Skip to main content

High-Pressure Synthesis of Materials

  • Conference paper
  • First Online:
High-Pressure Crystallography

Abstract

High pressure-high temperature techniques are used to synthesise new solid state compounds and materials that can be developed for technological applications. Laboratory and synchrotron x-ray diffraction and optical spectroscopy are combined with ab initio calculations to determine the structures and properties of new materials. We describe recent work on major classes of new materials including boron-rich solids, transition metal nitride superconductors, nitride spinels and light element solids based in the C–N–H system using examples from our own work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailey E., P. F. McMillan, J. Mater. Chem., submitted (2010).

    Google Scholar 

  • Besson J.-M., G. Hamel, T. Grima, R. J. Nlmes, J. S. Loveday, S. Hull, D. Hausermann, High Pressure Res, 8, 625 (1992).

    Article  ADS  Google Scholar 

  • Bezinge A., K. Yvon, J. Muller, W. Lengauer, P. Ettmayer, Solid State Commun, 63, 141 (1987).

    Article  ADS  Google Scholar 

  • Bovenkerk H. P., F. P. Bundy, H. T. Hall, H. M. Strong, R. H. Wentorf, Nature, 184, 1094 (1959).

    Article  ADS  Google Scholar 

  • Boyd F. R., J. L. England, J Geophys Res, 65, 741 (1960).

    Article  ADS  Google Scholar 

  • Brazhkin V. V., A. G. Lyapin, R. J. Hemley, Phil Mag A, 82, 231 (2002).

    Article  ADS  Google Scholar 

  • Bridgman P. W., The Physics of High Pressure (G Bell and Sons, London, 1931).

    Google Scholar 

  • Bull C. L., P. F. McMillan, E. Soignard, K. Leinenweber, J Solid State Chem, 177, (2004)

    Google Scholar 

  • Bundy F. P., W. A. Bassett, M. S. Weathers, R. J. Hemley, H.-k. Mao, A. F. Goncharov, Carbon, 34, 141 (1996).

    Article  Google Scholar 

  • Bundy F. P., H. T. Hall, H. M. Strong, R. H. Wentorf, Nature, 176, 51 (1955).

    Article  ADS  Google Scholar 

  • Chen X.-J., V. V. Struzhkin, S. Kung, H.-k. Mao, R. J. Hemley, Phys Rev B, 70, (2004).

    Google Scholar 

  • Ching W. Y., S.-D. Mo, L. Ouyang, Phys Rev B, 63, 245110 (2001a)

    Article  ADS  Google Scholar 

  • Ching W. Y., S.-D. Mo, I. Tanaka, M. Yoshiya, Phys Rev B, 63, 064102 (2001b).

    Article  ADS  Google Scholar 

  • Coes L., J Am Ceram Soc, 38, 333 (1955).

    Article  Google Scholar 

  • Cohen M. L., Phys Rev B, 32, 7988 (1985).

    Article  ADS  Google Scholar 

  • Dong J., O. F. Sankey, S. K. Deb, G. H. Wolf, P. F. McMillan, Phys Rev B, 61, 11979 (2000).

    Article  ADS  Google Scholar 

  • Dubrovinskaia N., G. Eska, G. A. Sheshin, H. Braun, J Appl Phys, 99, 033903 (2006).

    Article  ADS  Google Scholar 

  • Ekimov E. A., V. A. Sidorov, E. D. Bauer, N. N. Mel’nik, N. J. Curro, J. D. Thompson, S. M. Stishov, Nature, 428, (2004).

    Google Scholar 

  • Eremets M., High Pressure Experimental Methods (Oxford University Press, Oxford, 1996).

    Google Scholar 

  • Eremets M. I., V. V. Struzhkin, H. Mao, R. J. Hemley, Science, 293, 272 (2001).

    Article  ADS  Google Scholar 

  • Haines J., J. M. Léger, J. Bocqillon, Ann Rev Mater Sci, 31, 1 (2001).

    Article  ADS  Google Scholar 

  • Hall H. T., Rev Sci Instruments, 31, 125 (1960).

    Article  ADS  Google Scholar 

  • Haüssermann U., S. I. Simak, R. Ahuja, B. Johansson, Phys Rev Lett, 90, (2003).

    Google Scholar 

  • Hazen R. M., The Diamond Makers (Cambridge Univ Press, Cambridge, UK, 1999).

    Google Scholar 

  • He D. W., M. Akaishi, B. L. Scott, Y. Zhao, J Mater Res, 17, 284 (2002).

    Article  ADS  MATH  Google Scholar 

  • He D., S. Shieh, T. S. Duffy, Phys Rev B, 70, 184121 (2004).

    Article  ADS  Google Scholar 

  • Hector A. L., A. W. Jackson, P. F. McMillan, O. Shebanova, J Solid State Chem, 179, 1383 (2006).

    Article  ADS  Google Scholar 

  • Holzapfel W. D., N. S. Isaacs, High-Pressure Techniques in Chemistry and Physics: A Practical Approach (Oxford University Press, Oxford, 1997).

    Google Scholar 

  • Horvath-Bordon E., R. Riedel, A. Zerr, P. F. McMillan, G. Auffermann, Y. Prots, R. Kniep, P. Kroll, Chem Soc Rev, 35, 987 (2006).

    Article  Google Scholar 

  • Horvath-Bordon E., R. Riedel, P. F. McMillan, P. Kroll, G. Miehe, P. van Aken, A. Zerr, P. Hoppe, O. Shebanova, I. McLaren, S. Lauterbach, E. Kroke, R. Boehler, Angew Chem Int Ed, 46, 1476 (2007).

    Article  Google Scholar 

  • Hubert H., L. A. J. Garvie, K. Leinenweber, P. Buseck, W. T. Petuskey, P. F. McMillan, 410, 191 (1996).

    Google Scholar 

  • Hubert H., L. A. J. Garvie, P. R. Buseck, W. T. Petuskey, P. F. McMillan, J Solid State Chem, 133, 356 (1997).

    Article  ADS  Google Scholar 

  • Hubert H., B. Devouard, L. A. J. Garvie, M. O’Keeffe, P. R. Buseck, W. T. Petuskey, P. F. McMillan, Nature, 391, 376 (1998a).

    Article  ADS  Google Scholar 

  • Hubert H., L. A. J. Garvie, B. Devouard, P. R. Buseck, W. T. Petuskey, P. F. McMillan, Chem Mater, 10, 1530 (1998b).

    Article  Google Scholar 

  • Jamieson J. C., A. W. Lawson, N. D. Nachtrieb, Rev Sci Instrum, 30, (1959).

    Google Scholar 

  • Jayaraman A., Rev Mod Phys, 55, 65 (1983).

    Article  ADS  Google Scholar 

  • Jiang J. Z., F. Kragh, D. J. Frost, K. Stahl, H. Lindelov, J Phys Cond Matter, 13, L515, (2001).

    Article  ADS  Google Scholar 

  • Jiang J. Z., H. Lindelov, L. Gerward, K. Stahl, J. M. Recio, P. Mori-Sanchez, S. SCarlson, M. Mezouar, E. Dooryhee, A. Fitch, D. J. Frost, Phys Rev B, 65, 161202 (2002).

    Article  ADS  Google Scholar 

  • Kaner R. B., J. J. Gilman, S. H. Tolbert, Science, 308, 1268 (2005).

    Article  Google Scholar 

  • Khvostanstev L. G., V. N. Slesarev, V. V. Brazhkin, High Press Res,24, 371 (2004).

    Google Scholar 

  • Kinski I., G. Miehe, G. Heymann, R. Theissmann, R. Riedel, H. Huppertz, Z Naturforsch, 60b, 832 (2005).

    Google Scholar 

  • Krukowski S., M. Bockowski, B. Lucznik, I. Grzegory, S. Porowski, T. Suski, Z. Romanowski, J Phys Cond Matter, 13, 8881 (2001).

    Article  ADS  Google Scholar 

  • Leinenweber K., M. O’Keeffe, M. Somayazulu, H. Hubert, P. F. McMillan, G. H. Wolf, Chem Eur J, 5, 3076 (1999).

    Article  Google Scholar 

  • Leitch S., A. Moewes, L. Ouyang, W. Y. Ching, T. Sekine, J Phys Cond Matter, 16, 6469 (2004).

    Article  ADS  Google Scholar 

  • Lengauer W., J Cryst Growth, 87, 295 (1988).

    Article  ADS  Google Scholar 

  • Liu L.-G., W. Bassett, Elements, Oxides, Silicates: High-Pressure Phases with Implications for the Earth’s Interior (Oxford University Press, New York, 1986).

    Google Scholar 

  • Liu A. L., M. L. Cohen, Science, 245, 841 (1989).

    Article  ADS  Google Scholar 

  • Lundstrom T., J Solid State Chem, 133, 88 (1997).

    Article  ADS  Google Scholar 

  • Lundstrom T., Y. G. Andreev, Mater Sci Eng A, 209, (1996).

    Google Scholar 

  • Machon D., D. Daisenberger, E. Soignard, G. Shen, T. Kawashima, P. F. McMillan, Phys Stat Solidi (a), 203, 831 (2006).

    Article  ADS  Google Scholar 

  • Malkow T., Mater Sci Eng A, 302, 309 (1996).

    Google Scholar 

  • McMillan P. F., Nature Mater, 1, (2002).

    Google Scholar 

  • McMillan P. F., Nature Mater, 4, (2005).

    Google Scholar 

  • McMillan P. F., H. Hubert, A. Chizmeshya, L. A. J. Garvie, W. T. Petuskey, B. Devouard, J Solid State Chem, 147, 281 (1999).

    Article  ADS  Google Scholar 

  • McMillan P. F., O. Shebanova, D. Daisenberger, R. Quesada Cabrera, E. Bailey, A. L. Hector, V. Lees, D. Machon, A. Sella, M. Wilson, Phase Trans, 80, 1003 (2007).

    Article  Google Scholar 

  • Oganov A. R., J. Chen, G. C, M. Y, C. W. Glass, Z. Liu, T. Yu, O. O. Kurakevych, V. L. Solozhenko, Nature, 457, (2009).

    Google Scholar 

  • Oyama S. T., The Chemistry of Transition Metal Carbides and Nitrides (Blackie Academic, Glasgow, 1996).

    Book  Google Scholar 

  • Pal’yanov Y. N., A. G. Sokol, Y. M. Borzdov, A. F. Khokhryakov, N. V. Sobolev, Am Mineral, 87, 1009 (2002).

    Google Scholar 

  • Papaconstantopoulos D. A., M. K. Mehl, Phys Rev B, 65, 172510 (2002).

    Article  ADS  Google Scholar 

  • Piermarini G. J., J Res Nat Inst Standards Technol, 106, 889 (2001).

    Article  Google Scholar 

  • Rizzo H. F., W. C. Simmons, H. O. Bielstein, J Electrochem Soc, 109, 1079 (1962).

    Article  Google Scholar 

  • Salamat A., K. Woodhead, P. F. McMillan, R. Quesada Cabrera, J.-P. Perrillat, A. Rahman, D. Adriens, F. Cora, Phys Rev B, 80, 104106 (2009)

    Article  ADS  Google Scholar 

  • Scotti N., W. Kockelmann, J. Senker, S. Traβel, H. Jacobs, Z Anorg Allg Chem, 625, 1435 (1999).

    Article  Google Scholar 

  • Schnick W., Angew Chem Int Ed, 38, 3309 (1999).

    Article  Google Scholar 

  • Schwarz M., A. Zerr, E. Kroke, G. Miehe, I.-W. Chen, M. Heck, B. Thybusch, B. T. Poe, R. Riedel, Angew Chem Int Ed, 41, 788 (2002).

    Google Scholar 

  • Sekine T., H. He, T. Kobayashi, M. Tansho, K. Kimotot, Chem Phys Lett, 344, 395 (2001).

    Article  ADS  Google Scholar 

  • Sekine T., H. He, T. Kobayashi, M. Zhang, F. Xu, Appl Phys Lett, 76 (2000).

    Google Scholar 

  • Serghiou G., G. Miehe, O. Tschauner, A. Zerr, R. Boehler, J Chem Phys, 111 (1999).

    Google Scholar 

  • Shebanova O., P. F. McMillan, E. Soignard, High Pressure Res, 26, 87 (2006).

    Article  Google Scholar 

  • Soignard E., M. Somayazulu, J. Dong, O. F. Sankey, P. F. McMillan, J Phys Cond Matter, 13, 557 (2001).

    Article  ADS  Google Scholar 

  • Soignard E., D. Machon, P. F. McMillan, J. Dong, B. Xu, K. Leinenweber, Chem Mater, 17, 5465 (2005).

    Article  Google Scholar 

  • Sokol A. G., Y. N. Pal’yanov, G. A. Pal’yanova, A. F. Khokhryakov, N. V. Sobolev, Diamond Related Mater, 10, 2131 (2001).

    Article  ADS  Google Scholar 

  • Solozhenko V. L., High Pressure Res, 22, 519 (2002a).

    Article  ADS  Google Scholar 

  • Solozhenko V. L., Phys Chem Chem Phys, 4, 1033 (2002b).

    Article  Google Scholar 

  • Solozhenko V. L., D. Andrault, G. Fiquet, M. Mezouar, D. C. Rubie, Appl Phys Lett, 78, 1385 (2001a).

    Article  ADS  Google Scholar 

  • Solozhenko V. L., S. N. Dub, N. Novikov, Diamond Related Mater, 10, 2228 (2001b).

    Article  ADS  Google Scholar 

  • Solozhenko V. L., Y. Le Godec, S. Klotz, M. Mezouar, V. Z. Turkevich, J.-M. Besson, Phys Chem Chem Phys, 4, 5386 (2002a).

    Article  Google Scholar 

  • Solozhenko V. L., V. Z. Turkevich, O. O. Kuryakevych, W. A. Crichton, M. Mezouar, J Phys Chem B, 106, 6634 (2002b).

    Article  Google Scholar 

  • Solozhenko V. L., Y. Le Godec, O. O. Kurakevych, C R Chimie, 9, 1472 (2006).

    Article  Google Scholar 

  • Sumiya H., N. Toda, S. Satoh, New Diamond Frontier Carbon Technol, 10, 233 (2000).

    Google Scholar 

  • Sung C.-M., M.-F. Tai, Int J Refractory Metals Hard Mater, 15, 237 (1997).

    Article  Google Scholar 

  • Tanaka I., F. Oba, T. Sekine, E. Ito, A. Kubo, K. Tatsumi, H. Adachi, T. Yamamoto, J Mater Res, 17, 731 (2002).

    ADS  Google Scholar 

  • Taniguchi T., T. Teraji, S. Koizumi, K. Watanabe, S. Yamaoka, Jpn J Appl Phys, 41, L109 (2002).

    Article  ADS  Google Scholar 

  • Teter D., Mater Res Soc Bull, 23, 22 (1998).

    Google Scholar 

  • Teter D., R. J. Hemley, Science, 271 (1996).

    Google Scholar 

  • Toth L. E., Transition Metal Carbides and Nitrides (Academic, New York, 1971).

    Google Scholar 

  • Van Valkenburg A., Rev Sci Instrum, 33 (1962).

    Google Scholar 

  • Veprek S., J Vac Sci Technol A, 17, 2401 (1999).

    Article  ADS  Google Scholar 

  • von Platen B., in: Modern Very High Pressure Techniques, ed. R. H. Wentorf (Butterworth, Washington DC, 1962), p. 118.

    Google Scholar 

  • Watanabe K., T. Taniguchi, H. Kanda, Nature Materials, 3 (2004).

    Google Scholar 

  • Weir C. E., E. R. Lippincott, A. Van Valkenburg, E. N. Bunting, J Res Nat Bur Standards, 63A, 55 (1959).

    Article  Google Scholar 

  • Wentorf R. H., J Chem Phys, 26, 956 (1957).

    Article  ADS  Google Scholar 

  • Yokoya T., T. Nakamura, T. Matsushita, T. Muro, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada, T. Oguchi, Nature, 438, 647 (2005).

    Article  ADS  Google Scholar 

  • Zerr A., G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fueβ, P. Kroll, R. Boehler, Nature, 400 (1999).

    Google Scholar 

Download references

Acknowledgments

PFM acknowledges support from EPSRC SRF EP/D07357X and Portfolio grant EP/D504782 (held jointly with C.R.A. Catlow and P. Barnes). The work reported for dwur-C2N3H forms part of the Ph.D. research of A. Salamat and K. Woodhead. New data on superconducting MoN and related oxynitride phases were obtained by Dr. E. Bailey at UCL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. McMillan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

McMillan, P.F. (2010). High-Pressure Synthesis of Materials. In: Boldyreva, E., Dera, P. (eds) High-Pressure Crystallography. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9258-8_30

Download citation

Publish with us

Policies and ethics