Skip to main content

Genetica dell’osteoporosi, dell’osteopetrosi e dell’osteogenesi imperfetta

  • Chapter
Osteoporosi e malattie metaboliche dell’osso

Riassunto

L’osteoporosi (OP) rientra in un ampio spettro di patologie che sono comunemente indicate come complesse e alia cui patogenesi concorrono molteplici fattori, genetici e ambientali. La componente genetica ha un notevole impatto sulla predisposizione all’OP ed è molto probabile che molti geni, ciascuno con un effetto moderato, siano coinvolti. Questo ha fortemente limitato l’identificazione di alcuni degli effetti genetici a specifici sottogruppi della popolazione.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Ho NC, Jia L, Driscoll CC, Gutter EM et al (1999) A skeletal gene database. J Bone Miner Res 15:2095–2122

    Article  Google Scholar 

  2. Cooper DN, Clayton JF (1988) DNA polymorphism and the study of disease association. Hum Genet 78:299–312

    Article  CAS  PubMed  Google Scholar 

  3. Gong G, Stern HS, Cheng SC et al (1999) The association of bone mineral density with vitamin D receptor gene polymorphisms. Osteoporosis Int 9:55–64

    Article  CAS  Google Scholar 

  4. Ames S, Ellis K, Gunn S et al (1999) Vitamin D receptor gene Fok1 polymorphism predicts calcium absorption and bone mineral density in children. J Bone Mineral Res 14:740

    Article  CAS  Google Scholar 

  5. Gennari L, Becherini L, Masi L et al (1997) Vitamin D receptor genotypes and intestinal calcium absorption in postmenopausal women. Calcif Tissue Int 61:460–463

    Article  CAS  PubMed  Google Scholar 

  6. Howard G, Nguyen T, Morrison N et al (1995) Genetic influences on bone density: physiological correlates of vitamin D receptor gene alleles in premenopausal women. J Clin Endocrinol Metab 80:2800–2805

    Article  CAS  PubMed  Google Scholar 

  7. Ongphiphadhanakul B, Rajatanavin R, Chanpraseryothin S et al (1997) Vitamin D receptor gene polymorphism is associated with urinary calcium excretion but not with bone mineral density in postmenopausal women. J Clin Endocrinol Metab 20:592–596

    CAS  Google Scholar 

  8. Gennari L, Becherini L, Masi L et al (1998) Vitamin D and estrogen receptor allelic variants in postmenopausal women: evidence of multiple gene contribution on bone mineral density. J Clin Endocrinol Metab 83:939–944 [doppione, 33 or.]

    Article  CAS  PubMed  Google Scholar 

  9. Willing M, Sowers M, Aron D et al (1998) Bone mineral density and its change in white women: estrogen and vitamin D receptor genotypes and their interaction. J Bone Miner Res 13:695–705

    Article  CAS  PubMed  Google Scholar 

  10. Cooper GS, Umbach DM et al (1996) Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. J Bone Miner Res 11:1841–1849

    Article  CAS  PubMed  Google Scholar 

  11. Arai H, Miyamoto K, Taketani Y et al (1997) A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation of bone mineral density in Japanese women. J Bone Mineral Res 2:915–921

    Article  Google Scholar 

  12. Gennari L, Becherini L, Mansani R et al (1999) Fok I polymorphism at translation initiation site of the vitamin D receptor gene predicts bone mineral density and vertebral fractures in postmenopausal Italian women. J Bone Miner Res 14:1379–1386

    Article  CAS  PubMed  Google Scholar 

  13. Eccleshall TR, Garnero P, Gross C et al (1998) Lack of correlation between start codon polymorphism of the vitamin D receptor gene and bone mineral density in premenopausal French women: the OFELY study. J Bone Miner Res 13:31–35

    Article  CAS  PubMed  Google Scholar 

  14. Ferrari SL, Rizzoli R, Manen D et al (1998) Vitamin D receptor gene start codon polymorphisms (Fok I) and bone mineral density: interaction with age, dietary calcium, and 3′-end region polymorphisms. J Bone Miner Res 13:925–930

    Article  CAS  PubMed  Google Scholar 

  15. Arai H, Miyamoto K, Yoshida M et al (2001) The polymorphism in the caudal-related homeodomain protein Cdx-2 binding element in the human vitamin D receptor gene. J Bone Miner Res 16:1256–1264

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y-Z, Liu Y-J, Recker RR et al (2003) Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol 177:147–196

    Article  CAS  PubMed  Google Scholar 

  17. Uitterlinden AG, Ralston SH, Brandi ML et al (2006) Ann Intern Med. 145:302–304.

    Google Scholar 

  18. Grant SFA, Reid DM, Blake G (1996) Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type Ia1 gene. Nat Genet 14:203–205

    Article  CAS  PubMed  Google Scholar 

  19. Braga V, Mottes M, Mirandola S et al (2000) Association of CTR and COLIA1 alleles with BMD values in peri-and postmenopausal women. Calcif Tissue Int 67:361–366

    Article  CAS  PubMed  Google Scholar 

  20. Uitterlinden AG, Burger H, Huang Q et al (1998) Relation of alleles of the collagen type I alpha 1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med 338:1016–1021

    Article  CAS  PubMed  Google Scholar 

  21. McBriole DJ Jr, Shapiro JR, Dunn MC (1998) Bone geometry, and strength measurements in aging mice with the OIM mutation. Calcif Tissue Int 62:172–176

    Article  Google Scholar 

  22. Mann V, Hobson EE, Li BH et al (2001) A COLIA1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 107:899–907 [doppione: 23 or]

    Article  CAS  PubMed  Google Scholar 

  23. Ralston SH, Uitterlinden AG, Brandi ML et al (2006) Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS Med 3:e90

    Article  PubMed  Google Scholar 

  24. Oursler MJ, Kassem M, Turner R et al (1995) Regulation of bone cell function by gonadal steroid. In: Marcus R, Feldeman D, Kelsey J (eds) Osteoporosis, Vol 1. Academic Press, New York, pp 237–260

    Google Scholar 

  25. Chen S, Besman MJ, Sparkes RS et al (1988) Human aromatase: cDNA cloning, Southern blot analysis, and assignment if the gene to chromosome 15. DNA 7:27–38

    Article  CAS  PubMed  Google Scholar 

  26. Smith EP, Boyd J, Frank GR et al (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331:1056–1061

    Article  CAS  PubMed  Google Scholar 

  27. Carani C, Qin K, Simoni M et al (1997) Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 337:91–95

    Article  CAS  PubMed  Google Scholar 

  28. Lubahan DB, Moyer JS, Golding TS et al (1993) Alteration of reproductive function but not prenatal status sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci USA 90:11162–11166

    Article  Google Scholar 

  29. Fischer CR, Graves KH, Parlow AS et al (1998) Characterization of mice deficient in aromatase (ArKO) due to targeted disrupter of the CYP19 gene. Proc Natl Acad Sci USA 95:6965–6970

    Article  Google Scholar 

  30. Kobayashi S, Inoue S, Hosoi T et al (1996) Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res 11:306–311

    Article  CAS  PubMed  Google Scholar 

  31. Sano M, Inoue S, Hosoi T et al (1995) Association of estrogen receptor dinucleotide repeat polymorphism with osteoporosis. Biochem Biophys Res Commun 217:378–383

    Article  CAS  PubMed  Google Scholar 

  32. Han KO, Moon IG, Kang YS et al (1997) Non association of estrogen receptor genotypes with bone mineral density and estrogen responsiveness to hormone replacement therapy in Korean postmenopausal women. J Clin Endocrinol Metab 82:991–995

    Article  CAS  PubMed  Google Scholar 

  33. Ho AY, Yeung SS, Kung AW (2000) PvuII polymorphisms of the estrogen receptor gene alpha and bone mineral density in healthy Southern Chinese women. Calcif Tissue Int 66:405–408

    Article  CAS  PubMed  Google Scholar 

  34. Becherini L, Gennari L, Masi L et al (2000) Evidence of a linkage disequilibrium between polymorphisms in the human estrogen receptor-alpha gene and their relationship to bone mass variation in postmenopausal Italian women. Hum Molec Genet 9:2043–2050

    Article  CAS  PubMed  Google Scholar 

  35. Langdahl BL, Lokke E, Carstens M et al (2000) A TA repeat polymorphism in the estrogen receptor gene is associated with the osteoporotic fractures but polymorphism in the first exon and intron are not. J Bone Miner Res 15:2222–2230

    Article  CAS  PubMed  Google Scholar 

  36. Lorentzon M, Lorentzon R, Backstrom T et al (1999) Estrogen receptor gene polymorphism, but not estradiol levels, is related to bone density in healthy adolescent boys: a cross-sectional and longitudinal study. J Clin Endocrinol Metab 84:4597–4601

    Article  CAS  PubMed  Google Scholar 

  37. Ioannidis JPA, Ralston SH, Bennett ST et al (2004) Differential genetic effects of ESR1 gene polymorphisms on osteoporotic outcomes. JAMA 292:2105–2114

    Article  CAS  PubMed  Google Scholar 

  38. Polymerpoulos H, Xiao H, Rath DS et al (1991) Tetranucleotide repeat polymorphism at the human P-450 gene (CYP19). Nucl Acids Res 19:195

    Article  Google Scholar 

  39. Masi L, Becherini L, Gennari L et al (2001) Polymorphism of the aromatase gene in postmenopausal Italian women: distribution and correlation with bone mass and fracture risk. J Clin Endocrinol Metab 86:2263–2269

    Article  CAS  PubMed  Google Scholar 

  40. Masi L, Picariello L, Becherini L et al (2001) Estrogen production by fibroblasts of postmenopausal women with various aromatase genotypes. Calcif Tissue Int 67:485

    Google Scholar 

  41. Kristensen VN, Andersen TI, Lindblom L et al (1998) A rare CYP19 (aromatase) variant may increase the risk of breast cancer. Pharmacogenetics 8:43–48

    Article  CAS  PubMed  Google Scholar 

  42. Keen RW, Snieder H, Molloy H et al (2001) Evidence of association and linkage disequilibrium between a novel polymorphism in the transforming growth factor b1 gene and hip bone mineral density: a study of female twins. Rheumatology 40:48–54

    Article  CAS  PubMed  Google Scholar 

  43. Bertoldo F, D’Agruma L, Furlan F et al (2000) Transforming growth factor b1 gene polymorphism, bone turnover and bone mass in Italian postmenopausal women. J Bone Miner Res 15:634–639

    Article  CAS  PubMed  Google Scholar 

  44. Gilsanz V, Rogers J, Bilezikian JP et al (1999) A simple sequence repeat in the IGF-I gene and its relationship to serum IGF-I and peak bone mass in pupertal boys and girls. Proceedings of the Annual Meeting of the American Endocrine Society, abs OR23-2

    Google Scholar 

  45. Miyao M, Hosoi T, Inoue S et al (1998) Polymorphism of insulin-like growth factor I gene and bone mineral density. Calcif Tissue Int 63:306–311

    Article  CAS  PubMed  Google Scholar 

  46. Berg JP, Lehmann EH, Stakkestad JA et al (2000) IGF-I gene microsatellite polymorphisms and serum levels of insulin-like growth factor I (IGF-I), IGF-binding protein 3 and bone mineral density in young individuals. Proceedings of the Annual Meeting of the Endocrine Society, abs no. 1743

    Google Scholar 

  47. Rizzoli R, Ferrari S, Rosen C et al (2000) IGF-I gene 5 polymorphism influences serum IGF-I levels in relation to dietary calcium intake in healthy young males. J Bone Miner Res 15(Suppl 1):S364

    Google Scholar 

  48. Segre GV, Goldring SR (1993) Receptors for secretin, calcitonin, parathyroid hormone PTH/PTH-related peptide, vasoactive intestinal peptide, glucagon like peptide 1, growthlinked receptor family. Trends Endocrinol Metab 4:309–314

    Article  CAS  PubMed  Google Scholar 

  49. Masi L, Becherini L, Gennari L et al (1998) Allelic variants of human calcitonin receptor: distribution and association with bone mass in postmenopausal Italian women. Biochemical Biophysical Research Communications 245:622–626

    Article  CAS  Google Scholar 

  50. Nakamura M, Zhang Z, Shan L et al (1997) Allelic variant of human calcitonin receptor in the Japanese population. Hum Genet 99:38–41

    Article  CAS  PubMed  Google Scholar 

  51. Masi L, Becherini L, Colli E et al (1998) Polymorphisms of the calcitonin receptor gene are associated with bone mineral density in postmenopausal Italian women. Biochem Biophys Res Comm 248:190–195

    Article  CAS  PubMed  Google Scholar 

  52. Ferrari SL, Deutsch S, Choudhury U et al. (2004) Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet 74:866–875 [doppione: 61 or]

    Article  CAS  PubMed  Google Scholar 

  53. Choudhury U, de Vernejoul M, Deutsch S et al (2003) Genetic variation in LDL receptor-related protein 5 (LRP5) is a major risk factor for male osteoporosis: results from cross-sectional, longitudinal and case-control studies. J Bone Miner Res S69

    Google Scholar 

  54. Gong Y, Slee RB, Fukai N et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Osteoporosis-Pseudoglioma Syndrome Collaborative Group. Cell 107:513–523

    Article  CAS  PubMed  Google Scholar 

  55. Koay MA, Woon PY, Zhang Y et al (2004) Influence of LRP5 polymorphisms on normal variation in BMD. Bone Miner Res 19:1619–1627

    Article  CAS  Google Scholar 

  56. Urano T, Shiraki M, Ezura Y et al (2004) Association of a single-nucleotide polymorphism in low-density lipoprotein receptor-related protein 5 gene with bone mineral density. J Bone Miner Metab 22:341–345

    Article  CAS  PubMed  Google Scholar 

  57. Mizuguchi T, Furuta I, Watanabe Y et al (2004) LRP5, low-density-lipoprotein-receptor-related protein 5, is a determinant for bone mineral density. J Hum Genet 49:80–86

    Article  CAS  PubMed  Google Scholar 

  58. van Meurs JB, Rivadeneira F, Jhamai M (2006) Common genetic variation of the low-density lipoprotein receptorrelated protein 5 and 6 genes determines fracture risk in elderly white men. J of Bone and Miner Res 21, 141–150

    Article  Google Scholar 

  59. Van Wesenbeeck L, Van Hul W (2005) Lessons from osteopetrotic mutations in animals: impact on our current understanding of osteoclast biology. Crit Rev Eukaryot Gene Expr 15:133–162

    Article  PubMed  Google Scholar 

  60. Sly WS, Hewett E, Whyte MP et al (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A 80:2752–2756

    Article  CAS  PubMed  Google Scholar 

  61. Sobacchi C, Frattini A, Guerrini MM et al (2007) Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nature Genetics 39:960–962

    Article  CAS  PubMed  Google Scholar 

  62. Frattini A, Orchard PJ, Sobacchi C et al (2000) Defect of TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 23:343–346

    Google Scholar 

  63. Askmyr MK, Fasth A, Richter J (2008) Towards a better under standing and new therapeutics of osteopetrosis. B J Haematology 140:597–609

    Article  CAS  Google Scholar 

  64. Cleiren E, Benichou O, Van Hul E et al (2001) Albers-Schonberg disease (autosomal dominant osteopetrosis type II) results from mutation in ClCN7 chloride channel gene. Hum Mol Genet 10:2861–2867

    Article  CAS  PubMed  Google Scholar 

  65. Campos-Xavier AB, Saraiva JM, Ribeiro LM et al (2003) Chloride channel 7 (CLCN7) gene mutations in intermediate autosomal recessive osteopetrosis. Hum Genet 112:186–189

    PubMed  Google Scholar 

  66. Lange PF, Wartosch L, Jentsch TJ et al (2006) ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 440:220–223

    Article  CAS  PubMed  Google Scholar 

  67. Feigin ME, Malbon CC (2008) OSTM1 regulates betacatenin/Lef 1 interaction and is required for Wnt/betacatenin signaling. Cell Signal 20:949–957

    Article  CAS  PubMed  Google Scholar 

  68. Janssens K, Hul WV (2002) Molecolar genetics of too much bone. Hum Molec Genet 20:2385–2393

    Article  Google Scholar 

  69. Johnson ML, Gong G, Kimberling W et al (1997) Linkage of a gene causing high bone mass to human chromosome 11(11q12–13). Am J Hum Genet 60:1326–1332

    Article  CAS  PubMed  Google Scholar 

  70. Little RD, Carulli JP, Del M et al (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone mass trait. Am J Hum Genet 70:11–19

    Article  CAS  PubMed  Google Scholar 

  71. Shapiro JR (2001) Osteogenesis imperfecta and other defects of bone development as occasional causes of osteoporosis in the adult. In: Markus R, Feldman D, Kelsey J (eds) Osteoporosis, Vol 2. Academic Press, New York, pp 271–301

    Chapter  Google Scholar 

  72. Cole WG (1997) The Nicholas Andry Award 1996.Themolecular pathology of osteogenesis imperfecta. Clin Orthop Relat Res 343:235–248

    Article  PubMed  Google Scholar 

  73. Rowe D, Shapiro J, Porior M et al (1985) Diminished type I collagen synthesis and reduced alpha I collagen messanger RNA in cultured fibroblasts from patients with dominantly inherited (type I) osteogenesis imperfecta. J Clin Invest 76:604–611

    Article  CAS  PubMed  Google Scholar 

  74. Sillence DO, Ritchie HE, Dibbayawan T et al (1993) Fragilitas ossium (fro/fro) in the mouse: a model for a recessively inherited type of osteogenesis imperfecta. Am J Med Genet 45:276–283

    Article  CAS  PubMed  Google Scholar 

  75. Thompson F, Young C, Hall C (1987) Recurrence risks and prognosis in severe sporadic Osteogenesis Imperfecta. J Med Genet 24:390–405

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Masi, L., Falchetti, A., Brandi, M.L. (2009). Genetica dell’osteoporosi, dell’osteopetrosi e dell’osteogenesi imperfetta. In: Osteoporosi e malattie metaboliche dell’osso. Springer, Milano. https://doi.org/10.1007/978-88-470-1357-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1357-5_24

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1356-8

  • Online ISBN: 978-88-470-1357-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics