Skip to main content

Chromatin Changes upon Silver Nitrate Treatment in Human Keratinocyte HaCaT and K562 Erythroleukemia Cells

  • Chapter
  • First Online:
Cellular Effects of Heavy Metals

Abstract

Inhibition of cellular growth of silver nitrate was tested in two different mammalian cell lines: in HaCaT keratinocyte and K562 erythroleukemia cell cultures resulting in 6.4 and 3.5 µM AgNO3 MIC50 values, respectively. Fluorescent microscopic visualization of large-scale chromatin structures revealed that after AgNO3 treatment at low concentrations (<1 µM), regarded earlier as subtoxic levels, chromatin changes were early signs of cytotoxicity especially with K562 cells. Typical nuclear changes induced by silver nitrate involved (a) the polarization of precondensed and the extrusion of decondensed chromatin seen as chromatin tails, (b) the tail (“comet”) formation was dependent on silver nitrate concentration, (c) K562 erythroleukemia cells were more susceptible to silver nitrate (0.5–5 µM) treatment, than HaCaT cells, (d) elevated silver nitrate concentrations (10–15 µM) caused nuclear shrinking with an infrequent formation of apoptotic bodies, (e) higher Ag+ concentrations (20–50 µM) allowed the expansion of the nuclear material without necrotic disruptions. The chromatin tail formation could be accounted for by a decrease in chromatin supercoiling related to a dose dependent reduction of ATP content, cell viability and increased production of reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson LC, Nilsson K, Gahmberg CG (1979) K562—a human erythroleukemic cell line. Int J Cancer 23:143–147

    Article  PubMed  CAS  Google Scholar 

  • Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100

    Article  PubMed  CAS  Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  PubMed  CAS  Google Scholar 

  • Bader KF (1966) Organ deposition of silver following silver nitrate therapy for burns. Plast Reconstr Surg 37:550–551

    Article  PubMed  CAS  Google Scholar 

  • Baldi C, Minoia C, DiNuici A, Capodaglio E, Manzo L (1988) Effects of silver in isolated rat hepatocytes. Toxicol Lett 41:261–268

    Article  PubMed  CAS  Google Scholar 

  • Banfalvi G, Littlefield N, Hass B, Mikhailova M, Csuka I, Szepessy E, Chou WM (2000) Effect of cadmium on the relationship between replicative and repair DNA synthesis in synchronized CHO cells. Eur J Biochem 267:6580–6585

    Article  PubMed  CAS  Google Scholar 

  • Banfalvi G, Gacsi M, Nagy G, Kiss BZ, Basnakian AG (2005) Cadmium induced apoptotic changes in chromatin structure and subphases of nuclear growth during the cell cycle in CHO cells. Apoptosis 10:631–642

    Article  PubMed  CAS  Google Scholar 

  • Banfalvi G, Nagy G, Gacsi M, Roszer T, Basnakian AG (2006) Common pathway of chromosome condensation in mammalian cells. DNA Cell Biol 25:295–301

    Article  PubMed  CAS  Google Scholar 

  • Banfalvi G, Ujvarosi K, Trencsenyi G, Somogyi C, Nagy G, Basnakian AG (2007) Cell culture dependent toxicity and chromatin changes upon cadmium treatment in murine pre-B cells. Apoptosis 12:1219–1228

    Article  PubMed  CAS  Google Scholar 

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  PubMed  CAS  Google Scholar 

  • Boukamp P, Stanbridge EJ, Foo DY, Cerutti PA, Fusenig NE (1990) c-Ha-ras oncogene expression in immortalized human keratinocytes (HaCaT) alters growth potential in vivo but lacks correlation with malignancy. Cancer Res 50:2840–2847

    PubMed  CAS  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  PubMed  CAS  Google Scholar 

  • Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59:587–590

    Article  PubMed  CAS  Google Scholar 

  • Cooms C, Wan A (1992) Do burn patients have a silver burning? Burns 18:179–184

    Article  Google Scholar 

  • Cortes P, Castrejon V, Sampedro JG, Uribe S (2000) Interactions of arsenate, sulfate and phosphate with yeast mitochondria. Biochim Biophys Acta 1456:67–76

    Article  PubMed  CAS  Google Scholar 

  • Demling RH, DeSanti L (2001) Effects of silver on wound management. Wounds 13(1 suppl A):5–14

    Google Scholar 

  • Farkas E, Ujvarosi K, Nagy G, Posta J, Banfalvi G (2010) Apoptogenic and necrogenic effects of mercuric acetate on the chromatin structure of K562 human erythroleukemia cells. Toxicol In Vitro 24:267–275

    Article  PubMed  CAS  Google Scholar 

  • Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190:156–162

    Article  PubMed  CAS  Google Scholar 

  • Grier N (1983) Silver and its compounds. In: Block SS (ed) Disinfection, sterilization and preservation, 3rd edn. Lea and Febiger, Philadelphia, PA, pp 375–389

    Google Scholar 

  • Hadek R (1966) Preliminary report on the cellular effect of intravital silver in the mouse ovary. J Ultrastruct Res 15:66–73

    Article  PubMed  CAS  Google Scholar 

  • Hall RE, Bender G, Marquis RE (1988) In vitro effects of low intensity direct current generated silver on eukaryotic cells. J Oral Maxillofac Surg 46:128–133

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo E, Domínguez C (1998) Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol Lett 98:169–179

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo E, Bartolomé R, Barroso C, Moreno A, Domínguez C (1998) Silver nitrate: antimicrobial activity related to cytotoxicity in cultured human fibroblasts. Skin Pharmacol Appl Skin Physiol 11:140–151

    Article  PubMed  CAS  Google Scholar 

  • Hussain S, Anner RM, Anner BM (1992) Cysteine protects Na, K-ATPase and isolated human lymphocytes from silver toxicity. Biochem Biophys Res Commun 189:144–149

    Article  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    Article  PubMed  CAS  Google Scholar 

  • Klein E, Ben-Bassat H, Neumann H, Ralph P, Zeuthen J, Polliack A, Vánky F (1976) Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer 18:421–431

    Article  PubMed  CAS  Google Scholar 

  • Liedberg H, Lundeberg T (1989) Assessment of silver-coated urinary catheter toxicity by cell culture. Urol Res 32:359–360

    Article  Google Scholar 

  • Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334

    PubMed  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  PubMed  CAS  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  PubMed  CAS  Google Scholar 

  • Ralph SJ (2008) Arsenic-based antineoplastic drugs and their mechanisms of action. Met Based Drugs 2008:260146

    Article  PubMed  Google Scholar 

  • Rodriguez H, Holmquist GP, D’Agostino R Jr, Keller J, Akman SA (1997) Metal ion-dependent hydrogen peroxide-induced DNA damage is more sequence specific than metal specific. Cancer Res 57:2394–2403

    PubMed  CAS  Google Scholar 

  • Rosenman KD, Moss A, Kon S (1979) Argyria: clinical implications of exposure to silver nitrate and silver oxide. J Occup Med 21:430–435

    PubMed  CAS  Google Scholar 

  • Stokinger HE (1981) Silver. In: Clayton GD, Clayton E (eds) Patty’s industrial hygiene and toxicology, vol 2A. Wiley, New York, pp 1881–1894

    Google Scholar 

  • Thorsen M, Perrone GG, Kristiansson E, Traini M, Ye T, Dawes IW, Nerman O, Tamás MJ (2009) Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. BMC Genom 10:105

    Article  Google Scholar 

  • Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414

    Article  PubMed  CAS  Google Scholar 

  • Vujcic M, Shroff M, Singh KK (2007) Genetic determinants of mitochondrial response to arsenic in yeast Saccharomyces cerevisiae. Cancer Res 67:9740–9749

    Article  PubMed  CAS  Google Scholar 

  • Wataha JC, Lockwood PE, Schedle A (2000) Effect of silver, copper, mercury, and nickel ions on cellular proliferation during extended, low-dose exposures. J Biomed Mater Res 52:360–364

    Article  PubMed  CAS  Google Scholar 

  • Westhofen M, Schafe H (1986) Generalized argyrosis in man: neurotological, ultrastructural and X-ray microanalytical findings. Arch Otorhinolaryngol 243:260–264

    Article  PubMed  CAS  Google Scholar 

  • Yang HC, Pon LA (2003) Toxicity of metal ions used in dental alloys: a study in the yeast Saccharomyces cerevisiae. Drug Chem Toxicol 26:75–85

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Hungarian Scientific Research Fund (OTKA grant) T 42762 grant to G.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gáspár Bánfalvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nagy, G., Turáni, M., Kovács, K., Bánfalvi, G. (2011). Chromatin Changes upon Silver Nitrate Treatment in Human Keratinocyte HaCaT and K562 Erythroleukemia Cells. In: Banfalvi, G. (eds) Cellular Effects of Heavy Metals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0428-2_9

Download citation

Publish with us

Policies and ethics