Chapter 4

Rule of Three

4.1 Nature of rule of three

The typical problem involving the rule of three is the following: When 5 measures of paddy is known to yield 2 measures of rice (and when it is presumed that the same relation will persist always (vyāpti)) how many measures of rice will be obtained from 12 measures of paddy?

Here pramāna $=5$, pramāna-phala $=2, i c c h \bar{a}=12$ and we have to find the icchā-phala.

If for 5 measures of paddy 2 measures of rice are obtained, then for 1 measure of paddy $\frac{2}{5}$ measures of rice ($\frac{p r a m \bar{a} n a-p h a l a}{p r a m \bar{a} p a}$) will be obtained. Therefore for 12 measures of paddy $12 \times \frac{2}{5}=\frac{24}{5}$ measures of rice will be obtained.

$$
\begin{equation*}
i c c h \bar{a}-p h a l a=\frac{i c c h \bar{a} \times p r a m \bar{a} n a-p h a l a}{\text { pramāna }} . \tag{4.1}
\end{equation*}
$$

This is the rule of three.

It is said that most of mathematical computations are pervaded by trairāaśikanyāya, the rule of three, and bhujā-kotic-karna-nyā$y a$, the relation between the base, height and the diagonal of a rectangle (Pythagoras Theorem).

