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Abstract We propose a new methodology for the modeling and real time prediction
of the course of unfolding epidemic outbreaks. The method posits a class of standard
epidemic models and explores uncertainty in empirical data to set up a family of
possible outbreak trajectories that span the probability distribution of models param-
eters and initial conditions. A genetic algorithm is used to estimate likely trajectories
consistent with the data and reconstruct the probability distribution of model param-
eters. In this way the ensemble of trajectories allows for temporal extrapolation to
produce estimates of future cases and deaths, with quantified levels of uncertainty.
We apply this methodology to an outbreak of Marburg hemorrhagic fever in Angola
during 2005 in order to estimate disease epidemiological parameters and assess the
effects of interventions. Data for cases and deaths was compiled from World Health
Organization as the epidemic unfolded. We describe the outbreak through a standard
epidemic model used in the past for Ebola, a closely related viral pathogen. The
application of our method allows us to make quantitative prognostics as the outbreak
unfolds for the expected time to the end of the epidemic and final numbers of cases
and fatalities, which were eventually confirmed. We provided a real time analysis of
the effects of intervention and possible under reporting and place bounds on popula-
tion movements necessary to guarantee that the epidemic did not regain momentum.

Keywords Epidemic models - Real time estimation - Marburg-like viruses -
Measurements epidemiologic - Projections and predictions

1 Introduction

Over the last few years mathematical epidemiology [1, 4] has taken an increasing
interest in the quantitative study and prediction of unfolding epidemic outbreaks
[2, 3, 5, 6, 21]. This is both motivated by the spectacular progress in information
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technologies, which allow for the spread of epidemiological information worldwide
in real time, but also to the increased monitoring of emerging infectious diseases
[9, 12, 14, 22, 24-26] such as H5N1 influenza, as well as of potentially engineered
biological threats [10].

The well-established tools of mathematical epidemiology built primarily for a
posteriori analysis of outbreaks [1, 4] are however in several respects inadequate to
measure and predict the course of unfolding epidemics. The main challenge arises
from the necessary confrontation of model predictions to future data, which must be
probabilistic.

Standard epidemic models, such as SIR or SEIR [1, 4], are deterministic and
make a prediction for the average number of cases or deaths incurred during an
outbreak. It is expected that data for large outbreaks is representative of that mean
and a trajectory that fits well these data in terms of a goodness of fit measure
is well accepted as the canonical procedure to estimate average epidemiological
parameters.

The situation is murkier when outbreaks are small or, more to the point, when
predictions from the models are to be confronted with new observations. Then the
probabilistic nature of contagion becomes manifest in that no number of actual cases
or deaths will usually match the predicted mean value. Thus to assess whether a
model is representative of the epidemic under way it is necessary to add to this
type of prediction a measure of quantified uncertainty [2, 3], e.g. in the form of a
confidence interval. At that level of confidence we can then reject a model if future
predictions fall outside the predicted interval (through a simple p-test), or otherwise
accept the model as predictive.

This article introduces a methodology to do just this. It starts from the standard
mean field models of epidemics and takes them, as specified by their initial condi-
tions and parameter values, which we collectively denote I, as a possible trajectory
of the outbreak. Many such trajectories are proposed via a stochastic update rule
(a variant genetic algorithm) and weighted in terms of their agreement with the
data at a prescribed level of uncertainty. This allows us in turn to reconstruct a
probability distribution on I" and estimate epidemiological parameters and any of
their correlations with quantified uncertainty.

The remaining of this paper introduces the mathematical ensemble trajectory
method and the associated estimation procedure, and then proceeds to apply it to an
outbreak of a poorly known disease: Marburg hemorrhagic fever in 2005 in Angola,
for which it was developed. The method made early accurate predictions of the final
toll of the epidemic and its termination time and revealed erroneous trends in late
reporting.

2 Uncertainty Quantification and Model Parameter Estimation

In this section we give a general description of the stochastic parameter estima-
tion procedure. We start from the observation that simple (homogeneous mixing)
population models, cannot be expected to give perfect descriptions of any actual
data set. This always results in a minimum level of discrepancy between the best
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model output and the data. We parameterize this discrepancy by the absolute value
deviation between the best model prediction and each data point, per point. This is
called the least deviation per datum (1dpd)
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where XiM(tj) is the ith state variable (e.g. deaths D, or number of cases C, see
below), as an output of the model (a function of a parameter set I") at observation
time t;. Nx is the number of variables constrained by data and Ng is the number of
observation points.

This measure allows us to discuss and compare how good models are at describ-
ing a specific data set, i.e. their goodness of fit. Secondly, we expect in general that
data contain errors, e.g. due to under reporting, false positives, accounting errors,
etc. An allowable level of uncertainty in the data will then translate into an ensemble
of acceptable model of solutions or trajectories, which correspond in turn to a set
of initial conditions and model parameters, which we write {I"}. Each I" in this set
can then be weighted by their goodness of fit in a way that generates an estimate
of the probability distribution function for the ensemble of model parameters that is
compatible with the data. As a whole this is a stochastic optimization problem (see,
e.g. [19] for a general discussion). Based on this idea we perform an estimation of
the joint parameter distribution of model parameters P(I"), conditional on a set of
allowable deviations per datum.

To be more specific we write that the unknown exact data point X®(t;), can be
expressed in terms of the observed datum Xo(tj) and an error £(t;) as

XE@p) = X)) + £@)). (1)

The error £(tj) is only known statistically so that in order to proceed we need to
specify a model for £. Because we expect the variance of the error to be bounded
we assumed a Gaussian distribution for &, such that
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where the standard deviation o(tj) parameterizes the allowed discrepancy between
model outputs and data and is to be specified through general expectations on
the data.

This expectation for the errors defines implicitly an objective function that can
be minimized to produce optimal parameter estimates through a search proce-
dure. For example, for each model realization in terms of a set of parameters in
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a SEIR model I'=[S(ty), E(ty), I(ty), D(ty), R(tp), PB.&,y,p] we take this function
to be

1 NZ & XM = xPap|?
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which is an implicit function of I'. If the model could generate exact results we could
then make the natural association XE(tj) — XM(tj). This is usually not the case,
since a residual minimal deviation always persists, the minimum Ildpd. To account
for this we normalize this function to zero by taking H(I") = A(I") — A(best I'), i.e.
by subtracting the minimal value of A(I"), obtained for the best parameter set.

Given this choice of H we can produce, in analogy with standard procedures
in statistical physics, a joint probability distribution for model parameters. Since we
only have expectations on A(I") (and not higher moments A, A3, etc) the maximum
entropy distribution in

PITH{XP} oce™ . 4)

We can now see how this distribution can be reconstituted from sampling many
realizations of the model in terms of different I'. Note that the probability of each
trajectory w(I") is

w() = e D N, = Triws]. (5)
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Then P[T|{X iO }] can be estimated from many trajectories N as
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Figure 1 illustrates an ensemble of trajectories with variable degree of goodness of
fit; trajectories with large deviations to the data points are exponentially suppressed
in their contributions to the parameter distribution.

This joint probability distribution can then be used to compute any moment of
any set of parameters in I,

Ny
(F)=Tr [PIT [{XP}IF(D)] - > F(s)w(T) (7

i=1

including single parameter distribution functions, and cross-parameter correlations,
such as covariances, but also any higher moments. The prediction of future observa-
tions can now be obtained by convolving the model with the parameter probability
distribution estimated to that point as

PIXO,1 = Trr [PIXC,IT. (XY PITIXO}]. (8)
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Fig. 1 Example of SEIR trajectories with varying degrees of goodness of fit for data for an out-
break of Ebola (data courtesy of Gerardo Chowell). Green trajectories fit the data (blue squares)
well

where P[X?,|
particular I'.

In practice the estimation procedure via trajectories, each corresponding to a
parameter set, is potentially difficult because we are dealing with an inverse problem
in which, given a trial set of parameters, comparison with the data is performed
only after the non-linear model dynamical equations have been solved. Fortunately
for models that consist of small numbers of ordinary differential equations the
computational effort is relatively trivial on a modern computer.

In every case discussed below, we used an ensemble of trial solutions, from which
we select a number of best sets I', according to a standard Monte Carlo procedure,
weighted by Eq. (5), to generate the next generation of the ensemble. In order to
do this we introduce a mutation implemented in terms of random Gaussian noise
around the previous best parameter set. This mutation, followed by the selection
of minima, yields an effective downhill search method, capable of exploring large
regions of parameter space. It also creates as a byproduct an ensemble of good
strings with small deviations to the data. For small enough deviations from the best
string we can sample parameter space in an unbiased manner. It is this ensemble, and
its best string, that is then used to estimate Eq. (6). Results given in the manuscript
involve ensembles with several million realizations and a choice of o, common to
all data points, corresponding the 20% of the ldpd. The standard deviation o can be

T, {X io }] is the model taken for a specific trajectory specified by a
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made to vary from point to point if more information about the quality of the datum
is available. In this sense the procedure is able to incorporate variable expectations
of uncertainty as the data are collected.

3 Real Time Analysis of Outbreak of Marburg
Fever in Angola

We now proceed to describe the application of the method to estimate in real time the
course of an outbreak of the rare Marburg hemorrhagic fever in Uige, Angola during
2005. This example posed many of the challenges that lead to the development of
the present methodology. The pathogen is rare and its epidemiological parameters
were largely unknown beyond the observation of the apparent incubation time and
time from incidence of symptoms to death in a handful of cases. The mortality was
also extremely high and took the lives of many of the medical care providers that
intervened early in this remote African region. Because the disease affected dispro-
portionally children under five the implementation of isolation control measures was
also extremely difficult, and their results uncertain at the time according to reports
by the World Health Organization and journalists on the ground. Nevertheless even
with very scant information, model predictions were accurate from one case report
to the next and detected successfully the over-counting of cases and deaths that
characterized late stage reports.

The current work uses data from WHO reports, freely available online or via
email, together with basic epidemiological modeling to generate a characterization
and outlook for the outbreak. As sparse as the data are, we hoped that our results
would help quantify the progression of the disease and assess the efficacy of inter-
vention efforts necessary to stop the epidemic. Section 3.1 gives general background
information on the disease and the anatomy of the outbreak as far as it was reported
at the time in medical journals and the general media. Section 3.2 describes the
specific model and parameter estimation procedure. Section 3.3 analyses the sce-
narios of progression for the disease, taking into account the data points and some
qualitative information in WHO reports. In this way we were able to estimate the
effect of the interventions started shortly after March 23, in lowering contact rates,
and discuss here the effects of under reporting and place bounds on population
movement restrictions, so as not to reignite the epidemic. We also estimated the
time horizon at which the spread would cease, as well as the final number of cases
and fatalities.

3.1 Brief Anatomy of the Outbreak

The 2005 outbreak of Marburg hemorrhagic fever in Angola [13, 15-18, 27] has
highlighted the direst need for fast and creative intervention in the face of the most
severe infrastructure constraints imaginable. Intervention measures, which are the
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only way to stop the progression of the disease in the absence of a cure, were met
with significant levels of noncompliance from the population. Due to the extremely
high mortality and lack of adequate preparation initially, health workers took a large
toll of the early deaths, eroding confidence in their effectiveness. Furthermore the
viral strand attacked primarily children under five, making it extremely difficult
for families to entrust them to the healthcare system under the knowledge of very
probable fatality.

Under these circumstances it was paramount to provide the best quantitative
guidance and prognosis for the outbreak in real time so that limited resources can be
allocated optimally. This is now starting to be possible, thanks to several outbreak
surveillance and news systems, provided by the World Health Organization (WHO)
[27], Pro-Med mail [15], CDC [17] and others. We used these reports to generate a
data series, analyze the outbreak, and at each time elaborate scenarios for the future
course of the outbreak. These can also be used to help gauge the effectiveness of
the current levels of intervention and establish quantitative goals for new and/or
increased measures aiming at stopping the epidemic.

The 2005 outbreak of the Marburg fever in Angola was uncommon in several
respects [13, 15, 20, 27]. It was the largest of the disease to date in a general popula-
tion, it had an extremely high case fatality rate (88%, compared with 23% and 70%
in previous smaller outbreaks) and attacked disproportionately children under five
(75% of the cases). Marburg fever symptoms in their earliest stages are non-specific.
The condition can be easily confused with other more common endemic diseases in
the region such as malaria, yellow fever and typhoid fever, an issue that lead to
biases in reporting, especially once awareness was raised after the identification of
several hundred cases and deaths. Estimates for several of the outbreak’s relevant
rates are [27], an incubation period of about 3-9 days, a time to death (2005 out-
break) of 3—7 days after onset of symptoms, and a high proportion of cases develop
hemorrhagic symptoms within 5-7 days.

The Marburg virus is a member of the family Filoviridae, which also includes
Ebola. Marburg however is much rarer. The reservoir of the disease remains unknown
(some clues point to bats or other cave dwelling animals [11, 20]). Primates can
carry the virus but also contract the disease and manifest symptoms.

Uige is a tropical province in the interior North West of Angola, bordering the
Democratic Republic of Congo. The total population of the province is estimated
at about half a million people and is mostly rural. In 2005 Uige’s province two
largest cities were Uige, with about 170,000 people, and Negage with about 25,000
people. These cities’ hospitals serve most of the province’s population. The pop-
ulation of Angola is young (43.5% under 14) and with high fertility rate (6.33
children/woman), creating conditions for very high and effective transmission of
the Marburg virus.

Intervention efforts by the Government and the World Health Organization
started in earnest in March 23, 2005 (judging from WHO reports), a few days
after the identification of the virus by the US Centers for Disease Control, Spe-
cial Pathogens Branch [17, 27]. Significant efforts were also developed by non-
governmental organizations such as Medicins sans Frontiers (Belgium, France,
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Holland and Spain). Additional efforts by other international organizations are
described in the WHO outbreak news reports, especially that of March 29 [27].

3.2 Homogeneously Mixing SEIR Population Model

We use a simple modification of the standard SEIR epidemic model, in order to
account for the high mortality rate of the present outbreak. The model applies to
homogeneously mixing population and thus does not distinguish individuals by e.g.
age, a factor that is important in the current outbreak. The data necessary to draw
such distinctions, if it exists at all, is not available in the public domain. Because
most cases have occurred in Uige, or are thought to have originated through conta-
gion incurred there, we will take the total number of cases and the total number of
fatalities as the targets for parameter estimation.

The SEIR model [1, 4] has been shown to describe well the outbreak dynamics
of the related Ebola virus [7]. Specifically our model is:

s SI  dE _SI

dat "N ar N
dl E I dD 7
L _eE—yl, —Z = e
dt ¥ dt py dt

€))

Here, as usual, S(t) are the number of susceptibles at time t, E(t) the number of
exposed, which naturally progress to manifest the disease as Infective I(t). D(t) is
the number of fatalities at time t, whereas R(t) is the number of recovered.

With these choices the population, summed over all classes, is fixed. The total
number of cases, tallied at time t, is the sum of the presently infected, deceased and
recovered. The incubation time is parameterized by gl B is the contact rate, which
is the product of the (assumed independent) probability of a contact between an
infected and a susceptible and the effectiveness of that contact. Lowering the value
of P is the target of intervention [7]. The mean time spent in the infective class is
y~!, after which an individual transits to the recovered class with probability (1-p)
and dies with complementary probability p.

The set of parameters I'={S(ty), E(ty), I(ty), D(t), R(to), B.&,y,p}, i.e. the initial
conditions for each of the state variables and the dynamical parameters, is the target
of our estimation procedure, as described in Section 2.

Parameter estimations will be bound within intervals dictated by knowledge of
the outbreak [27]. These intervals are summarized in Table 1 below:

3.3 Parameter Estimation and Outbreak Prediction

We started tracking the outbreak in the beginning of April shortly after it was first
identified on March 23. Our first predictions were made on April 26. At that time
there were two possible viable scenarios for the history of the outbreak: one where
it had started soon before March 23 (which we will call the simplest scenario)



Real-Time Modeling and Prediction of Unfolding Epidemics 151

Table 1 Model parameters and their allowed ranges (see text). Some of the ranges are not known
and absolute maxima or minima are used

Name Symbol Minimum value Maximum value
Initial Susceptibles S(to) 10 500,000

Initial Exposed E(ty) 0 500

Initial Infective I(to) 0 100

Initial Deceased D(tp) 0 500

Initial Recovered R(tp) 0 500

Contact rate B 0 10

Incubation time g7! 3 days 9 days

Lifetime infective y! 3 days 7 days

Case mortality p 0 0.95

and another where it would have started sometime during October 2004. The lat-
ter was supported by retrospective analysis [27], and was eventually confirmed by
our estimation procedure. We proceed to tell a brief history of our prognosis as it
happened.

3.3.1 April 27: Simplest Scenario

In the simplest scenario we constrain the model by the estimated number of cases
and deaths as reported by WHO, without any other further constraints. Below we
consider the fact that the epidemic is though to have started in October 2004 as an
additional qualitative constraint. The best fit trajectories for cases and fatalities are
shown in Fig. 1, together with the data points, while parameters are displayed in
Table 2.

These estimates predict an incubation time and lifetime of the infective state to
be on the shorter end of their allowed ranges and mortality at the higher end. The
contact rate is high leading to a large basic reproductive number, which measures the
expected number of new cases caused by the introduction of an infective individual
in a population of susceptibles. Given the population conditions, the high infant
mortality due to the disease, and cultural practices of care for the ill and deceased
we believe these numbers could not be excluded.

Table 2 Estimates for model parameters corresponding to the trajectories of Figs. 1 and 2. The
initial time to for parameter estimation is arbitrarily taken to be March 1

Name Symbol  Bestfit  95% CL interval
Initial Susceptibles S(tp) 200 [190, 218]
Initial Exposed E(ty) 0.2 [0.1, 0.3]
Initial Infective 1(to) 0. [0, 1]
Initial Deceased D(ty) 87.7 [84, 90]
Initial Recovered R(ty) 0 [0, 1]
Contact rate B 1.43 [1.18, 1.56]
Incubation time g”! 4 days [3.5, 5]
Lifetime infective y! 3 days [3, 4]
Mortality P 0.92 [0.91, 0.93]
[

Basic reproductive number ~ Ro=f/y  4.29 3.58, 4.69]
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Fig. 2 Estimated best trajectories for total number of cases and deaths constrained to data from
WHO surveillance reports. The least deviation per datum (Idpd) is 5.22. The curves asymptote
to about 276 total cases and 261 deceased at around May 9, 2005 (the origin is the beginning of
March)

This estimate predicted that the outbreak was then nearly over. The number of
new infected cases was dropping in time. Its final state would be reached around
May 9, with a total number of cases of 276 and 261 deaths. The upper end of the
95% confidence level intervals, shown in Fig. 2, would take these numbers up to
304 cases and 287 deaths by May 9—10. We show below that this scenario could be
rejected as more data eventually came in.

Figure 3 shows the 95% confidence level intervals for number of cases and
deaths. This is drawn from an ensemble of about 100,000 realizations of the model
that fit the data within 20% of the best fit shown in Fig. 2.

3.3.2 Estimating Effectiveness of Intervention

The effectiveness of intervention can be assessed by allowing the contact rate 8 to
vary in time. This strategy was used by Chowell et al. [7] to model intervention in
recent Ebola epidemic outbreaks in Uganda and the Democratic Republic of Congo.
The varying contact rate can be parametrized as [7]

ﬁO» 1 S tint
= 10
P lﬂl + (Bo — Be Um0t > gy (10)
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Fig. 3 95% confidence level intervals estimated from fitting the model to the data within 20% of
the best fit shown in Fig. 2, for the number of cases, between red lines (left) and for number of
deaths, between blue lines (right)

where t;, is the time at which intervention starts. k is the time for the intervention
to set in and By and B; are the asymptotic contact rates before and after. We chose
tine to be March 23, when WHO reported for the first time to be “supporting efforts
by the Ministry of Health in Angola to strengthen infection control in hospitals, to
intensify case detection and contact tracing, and to improve public understanding of
the disease and its modes of transmission” [27] (March 23 report).

We find a modest but significant change in contact rates from B¢p=1.534 + 0.013
to $;=1.401 4 0.010 over a period of just over 10 days. i.e. a decrease in the contact
rate of about 8.7%. This gives the best fit to the data of all scenarios with ldpd=4.51.
This change in contact rate highlights both the monumental efforts on the ground
to contain the spread of the disease and the amply reported [8, 13] resistance they
encountered, due, in large extent to the unkind characteristics of the disease.

3.3.3 Population Movements and Possible Epidemic Restart

Although the model estimated that the epidemic was then contained there can still
be population movements that escape health care intervention, so that more peo-
ple can enter the susceptible class. These effects can be monitored in real time via
the estimation of the critical number of additional susceptibles that will cause the
epidemic to regain momentum.

The simplest estimate follows from asking what number of susceptibles will
reignite the growth of infected (i.e. make dI/dt>0). From Egs. (1) this is

S*_Z
N p 1D

For S>S* the number of new infections will grow. We can further write S* =
Show + AS and similarly N=N,ow + AS, where S;ow, Nyow are the present numbers
of susceptible and of the population participating in the epidemic (i.e. the sum of
numbers over all classes) and AS is the critical number of additional susceptibles.
Given best parameter estimates for the simple scenario on April 27 this resulted in
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AS ~ 70 individuals, which is clearly a very small fraction of the general popula-
tion. We repeat this procedure in other scenarios below.

3.3.4 Impact of Possible Under Reporting and Parameter Estimation

In discussing the results of parameter estimation in this simplest scenario we found
that both the case fatality rate and y appeared at the higher end of their allowed
ranges. In this section we discuss how this may be the result of case under report-
ing. Under reporting is probable given the remoteness of the region and the initial
resistance to intervention efforts amply reported in the news [8].

To estimate the effects of under reporting we assume that number of infected
reported cases I(t) is in fact a (assumed fixed) fraction A of the real number of total
cases I'°(t), so that

I(t) = A1) = I"(p), A > 1. (12)

We also assume that the fraction of under reporting in deaths is much smaller,
so that effectively D(t) ~ D™ (t). We can therefore ask for the transformation
in parameters that leave the dynamics of deaths invariant under the rescaling of
infected. The equation become

dD’ dD )
= Py =py'al = o =pri=p y'A = py (13)

Thus, since N > 1, this implies that the actual mortality is lower than estimated,
and/or that the lifetime of the infectious state y~! is longer.

If we ask e.g. that y~! = 5 days and that the mortality is similar to that observed
in the previous outbreak of Marburg fever in the Democratic Republic of Congo
(about 70%), we would obtain

3= p/’/, ~92, (14)
Py

suggesting that less than half of infected cases may have been reported. This was at
the time most probably an overestimate. If we allow the mortality to remain above
90% then A &~ 5/3 = 1.67, which still suggests a large fraction of unaccounted cases
if the simplest scenario was to hold. This transformation has also implications for
the evolution of E and S, but as these states are unconstrained by the data we shall
not discuss such features here. Whether case underreporting was an explanation of
the high estimates for p and y or the modeling of the progression of the infective
state was too simple in this scenario, was an issue that required more data. It was
resolved by the release of the next two data points, see below.
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3.3.5 April 27: Enforcing the Start of the Epidemic in October 2004

There is evidence, based on retrospective analysis [27] (March 23 report), that
the epidemic started in October 2004. This section enforces such constraint in the
parameter estimation procedure, analyses resulting parameter ranges and uses them
to make prognoses for the development of the epidemic.

There are two caveats in performing parameter estimates under these circum-
stances. First, the start of the epidemic in October 2004 introduces a constraint, 4-5
months (158-121 days taking the beginning and end of the month as bounds) before
the first number of cases was announced. Estimating epidemic parameters under
such distant constraint is delicate and tends to lead to high sensitivity in the param-
eter search. As such it is intrinsically more difficult to guarantee a fair sampling of
all possible solutions consistent with the data, at some error level. Second, in the
very early stages of the epidemic a stochastic model is probably more appropriate
than (9), which makes a number of assumptions about a homogeneously mixing
population, and the applicability of averages to single instance data.

As such the results of the present estimation should be considered more sus-
ceptible to systematic error than those given above. With these caveats in mind we
proceed with the estimate. Results are shown in Table 3 and in Fig. 4.

The essential qualitative consequence of enforcing that the epidemic started in
October 2004 is to make the derivative in the solution for the total number of cases
be positive, if small, when the virus started being tracked on March 23. Because
the model (9) is monotonic in the total number of cases and deaths this necessarily
generates a solution with a larger positive derivative at those first few data points.
Taken at face value this constraint had two consequences: (i) it suggests that initial
reported number of cases (until about March 31) were underestimates of the real
numbers, (although the number of deaths is well fit by the model, and may thus not
have been itself underestimated) and (ii) it led to a higher estimate — relative to the
simplest scenario above — of the eventual number of cases and deaths.

Without further intervention (which was then on the way), in the absence of
population movements, or any other significant external event, the epidemic was

Table 3 Estimates for model parameters corresponding to the trajectories of Figs. 4 and 5. The
initial time is October 1, 2004. The estimated value of the basic reproductive number is roughly
similar to that computed for recent Ebola outbreaks in Uganda and the Democratic republic of
Congo [7]

Name Symbol  Best fit 95% CL interval
Initial Susceptibles S(tp) 763 [760, 765]
Initial Exposed E(ty) 0 [0, 0.1]
Initial Infective 1(to) 0 [0, 1]
Initial Deceased D(ty) 0.5 [0, 1]
Initial Recovered R(ty) 0.35 [0, 1]
Contact rate B 0.54 [1.18, 1.56]
Incubation time g”! 6.5days  [6,7]
Lifetime infective y! 3 days [3, 4]
Mortality P 0.91 [0.90, 0.92]
[

Basic reproductive number Ry 1.62 1.60, 1.64]
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Fig. 4 Best estimated trajectories for total number of cases and deaths, under the constraint that
the outbreak started October 1, 2004, without taking into account interventions. The deviation per
datum is 11.15. The curves eventually asymptote to about 495 total cases, with 451 deceased by
the last week of July

then expected to be extinguished only by the last week of July, with a total number
of cases around 495, and 451deceased. These numbers should be taken as upper
bounds. The upper end of the 95% confidence level intervals gave 519 cases and 471
deaths, whereas the lower estimated 486 cases and 440 deaths. The epidemic would
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Fig. 5 The 95% confidence level intervals estimated from fitting the model to the data within 20%
of the best fit shown in Fig. 4, for the number of cases, between red lines (left) and for number of
deaths, between blue lines (right). The last point, reported April 27, suggests that this scenario is
ruled out at 95% confidence level. This was due to interventions, see below
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then need a number greater than about 180 people becoming new susceptibles, in
the days after April 26, to regain growth in the number of new infectious.

Changing this constraint for the start of the epidemic from the first of October
2004 to the last generates similar, if slightly higher, estimates. This is the result of
forcing the solution to be steeper, as it has to rise from zero to the case numbers
reported in March over a smaller period of time. Specifically this change predicted
a final number of 502 cases with 456 deaths, again by the end of July, which again
would be the results in the absence of interventions. The 95% confidence level
intervals are [495, 529] and [446, 480] for cases and deaths, respectively.

3.3.6 May 19: Accounting for Interventions and Distinguishing
Scenarios the Beginning and End of the Outbreak

The next two data points released by the WHO in the first half of May permitted the
clear distinction between the two scenarios for the beginning of the outbreak and a
clear estimate of the impact of the intervention on the further development of the
outbreak. Only the scenario where the outbreak started in October 2004 remained
viable.

The results show that intervention — modeled by allowing f to vary according to
(10), holding other parameters to the values of Table 3 — had by then managed to
curb the growth rate of the outbreak, but not stop it altogether. The pool of suscep-
tibles was estimated not to have grown over the weeks before May 9, although a
small growth could not be completely excluded and was suggested by news reports,
see below. The mean trajectory would eventually asymptote to an expected number
of 356 total cases, with 331 deaths. This compares to the estimates (done before
April 27) for 497 cases and 452 deaths, in the absence of intervention (black lines,
Fig. 6). Intervention cut contact rates by a factor of about 40% and is estimated to
have taken effect starting April 4, 2005 and taking about 12 days to be implemented
(Fig. 7).

3.3.7 May 26: Statistical Anomalies and Over Reporting

Interestingly, as the outbreak seemed to be simmering down, the next few data
points indicated a dramatic re-start of the epidemic. Results up to May 9 showed
that intervention was curbing the growth rate of the outbreak, but had not succeeded
at stopping it altogether. The new data released by the Angolan Government and
WHO on May 26 showed a dramatic reversal of that trend. Many new cases have
been registered: 399 from 337 a week before, accompanied by a sharp increase in
the number of deaths to 355 from 311.

These numbers were statistical anomalies, lying far above the upper end of the
95% confidence for cases and deaths estimated on May 9. Thus they required a
change in qualitative events on the ground. In the context of the model these new
data points could only be accounted for in two very different scenarios. First, the
new numbers could simply be wrong, attributing cases and deaths due to other
causes to Marburg. Alternatively, the new data could indicate that a large number of
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Fig. 6 Best trajectories for total number of cases and deaths, under the constraint that the outbreak
started October 1, 2004 (day 0). The deviation per datum (a measure of goodness of fit) is 14.11.
The color lines show the average solution under the effects of intervention and compare favorably
with the trajectories estimated on April 27 (black lines), where this was not taken into account

new individuals (several hundred) had entered the susceptible population over the
preceding few weeks and that the contact rate incurred by them had also increased,
possibly up to pre-intervention levels. Clearly such a dramatic expansion of the sus-
ceptible pool should have qualitative signatures on the ground. To be true, the new
data and model estimates under this scenario suggested that the epidemic threshold
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Fig. 7 95% Confidence level intervals for the number of deaths (leff) and cases (right), under the
constraint that the outbreak started October 1, 2004 (day 0)
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Fig. 8 Best trajectories for total number of cases and deaths, under the constraint that the outbreak
started October 1, 2004 (day 0). The deviation per datum (a measure of goodness of fit) is 13.20.
The new data of May 27 was an anomaly, far exceeding the upper bound of the 95% confidence
level intervals for cases and deaths, estimated up to May 9. The new best fit trajectories allow p
to vary upwards and require an linear inflow of people into the susceptible class at a rate of 68
persons a day

had been crossed again and that the number of new infected would subsequently
grow at an accelerated pace.

In fact we could estimate that the susceptible population would have to be grow-
ing then, after the very end of April, at a rate up to 68 individuals per day. This
was tantamount to an epidemic restart, visible in Fig. 8, as the average trajecto-
ries changed curvature. Needless to say, under such conditions the outlook for the
development of the outbreak was rather bleak, with hundreds more cases and deaths
predicted to follow.

These data points were eventually revised down, after a long hiatus in reporting
between June 17 and July 13, confirming the prognosis of May 9.

3.3.8 Epilogue

The outbreak of Marburg hemorrhagic fever in Uige, Angola was officially declared
over on November 7, 2005 by the Angolan Ministry of Health [23], with its last
laboratory confirmed case reported July 22. The outbreak claimed a total of 329
lives out of 374 identified cases, a case fatality rate of 88%. These numbers were
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correctly predicted on May 9, 2005, amid much uncertainty in WHO reports and in
the news about the future development of the outbreak.

4 Discussion and Conclusions

The principal objective of the present study was to investigate the possibility of
modeling in real time the spread of a new epidemic of a rare emerging disease,
with very sparse data available. We have used standard outbreak reports available
online from the WHO [27] and Pro-med mail [15] to construct a small data set,
which we then employed to estimate epidemiological parameters and future case
and death numbers with quantified uncertainty. The output of the model was used to
provide guidance for the outlook of the epidemic under given qualitative scenarios
and construct quantitative goals for intervention policy on the ground, creating the
potential for helping optimize quantitatively severe logistical constraints.

Among other quantities our approach allows for the quantitative estimate of
epidemiological parameters with quantified uncertainty, and to the projection for
the total number of cases and deaths at the also predicted time for the end of the
outbreak. These estimates can then be used to test qualitative scenarios about the
outbreak, such as the time for the occurrence of the index case, and to quantify
in real time the effects of interventions and estimate population movements. This
approach, much like any general epidemiological mathematical modeling [1, 4]
makes certain general simplifying assumptions about the nature of the outbreak.
While these may be suspect to practitioners on the ground, it has been amply
demonstrated that models retain substantial predictive power, which tends to trump
projections for case numbers and deaths generated by expert opinion.

We believe that even if not perfect this type of “real time* epidemiological mod-
eling is now feasible [2, 3, 5, 6, 21] and could become an essential tool useful in
providing quantitative scenarios and targets for limited resource allocation on the
ground. It should also be used to inform the scientific community and the public, as
well as public health officials, of rational expectations and choices under unfolding
new outbreaks.
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