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  Abstract   Computational social science and in particular agent-based social 
simulation continue to gain momentum in the academic community. Social network 
analysis enjoys even more popularity. They both have much in common. In agent-
based models, individual interactions are simulated to generate social patterns of all 
kinds, including relationships that can then be analyzed by social network analysis. 
This chapter describes and discusses the role of agent-based modeling in the gener-
ative-analytical part of this symbiosis. More precisely, we look at what concepts are 
used, how they are used (implemented), and what kind of validation procedures can 
be applied.      

    11.1   Introduction 

 Agent-based modeling and network analysis enjoy a symbiotic relationship in the 
fi eld of computational social science. The former is a method of computationally 
representing individual interactions from which social patterns emerge; the latter is 
a method that affords (dynamic) structural analysis of (socio-) structural patterns. 
The renowned anthropologist Clyde Mitchell stated that the starting point of any 
analysis should be the actual relationships in which people are involved (Mitchell 
 1989 , pp. 77–79). What he did not think of, interestingly, is to analyze, other than 
by observational and descriptive means, how these relationships form. 
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 Today, agent-based models (ABMs) are mostly implemented as object-oriented 
computer programs. They consist of autonomous agents that can be perceived as 
computer programs themselves. In principal, agents have three features: they behave 
and interact according to a given set of rules, possess cognitive capabilities to pro-
cess information, and constitute their own environment (cf. Cederman  2001 ; Ferber 
 1999  ) . Empirically seen, the key question is how the design of agent behavior and 
cognition is informed. Standard research practices suggest that the agent design 
process can rely on qualitative data (Alam et al.  2010 ; Hoffer  2006  ) , experimental 
data (Barreteau et al .   2001  ) , and empirically validated theoretical knowledge (Cioffi -
Revilla and Osman  2009  ) . 

 At this point it should be evident that we favor an empirical approach over a pure 
Popperian procedure. The importance of this statement lies in the fact that agent 
interactions as defi ned by agent behavior are tantamount to what is called in social 
network analysis ‘re-wiring’, i.e., according to which rules (algorithms) do the 
different nodes in a network get connected with each other. ABMs claiming to have 
relevance for the social sciences should assume plausible behavior at the individual 
level. ABMs are considered non-black-box models (Boudon  1998  ) . Should ABMs 
serve as social network generators, then one requirement is that they can explain 
how the network came about. Hence, from an epistemological perspective, the 
model needs to exhibit construct-valid mechanisms and processes. 

 The kinds of networks that can be generated and represented by agent-based social 
simulations are manifold. They can range from networks with only a few vertices 
and edges to complicated networks in which agents are embedded in several different 
layers, so called multiplex networks (Granovetter  1985  ) . Networks generated by 
ABMs can represent social, geographical, and even cognitive (semantic network) 
spaces. In their capacity as thematic maps, networks can be used to elucidate such 
concepts as exchange, power, or identity. Paired with social simulation, these ques-
tions can be further explored insofar as agent-based modeling enables the study of 
the underlying agent behavior, and social mechanisms and processes (Hedström 
 2005  ) . This is a powerful combination. 

 Agent-based social simulations are usually analyzed based on hypotheses. 
One way of testing the hypotheses is observing time-series charts for a number 
of measures. In analyzing agent-based social networks, an important issue is 
to understand the role of social processes in constraining the dynamics of the 
generated networks. The purpose of agent-based social networks is to explore 
the simulated data trajectories and to understand the modeled phenomena. This 
is different compared to stochastic models for dynamic social networks (Snijders 
et al.  2010  ) , where existing longitudinal data are used for model fi tting and 
parameter estimation. 

 When generating social networks by means of agent-based modeling, two con-
cepts are in the foreground: the processes that bring about the network and the 
structure this network has. Process and structure are interdependent processes. How 
agents behave is, of course, infl uenced by how they are connected to others; that is 
how they are embedded in society. To this a third dimension is added in agent-based 
modeling. Agents are usually placed on some kind of surface. 



20111 Networks in Agent-Based Social Simulation

 The focus of this chapter is to describe and discuss the symbiosis of agent-based 
social modeling and social network analysis. We shall look at how model topologies 
affect network topologies and provide an overview of different social network gen-
eration processes. How networks are implemented in ABMs and how agent-based 
social networks may be analyzed are also discussed.  

    11.2   Social and Physical Space in ABMs 

 In this section, we discuss physical and social neighborhoods in agent-based social 
simulation models. Agent-based simulation models of social phenomena date back 
to the mid 1980s. As Axelrod  (  1997  )  argues, the goal of this modeling approach has 
been to break simplistic assumptions required for mathematical tractability, e.g. 
homogeneity, ignoring interaction. With the advent of multiagent models, social 
simulation benefi ted from it most as these models provided the provisions of simu-
lating the social behavior of autonomous individuals and the interactions between 
them. ABMs have been accredited, in most cases, as suitable for decentralized sce-
narios, especially when individual interactions lead to the emergence of collective 
patterns, like in the case of complex social networks. 

    11.2.1   Representing Physical Neighborhoods 

 Agent-based modeling affords taking geographical space into account in a straight-
forward manner. This is true for abstract spaces as well as for detailed Geographic 
Information Systems (GIS) referenced spaces. Perhaps the most commonly used 
topologies in agent-based modeling are the von Neumann or Moore neighborhoods 
on a plain or a toroid surface. Other possible topologies are, for example, irregular, 
hexagonal grids or vector-based (Crooks et al.  2008  ) . Differences in topologies lead 
to differences in network generation processes and resulting network structures 
(c.f. Flache and Hegselmann  2001  ) . The reason for this is that model topologies 
limit agents not only in their movement, but also in the manner by which they perceive 
information and interact with other agents. The underlying assumption is that space 
is important and matters in everyday (artifi cial) life, affecting both the individual’s 
behavior and society as a whole. Choice of a topology depends very much on the 
modeler’s needs. The focus of the discussion here is on the effect that different 
model topologies have on network evolution processes and network structures. 
In other words, how are dynamic social networks coupled to model space? Note that 
this question is distinct from questions of how space is represented in networks, 
which we discuss below. 

 As Bailey and Gatrell  (  1995 , p. 4) explain, “spatial data analysis is involved 
when data are spatially located and explicit consideration is given to the possible 
importance of their spatial arrangement in the analysis or interpretation of results.” 
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Spatial analysis, for example, that is based on GIS techniques, highlights the 
importance, provided it exists, of neighborhood infl uences, if any, in the actors’ 
behavior caused by the spatial-context. Schensul et al.  (  1999  )  have thoroughly covered 
the issues involving spatial mapping of data; we report a few of the most relevant 
points. For any social networks, the atomic units are usually the individuals. In gath-
ering data about individuals, it is quite useful to identify the general spatio-temporal 
constraints that limit most individuals’ movements and interaction in the region. 
Typically, in spatially explicit models, agents may include stakeholders, land owners, 
farmers, public institutions, and policy or decision-making agencies. As Brown 
 (  2006  )  explains, the behavior of such agents may vary from being triggered by some 
external stimulus or coping with certain stresses to being goal-oriented.  

    11.2.2   Networks from Embedded Social Mechanisms 
and Processes 

 Earlier in this section we discussed the importance of signifying boundaries and 
neighborhoods. Modeling a social network requires identifying the spaces in which 
the agents exist and are related. All relations among real entities exist and are 
constrained through physical spaces. More importantly, case-studies involving land 
use change, distribution and utilization of physical resources are modeled spatially 
explicitly  per se.  

 Social networks are generated through social mechanisms and processes, 
i.e., agents that are embedded in society and that interact with each other produce 
them. It has become more and more accepted in the social sciences that the agents’ 
(e.g., humans, primates, ants) behavior does not follow a linear pattern, but is 
non-linear in its own right. Social complexity, according to Moss  (  2008 , p. 2), is a 
“condition whereby social behavior cannot be understood simply as a scaled-up 
replication of the behavior of the individuals comprising the society”. The interplay 
of social processes as an outcome of socially embedded individuals gives rise to 
the social behavior, which, as Moss  (  2008 , p. 3) explains, “cannot be forecast on the 
basis of individuals’ characteristics and predictions alone”. The macro-phenomena 
resulting from such micro-level interactions are often complex in nature. We under-
stand complexity as a “type of condition in which agent behavior and social interac-
tion combine to generate macro-level outcomes that could not be predicted from 
knowledge of the behavior and nature of interactions alone, and result in sporadic 
volatile episodes, the timing, magnitude, duration and outcomes of which are them-
selves unpredictable” (Geller and Moss  2008 , p. 322). By contrast, in the study of so 
called complex networks, the notion of complexity is related to network structures 
(both local and global) and characteristics that are not statistically signifi cant in a 
random network (Newman  2004 ; Wasserman and Faust  1994  ) . We are aware of 
other defi nitions of both complexity and complex networks (see Edmonds  (  1999  )  
for a review), but those given should suffi ce for the purpose of this chapter. 
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 Self-organized criticality (SOC) addresses the local mechanisms and processes 
that drive the emergence of complex systems. It can be interpreted as the 
response of a slowly driven system such that the outcome of the system’s behavior 
is limited by the order of the magnitude of its size, thus, leading to the scale-free 
property (see below). Following Jensen  (  1998  ) , one may explain SOC as the 
development of emergent patterns due to interactions among meta-stable agents, 
so that at some critical state, the result of interactions affects the entire system 
such that all members of the system infl uence each other. For the rest of the 
period, any local distortions resulting from agents’ interactions in their neigh-
borhoods remain confi ned locally. Systems governed by SOC leave characteris-
tic traces in the data they produce. The data conforms not to the assumption 
underlying standard statistical methods, namely that the mean and standard 
deviation of the distribution of the data are known and stable. Consequentially, 
the conditions for standard statistical hypothesis testing and regression tech-
niques are not satisfi ed anymore, and there are cases where variance is infi nite 
(Barthélémy  2006  ) . However, of more importance to us in the present context 
is the fact that investigating such signatures provides useful guidance for the 
analysis of social simulations (Moss  2002  ) . Leptokurtosis in a distribution of 
relative changes can be a refl ection of episodes of volatility that are themselves 
unpredictable (Moss  2002  ) . That is, unpredictable clustering of volatility and the 
corresponding extreme events are identifi ably complex features of time series. 
Conversely, fi nding leptokurtosis in time series data would naturally incline us 
to look for extreme events. A vital implication of such approaches is that it is 
practically impossible to predict the outcomes to the system from simple stimuli 
(Jensen  1998  ) . 

 ABMs – not only of social systems – can represent such properties. This is an 
important assumption that needs to be taken into account when modeling networks 
with an agent-based approach, for agent behavior and interaction – as understood 
in SOC – will affect the kind of networks that emerge. With this in mind, we now 
present an overview of characteristic complex network topologies associated with 
complexity concepts that an agent-based modeler has to expect when running a 
simulation. Presented will be also measures appropriate for the analysis of agent-
based social simulation generated networks. 

 Modeling dynamic social networks where agents communicate with each 
other and build relations over time requires the introduction of “social” spaces 
that go beyond the physically situated agents. Such agents can be called “socially 
embedded” (Edmonds  2006 ; Granovetter  1973  ) , i.e., an agent’s behavior is fairly 
infl uenced by the network of social relations that it is part of. Physical resources 
and interaction with the environment do not fulfill the demand for capturing 
the social interactions that may infl uence, for example, a farmer’s decision to 
plant a certain type of crop, or use of their land. Social spaces and the agents’ 
interactions may either be constrained by a local neighborhood, or could be 
global (i.e., each agent may be directly related to any other agent in the space). 
In the former case, the sociability of agents depends on the spatial neighborhoods, 
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and thus, according to Edmonds  (  2006  ) , the physical space is used as a proxy for 
social space. 

 Not many social network models exploit combining the social and physical 
spaces, which is pivotal for analyzing the underlying complexity and for which 
ABMs are well suited as they support modeling the spatial neighborhood as well 
as agents’ cognition in building relations. Hence, symbiosis of the two “spaces” 
remains an active area of research.  

    11.2.3   Types of Complex Networks 

 The term complex networks is used as an umbrella term for the size, similarity of 
structure, and dynamics in real and simulated networks (for two comprehensive 
articles on the issue see Newman  (  2004  )  and Fortunato  (  2009  ) ). Cross-disciplinary 
research, especially in the last decade, has resulted in identifying characteristic 
network types and their statistical properties. Network structures are either 
modeled phenomenologically or they emerge from agents’ local interaction (for an 
older, but relevant review concerning networks for ABMs see Amblard  (  2002  ) ). 
We briefl y look at three commonly occurring network structures in agent-based 
social simulation: random graphs, small world and scale-free networks. Regular 
lattice networks are used in cellular automata models – a lattice is a graph where 
vertices are placed on a grid and are connected to the neighboring vertices only. 

 An early attempt to study the behavior of complex networks dates back to 
Erdős and Rényi’s  (  1959  )  seminal work on random graph theory. The basic 
Erdős-Rényi (ER) model requires connecting  N  nodes through  n  edges chosen 
randomly such that the resulting network is from a space of equally likely graphs, 
where  N  is the size of the network. Several nodes can have the same degree in a 
random graph. Given a high wiring probability  p,  the diameter of random graphs 
increases logarithmically with the growth of the graph. The ER graph also predicts 
the appearance of subgraph structures and the emergence of a unique giant 
component. 

 Random networks are to social network data what the Gaussian distribution 
is to statistical data; it is neither very likely to fi nd random network structures in 
real world data nor very realistic to assume that real world networks are of a random 
nature. Firstly, people do not behave randomly. Secondly, societies are complex 
systems. Randomness is diametrically opposed to this idea. It is, however, worthwhile 
to consider random networks as a useful concept in agent-based social network 
modeling since they constitute a test case. The networks generated by the simulation, 
and which are meant to represent an identifi ed (real world) target system, should be 
signifi cantly different with regard to certain key metrics from the corresponding 
ER network. 

 In 1998 Watts and Strogatz  (  1998  )  presented the Watts-Strogatz (WS) model, 
which interpolated a small world graph as an intermediate of a purely random and a 
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regular graph. They showed that as the length of the shortest path between two nodes 
tends towards  O(ln(N) ), which is small, a random graph exhibits the so-called 
small-world effect. That is, a WS network is characterized by short average path 
length ( L ) and a high clustering coeffi cient ( C  ) compared to an Erdős-Rényi graph of 
the same size and density. This property displayed by small-world networks has been 
observed in a number of social systems, including friendship, co-worker, and confl ict 
networks. 

 Informally, a high  C  supports the ideas that the “friend of my friend is my 
friend” and that the neighbors of a node are more likely to be linked to each other 
than in a random network. More generally, small-world type networks should be 
of interest to us because they exhibit properties which are “suffi ciently well 
connected to admit rich structure, yet each element is confi ned to operate within 
a local environment that encompasses only a tiny fraction of the entire system” 
(Watts  1999 , p. 499). This specification of the micro-level processes leading 
to the emergence of small-world networks is closely related to the idea of SOC and 
complex systems. 

 Albert and Barabási  (  2002  )  argued that simply using ER or WS models does not 
capture the important aspects of real-world networks. The Barabàsi-Albert (BA) 
model is a special case of the stochastic model proposed by Herbert Simon (Simon 
 1955  )  for generating a class of highly skewed distributions, including the power-law 
distribution. The number of starting vertices is fi xed and the chances of a vertex 
being linked to another are equally likely. Instead, real-world networks evolve 
over time and exhibit a feature that is called preferential attachment. Albert and 
Barabási address these issues by introducing network growth. The network starts off 
with a small number of connected vertices. New vertices are added to the network 
one at a time and are linked to existing vertices. Then they introduce the idea of 
preferential attachment, meaning the probability that a new vertex is connected to 
an existing vertex depends upon the connectivity of the vertex, where  k  is the degree 
of the  i -th vertex in the existing network. The network evolves into a scale-variant 
such that the degree distribution follows a power law.   

    11.3   Incorporating Networks into Agent-Based 
Simulation Models 

 Unlike physical systems, social processes are modeled descriptively and validated 
qualitatively. The evidence is gathered through fi eldwork. An individual’s relations 
and actions are driven by their position and other factors affecting the system. 
Where the actions are constrained by both the endogenous and exogenous factors, 
one may fi nd episodic volatility in the observed time series (Moss and Edmonds 
 2005  ) . Next, we discuss some of the issues concerning social network data collec-
tion and incorporating them into ABMs. We then give some examples of ABMs of 
social networks. 
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    11.3.1   Data for Networks in Agent-Based Social Simulation 

 Acquiring data on social networks is a challenging task for fi eldwork researchers 
depending upon socio-cultural and socio-political aspects of their research and 
resource constraints. Schensul et al.  (  1999  )  identify features for data that are of use 
for the description of social networks:

   Identifi cation of network actor;  • 
  Defi nitions of and rules to defi ne group members by the people;  • 
  Inclusion and exclusion rules defi ning social network boundaries;  • 
  Familial and sexual relationships, (if any), within groups.    • 

 Network boundaries constitute the edges of networks and are defi ned by rules for 
entry and exit from groups as well as by other cultural patterns of participation 
that differentiate one group from another. An important facet of a community is 
the existence of so-called community organizations, which operate within the 
perimeters of the community. Such organizations can be characterized as being 
informal or institutionalized. Physical neighbors can be described in terms of land 
use and segregation of sub-regions. The social aspect of neighborhood is based, for 
example, on the “local social interactions, social class, ethnic and radical origins, 
life cycle characteristics of the population, length of residence, and place of work” 
(Schensul et al.  1999  ) . The concept of locality is embedded in its defi nition; hence 
a community can be identifi ed as sharing social characteristics or a community 
space, where social interactions are likely to take place. 

 Social network data can be derived from census data, third-party surveys and 
various forms of quantitative data (e.g., Eubank et al.  2004 ; Bearman et al.  2004 ; 
Geller and Moss  2008  ) . 

 Social network data may also be extracted from existing databases such as e-mail 
correspondence within an organization or social interactions among individuals in 
online communities. On the other hand, it is very diffi cult to conduct fully-fl edged 
surveys for acquiring social network data in distant, stressed or confl ict-torn regions 
such as Yemen or Afghanistan. Knowledge elicitation techniques based on partici-
patory approaches (Barreteau et al.  2001 ; Pahl-Wostl and Hare  2004  )  may be used 
to model the behavior and social interaction of relevant actors through an iterative 
process involving data collection, validation and scenario exploration.  

    11.3.2   Implementing Networks in Agent-Based Models 

 A social network is a graph where actors (e.g., individuals, households, fi rms) are 
represented as vertices and an existing relation between any two nodes represented 
as an edge between them. Multiple relations among agents embedded in space are 
represented as a two-mode sociomatrix, a hypergraph or a bipartite graph, where one 
representation can equivalently be mapped to another (Wasserman and Faust  1994  ) . 
Bipartite graphs are useful for simultaneous analysis of both actors and the affi liations 
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(Degenne and Forsé  1999  ) . Typically, a graph, i.e. a social network, is implemented 
as an adjacency matrix or a doubly-linked list besides others. Choice of a suitable 
data structure for manipulating social networks may depend upon the structure of 
the underlying social network, e.g., single or multiple relations; directed/undirected; 
weighted edges, etc. Two of the most widely adopted data formats used for social 
networks are GraphML (Brandes et al.  2004  )  and DyNetML (Tsvetovat  2005  ) , both 
based on XML. Both support directed, undirected, and mixed graphs; hypergraphs; 
hierarchical graphs; and store nodes and edges attributes, for example agents’ 
characteristics or type or strength of edges (see Tsvetovat  (  2005  )  for a comparison 
of commonly used social network data formats). Another well known data format 
is Pajek’s .net format for rich social network data (de Nooy et al.  2005  ) . 

 Several simulation toolkits and software exist with built-in data structures and 
operations for analyzing and visualizing social networks. Widely-used software 
includes Pajek (de Nooy et al.  2005  ) , ORA (Carley et al.  2007  ) , StOCNET (Boer 
et al.  2006  )  and UCINet (Borgatti et al.  2004  )  (for a list of social network analysis 
software, see for example Wikipedia’s entry under “Social network analysis 
software”). Several agent-based modeling platforms provide functionality for imple-
menting and analyzing networks at runtime. These include RePast 3.1/Simphony 
(North and Macal  2007  ) , MASON (Luke et al.  2005  ) , NetLogo (Wilensky and Rand 
 in press ) and Swarm (Minar et al.  1996  ) . Most of them intentionally provide only 
limited support for network analysis measures such as the basic centrality measures 
and community detection algorithms (Nikolai and Madey  2009  ) . Dedicated net-
work modeling and analysis libraries such as the Java Universal Network/Graph 
library (JUNG) (O’Madadhain et al.  2005  ) ; the R Project packages statnet, sna, and 
igraph are to be used for more computationally-extensive handling of network data 
generated by ABMs. Social network analysis software and APIs provide an inter-
face to read/write social network data in data formats such as GraphML or DyNetML. 
For a detailed discussion on the integration of GIS and agent-based modeling, see 
Crooks and Castle ( 2012 ).  

    11.3.3   Some Examples of Spatially-Explicit Agent-Based 
Social Simulation Models 

 In this section, we present a selection of relevant work dealing with implementations 
of social networks in ABMs. 

    11.3.3.1   Land Use Models 

 Central to landscape modeling, such as land use, land cover, habitat conservation 
and farming, is the identifi cation of community space and distinct regions (Brown 
 2006 ; Parker  2005  ) . For instance, Krebs et al.  (  2007  )  developed a spatially explicit 
ABM of a water irrigation system in the Odra River Valley in Poland. In their model, 
farmers’ decisions to maintain the irrigation water canal depend on the relative 
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location of their land (up- or downstream), how they perceive their physical neigh-
bors, and the underlying social network. For a recent review on land-use from an 
agent-based modeling perspective, see Matthews et al.  (  2007  )  and Crooks  (  2010  ) . 
Becu et al.  (  2003  )  modeled the impact of upstream management in Thailand and 
explored several scenarios concerning land managers’ collective action given their 
characteristic and social interaction (Ziervogel et al.  2006  ) . 

 FEARLUS is an established modeling framework designed for the assessment of 
land use change scenarios (Polhill et al.  2008  ) . Built upon the Swarm modeling 
platform (Minar et al.  1996  ) , it supports a variety of agent-based modeling tech-
niques and extensions such as a biophysical component, land trade and the effects 
of climatic variability on land parcels. The FEARLUS simulation begins with the 
land parcels assigned to land managers. At each annual cycle, managers select the 
land use of their land parcels based on the available selection strategies. They decide 
to harvest based on the expected yield for a particular year, select land parcels for 
sale or to clear off defi cits, or decide to retire, allowing new land managers to enter the 
system. FEARLUS incorporates social and physical neighborhoods. Social neigh-
borhood and spatial distribution are both used by agents, representing farmers or 
land owners, to observe each other and decide what action to take. Further informa-
tion on FEARLUS and how the physical and the embedded social neighborhoods 
are implemented can be found online at   http://www.macaulay.ac.uk/fearlus    .  

    11.3.3.2   Neighborhood and Segregation Models 

 Edmonds  (  2006  )  extended the Schelling  (  1971  )  segregation model by adding an 
explicit social structure in the form of a friendship network to the agent neighbor-
hoods which are defi ned by their spatial location on a regular grid. The friendship 
network is assigned randomly at the start based on the preference parameters: 
number of friends, neighborhood bias, and bias for racial similarity. Edmonds thus 
changes the motivation for switching the neighborhood. Instead of intolerance based 
on race, as implemented by Schelling, fear as a result of personal insecurity makes 
people leave for another neighborhood. Fear is a function of security related inci-
dences and spreads through the friendship network. Communication of fear depends 
on the density of the social network on the other hand. At the same time friend-
ship networks are not necessarily in the geographical vicinity of an agent. An agent 
can thus be attracted away to where its friends live. As a result, social and physical 
space becomes disjointed. 

 In their model of neighborhood change, Bruch and Mare  (  2006  )  used a variety of 
choice functions to introduce heterogeneity in individuals’ preferences, thereby 
relaxing several of Schelling’s  (  1971  )  assumptions. They utilized real data from 
several US cities where the population was divided into multiple racial and ethnic 
types. They demonstrate that the choice of the utility function can signifi cantly 
affect the observed patterns of segregation and neighborhood change. Crooks  (  2010  )  
studied residential segregation using a spatially-explicit ABM using vector GIS. 
The model takes into account socioeconomic and geographical data where agents 
represent households with preferences for a neighborhood depending upon their 
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properties. Crook’s model is initialized with available aggregate census data of the 
wards in London (UK). Werth and Moss  (  2007  )  modeled migration under socio-
economic stress in the Sahel region in North Africa. They used an abstract spatial 
representation of the region, where household decisions to migrate to another location 
depend upon their existing social and kinship ties with other households in the 
neighborhood, in addition to their available food status. Rakowski et al.  (  2010  )  studied 
contact patterns among individuals in a transportation model in Poland.  

    11.3.3.3   Propagation Models 

 Spatial and social propinquity can be key determinants in the spread of infectious 
diseases depending upon their infectiousness and the required level of intimacy for 
transmission. For instance, sexual transmission of HIV or transmission by sharing 
injection needles may be driven by the social and physical proximity among poten-
tial sex or needle-sharing partners. Diseases like smallpox may be transmitted when 
individuals happen to be in the same location where an infected person is present. 
Spread of airborne infections with high infectivity such as infl uenza, depends upon 
the migratory or activity patterns in a given population. 

 EpiSims is a large-scale disease propagation ABM capable of simulating millions 
of agents based on real data (Eubank et al.  2004  ) . Locations in EpiSims represent a 
physical place, for example an offi ce or a school building, where individuals get into 
contact with each other provided that they are in the same location at the same time 
given their preferences and shared activities. During the simulation, a dynamic con-
tact network is developed by recording the amount of time each individual shares 
with each other person. The duration of contact between infected and susceptible 
persons determines the spatially-distributed spread of the infectious disease (Stroud 
et al.  2007  ) . Yang and Atkinson  (  2008  )  developed an ABM of the transmission of 
airborne infectious diseases using activity bundles, where individual contacts are 
driven by social activities or physical proximity or both. Huang et al.  (  2004  )  modeled 
the spread of the SARS epidemic by using a small-world social network whereas the 
individuals’ activity spaces were modeled upon a two-dimensional cellular automata. 
Dunham  (  2005  )  demonstrated an implementation of the spread of three viruses 
using a spatially-explicit agent-based epidemiological model developed in MASON. 
Huang et al.  (  2010  )  propose a four-layer architecture for network-based epidemic 
simulation comprised of individuals’ social interaction, passive connections between 
individuals and locations, use of abstract geographical mapping to refl ect the neigh-
borhood, and the use of demographic or geographic data.  

    11.3.3.4   Miscellaneous Models 

 In addition to the models presented above, there are many other examples of ABMs 
of social networks. In many of these models, the mechanisms generating the social 
networks have been empirically derived. This stands in stark contrast to modeling 
exercises where the authenticity of social network generating mechanisms is less of 
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a concern, such as in statistical mechanics. The purpose of many of these models is 
an explanatory one. Companion (sometimes also called participatory) modeling and 
role-playing games are certainly at the forefront of an explanatory modeling agenda. 
The primary objective of companion modeling is to understand complex environ-
ments through stakeholder participation, affording to validate model assumptions 
and to make informed policy recommendations (Barreteau et al.  2001,   2003  ) . 
Companion modeling stresses that no  a priori  hypotheses are made about the target 
system. Priority is thus assigned to evidence gathering during fi eldwork. Similarly, 
role-playing games incorporate a special function in the understanding and valida-
tion of ABMs. The idea is to consider role-playing games as “living” multi-agent 
systems in which players are the agents and the set of roles is the rule base. Through 
rule design in collaboration with the players an understanding of the complexity of 
the system to be modeled is developed. 

 It should become clear at this point, that integrating social networks in ABMs 
goes beyond mere measurement of social network metrics at the aggregate level, but 
includes a thorough study of the processes underlying network generation, i.e., the 
structural-dynamic consequences of the actual relationships in which people are 
involved as mentioned by Mitchell  (  1989  ) . Geller and Moss  (  2008  )  developed a 
model of power structures in Afghanistan. Barthélémy  (  2006  )  modeled water con-
sumption, where a household was represented as the smallest unit in the modeled 
community space. Alam and Meyer  (  2010  )  studied dynamic sexual networks based 
on a village in the Limpopo Valley case where neighborhood and kinship networks 
serve as  safety-nets  at times of socioeconomic stress for the households. 

 Pujol et al.  (  2005  )  have modeled the evolution of complex networks from local 
social exchange, simulating networks with similar characteristics as scale-free 
and small-world networks. They show that properties characterizing complex 
networks emerge from the local interactions of the agents, imperfect knowledge 
and sociologically plausible behavior. Jin et al.  (  2001  )  demonstrated how a small-
world friendship network may be evolved from simple probabilistic rules. The forest 
fi re model by Leskovec et al.  (  2005  )  is another example of a generative process 
that represents networks phenomenologically with heavy-tailed distributions and 
shrinking diameters. 

 So far we have only talked about extra-individual networks. But networks do not 
only exist between agents; they exist also as mappings of organization beyond social 
structure. “Structure exists not only as sets of ties between actors but as networks 
among cognitive and cultural entities and study of these entities by means of network 
analysis is just as important as study of interpersonal relations” (Tsvetovat  2005 , 
p. 111). The utilization of networks in agent-design and in particular in the agent 
reasoning processes hence becomes obvious. In this respect the concept of semantic 
networks offers particular usefulness, for it expresses, in the most general way, 
relations of meanings between concepts in terms of nodes and links. Semantic 
networks are thus often used for the representation of knowledge; knowledge that 
bears – represented as a semantic network – some form of content-related domain 
specifi city (DiMaggio  1997  ) . It is beyond the scope of this chapter to pursue this 
route any further. We would nevertheless like to make clear that we see great 
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 potential in the use of semantic networks in the modeling of socio-culturally 
grounded cognitive and action selection processes.    

    11.4   Analyzing Social Networks in Agent-Based 
Social Simulation 

 The choice of suitable measures for agent-based social networks depends upon our 
understanding of the phenomenon under study. Analyzing social networks in and 
generated by agent-based social simulation does not impose new requirements for 
social network analysis. Metrics such as: geodesic distance; average path length; 
network density; reachability; clustering; centrality and centralization and their 
meaning, continue to be useful in that they characterize network topologies and 
process-based complexity. However, most of the analysis will have to deal with 
dynamic social networks. Considering only  a priori  and ex post snapshots of networks 
is not helpful in identifying network measures for agent-based simulations. Applying 
graph-theoretic measures over a network snapshot may increase the risk of losing 
the context of a particular agent’s position in the network (Borgatti et al.  2006 ; 
Carley  2003 ; Edmonds and Chattoe  2005  ) . In complex systems, it is hard to anticipate 
how emerging patterns result from interactions at the micro-level. It could be thus 
misleading to apply measures on a single snapshot of the network. Carley’s dynamic 
network analysis introduces the meta-matrix, a scheme for coping with the problem 
of multiple relations and co-evolution of both agents (entities, vertices) and their 
dynamically changing edges (Carley  2003  ) . This approach is further supplemented 
by combining social network analysis with cognitive science and multiagent 
systems, the idea being that change in one network may affect change in another. 
Edmonds and Chattoe  (  2005  )  suggest a scheme that makes use of agent-based social 
simulation in order to fi nd better means for abstraction. 

 Again, networks in ABMs are dynamic in nature and ties may be added or 
removed between agents during a simulation run. The network evolves with 
changes in the agent population, i.e., the agents that participate in a given (social) 
network. Consequently, the time-series measures of the simulated social network 
changes as the network evolves. Therein the focus can lie on standard statistical 
metrics, such as skewness and kurtosis of the absolute relative differences of network 
measures, such as changes in the clustering coeffi cient over time. Since we deal 
with a complex system, we would expect these measures to be indicators for vola-
tile episodes in the time series (Moss and Edmonds  2005  ) . Of course, we would not 
expect the time-series to be normally distributed and exhibit heteroskedasticity. 
But in general, for dynamic networks, where the population of participating agents 
in a network changes over time, we should also look for the stability (or change) 
of network measures over one or multiple simulation runs. The choice of measures 
is therefore important when comparing networks of varying sizes within and/or 
across simulation runs. See McCulloch  (  2009  )  and Alam et al.  (  2009  )  for methods 
of detecting patterns in dynamic social networks. 
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 Networks sharing similar global characteristics can nevertheless differ in terms 
of their local structures. Identifying subgraph structures and their properties have 
been studied extensively in social network analysis, particularly with regard to 
triads as building blocks of a network (c.f. Wasserman and Faust  1994 ). Milo et al. 
 (  2002  )  introduced the concept of local structures as “motifs” that are statistically 
signifi cant in comparison to local structures in a random network. Hales and 
Arteconi  (  2008  )  provide a good example of applying motif analysis in an ABM of 
a peer-to-peer network. 

 Closely related to motif analysis are endeavors to identify communities in 
networks. Fortunato  (  2009  )  and Mucha et al.  (  2010  )  provide a good overview of 
community detection algorithms for static and longitudinal networks. Without going 
into the details, the problem is twofold: Firstly, from a socio-scientifi c point of view, 
the non-trivial issue of solving the boundary specifi cation problem needs to be 
solved for a given network. Second, the algorithm for dealing with boundary speci-
fi cation issues needs to be fast, since iterating over the whole network at each time 
step is computationally expensive. 

 Agent-based social simulations should be cross-validated (Moss and Edmonds 
 2005  ) . That is, the model output should be compared against the model’s target 
system data. This comparison can happen at the aggregated level (e.g., statistical 
signatures of time-series data) or it can happen at a qualitative level, informing on 
social mechanisms that are assumed to drive the social network. For example, as 
Watts  (  1999  )  reports, small-world structures are likely to be present in many real 
social networks. Geller and Moss  (  2008  )  report a small-world-like structure for 
Afghan power structures.  

    11.5   Conclusions 

 Social and physical networks are important with respect to modeling systems that 
require both socio-cultural as well as geographical information. However, spatial 
ABMs incorporating social networks are few. On the other hand, social spaces in the 
form of friendship, kinship and other socio-cultural networks are often modeled in 
ABMs without any explicit reference to physical spatial representation or constraints. 
Some of the examples cited in this chapter show how physical and social space can 
be coupled together for the purpose of understanding complex social systems. Social 
networks in ABMs may emerge as a result of agent interaction, which can be contex-
tualized or abstract. On the other hand, incorporating physical networks such as a 
neighborhood, road networks, etc. is important when understanding the dynamics of 
urban planning and growth, irrigation systems and road transport. We also discussed 
in this chapter issues related to data collection for social networks as well as the 
technical aspects of incorporating networks in ABMs.      
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