
Chapter 5

Kinetic Analysis for Cardiac PET

Yuuki Tomiyama and Keiichiro Yoshinaga

Abstract Objective: PET has the ability to evaluate functional information as well

as visualization of radiotracer uptake. Compartmental model is a basic idea to analyze

dynamic PET data. C-HED has been the most frequently used PET tracer for the

evaluation of cardiac sympathetic nervous system (SNS) function. The washout of

norepinephrine from myocardium is associated with increasing SNS activity in heart

failure (HF). However, the existence of washout of 11C-HED from the myocardium is

controversial. Although “retention index” (RI) is commonly calculated to quantify

the uptake of HED, RI is not purely able to distinguish washout parameter and uptake

parameter. Therefore, in this study, we aimed to evaluate whether HED was washed

out from the myocardium using compartment model analysis.

Material and Methods:We compared HED parameters in ten normal volunteers

(32.4� 9.6 years) and nine HF patients (age: 57.3� 17.3 years, LVEF:

36.1� 16.7 %). Each subject underwent rest 11C-HED PET. We estimated RI,

inflow rate K1, and washout rate k2 using single-compartment model analysis

using 11C-HED PET.

Result: HF patients showed lower RI and inflow rate K1 compared to normal

volunteers (RI: 0.06� 0.02 vs. 0.15� 0.03 min�1, p< 0.001, K1: 0.14� 0.05 vs

0.20� 0.03 ml/min/g, p< 0.001). Washout rate k2 also significantly increased in

HF patients (k2: 0.036� 0.026 vs. 0.016� 0.011 min�1, p¼ 0.041).

Conclusion: HF patients showed reduced RI, reduced K1, and higher washout

rate k2 compared to normal. This result may imply that HED PET is able to

evaluate washout parameter using compartment model.
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5.1 Introduction

Positron emission tomography (PET) is a powerful tool to evaluate functional

information imaging as well as anatomical information [1, 2]. PET is the most

reliable modality for assessing functional information, especially in cardiovascular

imaging [3, 4]. When biomedical functions are analyzed using PET images, com-

partment model analysis is generally applied [5, 6]. Compartment model analysis

enables to observe the pharmacokinetics of radiotracer in human body. Thus, we

apply compartment model analysis to evaluating pharmacokinetics of 11C-

hydroxyephedrine (HED).
11C- HED has been the most frequently used PET tracer for the estimation of

cardiac sympathetic nervous system (SNS) function [7–9]. In general, 11C- HED

data has been evaluated using the retention index (RI) [8]. RI is a parameter that can

be calculated easily compared to other quantitative parameters. RI includes uptake

and washout parameters. However, RI does not differentiate washout parameters

from cardiac HED data. Cardiac washout parameter is widely used for evaluation of

SNS function and increased cardiac washout is associated with cardiac events in

heart failure (HF) [10]. Therefore, it would be important to evaluate the washout

parameters using HED PET. Compartment model analysis might have a potential to

evaluate precise pharmacokinetics of 11C-HED and also has a potential to evaluate

purely washout parameter [11].

In this study, we aimed to analyze HED uptake parameter and washout param-

eter using single-compartment model analysis in patients with HF.

5.2 Methods

5.2.1 Study Subjects

Ten healthy volunteers and nine HF patients participated in the current study. The

healthy volunteers (ten men, 32.4� 9.6 years) had a low pretest likelihood of

coronary artery disease (<5 %) based on risk factors [12]. HF patients were

recruited from a group of patients who underwent HED PET for the assessment

of sympathetic neuronal function. They were six men and three women

(57.3� 17.3 years). The study was approved by the Hokkaido University Graduate

School of Medicine Human Research Ethics Board. Written informed consent was

obtained from all participants.
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5.2.2 Positron Emission Tomography/Computed
Tomography 11C-HED PET/CT Imaging

11C-HED was produced from 11C-methyl iodide and metaraminol (free base) using

standard methods with high purity and high specific activity [13].

All participants were instructed to fast overnight. PET/CT imaging was

performed with a 64-slice PET/CT scanner (Biograph Siemens/CTI, Knoxville,

TN, USA). A low-dose CT was performed for attenuation correction. The CT

co-registered to standard orthogonal PET images was then re-sliced into series of

short-axis, horizontal long-axis, and vertical long-axis images.

Immediately after the administration of 5 mCi(185 MBq) of intravenous 11C-

HED, participants underwent 40-min 3D list-mode PET acquisition. The images

were reconstructed using filtered back correction with a12-mm Hann filter and were

reconstructed into 23 frames (10� 10 s; 1� 60 s; 5� 100 s; 3� 180 s;

4� 300 s) [14].

5.2.3 RI Estimation

RI is obtained by normalizing late phase of tracer activity concentrations

(30–40 min) of left ventricular (LV) myocardium divided by the integral of the

arterial input function (AIF). The time-activity curve was derived from a small

circular region of interest in the left ventricular cavity (Fig. 5.1, [10]).

5.2.4 Compartment Model Analysis

Harms HJ et al. reported the single-tissue model was more robust than two-tissue

compartment model and results obtained were similar to more precise models

[11]. Thus, we used single-compartment model to evaluate 11C-HED washout

parameter.

In single-compartment model analysis, tracer kinetics are consisted by only two

parameters, which are inflow rate K1 and washout rate k2 (Fig. 5.1, [6]). In this

study, K1 and k2 were estimated using the nonlinear least squares method. This

approach used AIF arterial input function and tissue activity carve (TAC) of LV

myocardium [15, 16]. Distribution volume was also calculated [17]. The equation

of distribution volume was inflow rate K1 divided by washout rate k2.
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5.2.5 Statistical Analysis

Data are expressed as mean� SD. The differences between the means of two

volumetric results were examined using the unpaired two t-test. Fisher’s exact

tests were used for categorical variables. P-value of less than 0.05 was considered

indicative of a statistically significant difference. Statistical calculations were

carried out using JMP software version 12.0 (SAS Institute, Inc., Cary, NC).

5.3 Results

5.3.1 Subjects’ Background

Table 5.1 summarizes the baseline characteristics of the volunteers and HF patients.

HF patients also had laboratory data and echocardiography data. The HF patients

were older than normal.
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Fig. 5.1 Analysis methods of 11C-hydroxyephedrine. (a) Calculation method of retention index:

retention index was obtained by normalizing late activity concentrations of left ventricular

myocardium divided by the integral of the arterial input function.(b) Single-tissue compartment

model: single-tissue compartment model enables to monitor inflow rate K1 and washout rate k2 of

radiotracer between arterial input function (AIF) and tissue activity curve (TAC). AIF and TAC

were obtained from LV cavity and myocardial tissue, respectively
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5.3.2 HED PET Data Normal Volunteers and HF Patients

HF patients significantly decreased RI compared to normal volunteers

(0.060� 0.020 vs. 0.150� 0.032 1/min, P< 0.001, Fig. 5.2). In compartment

model analysis, HF patients showed decreased inflow rate K1 (0.14� 0.03

vs. 0.20� 0.05 ml/min/g, P¼ 0.004, Fig. 5.3a) and reduced distribution volume

(5.17� 2.93 vs. 22.4� 23.1 mL/g, P¼ 0.04, Fig. 5.3c). In addition, HF patients

significantly increased washout rate k2 compared to normal volunteers

(0.036� 0.026 vs. 0.016� 0.011 1/min, P¼ 0.044, Figs. 5.3b and 5.4.).

Table 5.1 The baseline characteristics

Normal volunteers

(n¼ 10)

Heart failure patients

(n¼ 9) P-value

Age (year) 32.4� 9.6 57.3� 17.3 <0.001

Sex (M/F) 10/0 6/3 0.09

Height (cm) 172.7� 8.8 162.2� 8.4 <0.001

Wight (kg) 68.2� 13.5 56.8� 17.4 <0.001

Laboratory data

BNP (pg/ml) – 633.7� 876.8 –

Plasma noradrenalin (pg/ml) – 469.4� 317.7 –

Urinary noradrenaline

(μg/day)
– 127.9� 54.5 –

Echocardiography

LVEF (%) – 36.1� 16.7 –

LVEDV (ml) – 180.2� 95.2 –

Data expressed as mean� SD. BNP brain natriuretic peptide, LVEF left ventricular ejection

fraction, LVEDV left ventricular end-diastolic volume, M male, F female
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Fig. 5.2 Difference of
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decreased RI compared to

normal volunteers
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Fig. 5.3 Difference of parameters calculated using compartment model analysis. Heart failure

patients showed significantly decreased inflow rate K1 and distribution volume (a, c). Heart failure

patients also showed significantly decreased washout rate k1 (b)
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Fig. 5.4 Example of myocardial time activity curveswith11C-hydroxyephedrine. Heart failure

patient’s time-activity curve showed enhanced washout compared to normal volunteer’s one
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5.4 Discussion

HF patients showed decreased RI, inflow rate K1, and distribution volume com-

pared to normal volunteers. In contrast, the HF patients increased washout param-

eter k2.

Many previous studies reported patients with imparted SNS function showed

lower 11C-HED uptake [8, 17]. Thus, the present data agree with previous reports.

In this study, HF patients showed significantly increased washout rate k2

compared to normal volunteers. Previous studies using 123I-MIBG reported HF

patient showed increased washout rate [10, 18]. Previous study also reported that

washout parameter of 11C-HED was well correlated with plasma and cardiac

norepinephrine in experiments with rats [7]. Therefore, current data that HF patient

showed increased washout rate may be considered to be appropriate.

5.4.1 Study Limitation

Our study had a small population and HF patients were significantly older than

normal volunteers. Therefore, further investigations with larger and age-matched

populations are required.

In addition, washout parameters were not compared to other clinical indexes.

Comparison washout of 11C-HED and other clinical parameter such as ejection

fraction, laboratory parameter, and washout of 123I-MIBG should be the next step.

5.5 Conclusion

In this study, we applied compartment model analysis to evaluating washout of 11C-

hydroxyephedrine (HED).

As a result, HF patients showed reduced RI, K1, and distribution volume and

higher washout rate k2 compared to normal. This result may imply that HED PET is

able to evaluate washout parameter using compartment model.
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