candidate for nasal delivery given their natural tropism for the nasal 
mucous membrane and their ability to activate innate immune responses (Tutykhina 
et al.  2011  ) . Even the skin, known to be a highly immunogenic vaccination site, due 
to ease of access to immune system and microvasculature but considered unpractical 
as conventional intradermal injection is a complex and unreliable procedure requiring 
skilled personnel, is gaining new interest thanks to recently developed minimally 
invasive technologies including vaccine-coated, solid or dissolving microneedle 
patches, currently under preclinical evaluation for protein, DNA and viral vector 
vaccines (Carey et al.  2011  ) . 

 The  fi eld of viral vector vaccines is highly dynamic and the development of 
products based on viral vectors will be accompanied in the next years by advances 
in technology for vector manufacturing and stability, vaccine administration and 
enhancement of vaccine-induced immunity overcoming the immunodominance of 
vector antigens over transgenic antigens. Despite the complexities posed by protocol 
optimization and heterologous prime-boost vaccine regimens, the strategy holds 
enormous promise for the prevention of a range of infectious diseases and immuno-
therapy of cancer.      
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