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Impact of Respiratory-Gated FMISO-PET/CT

for the Quantitative Evaluation of Hypoxia

in Non-small Cell Lung Cancer

Shiro Watanabe, Kenji Hirata, Shozo Okamoto, and Nagara Tamaki

Abstract Hypoxia is present in various solid tumors, including non-small cell lung

cancer (NSCLC) and is associated with treatment resistance and poor prognosis.
18F-Fluoromisonidazole (FMISO) is a major PET tracer for hypoxia imaging.

Previous studies have evaluated the potential role of FMISO-PET as a prognostic

tool and assessed tumor reoxygenation following nonsurgical treatment in NSCLC.

However, for cancers located in the thorax or abdomen, the patient’s breathing

causes motion artifacts and misregistration between PET and CT images. PET/CT

with the respiratory-gating technique improves the measurement of lesion uptake

and tumor volume. We investigated the usefulness of respiratory gating for FMISO-

PET/CT-based quantification of hypoxia. Among the 14 patients examined, hyp-

oxia was observed in three patients with non-gated acquisition and in five patients

with respiratory gating. The SUVmax, tumor-to-muscle ratio, tumor-to-blood ratio,

and hypoxic volume were statistically significantly higher in respiratory-gated

(RG) images than in non-respiratory-gated (NG) images. RG FMISO-PET/CT

may be useful for the accurate quantification of hypoxia.
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25.1 Background

Lung cancer is one of the most common cancers and is the leading cause of cancer

death worldwide. Although survival rates have improved in non-small cell lung

cancer (NSCLC), the long-term outcome remains poor compared with other can-

cers. Locoregional failure is not rare, particularly after chemoradiotherapy, and

may be attributed to intrinsic tumor resistance to radiotherapy and/or chemotherapy
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[1]. Intratumoral hypoxia accelerates radioresistance and chemoresistance, and thus

hypoxic tumors require a 2.5–3 times radiotherapy dose to achieve the same

cytotoxic effect [2]. Hypoxia may also promote metastatic spread [3].
18F-Fluoromisonidazole (FMISO) is a major PET tracer for hypoxia imaging.

The combination of positron emission tomography (PET) and computed tomogra-

phy (CT) is valuable in cancer diagnosis, follow-up, and treatment management.

Previous studies have evaluated the potential role of FMISO-PET as a prognostic

tool and in the assessment of the presence of tumor reoxygenation following

nonsurgical treatment of NSCLC [1, 4].

However, if the tumor is located in the thorax or abdomen, the patient’s breathing
causes motion artifacts, resulting in misregistration between PET and CT images

(Fig. 25.1) [5]. Because CT is used for attenuation correction of PET images, such

misregistration affects image reconstruction. The patient’s breathing leads to marked

displacement of most of the internal organs, from the apical region of the lungs down

to the abdominal organs. Internal organ movement has a degrading effect on image

quality and quantitative values in terms of spatial resolution and contrast [6]. Respi-

ratory gating is a technique for improving the measurement of lesion uptake and

tumor volume in PET/CT [7]. Motion management is becoming an important issue

in both diagnostic and therapeutic applications. A series of studies in 18F-

fluorodeoxyglucose PET/CT have shown that respiratory-gated (RG) 4D-PET/CT

and breath-holding protocols allow compensation for image degradation and arti-

facts induced by respiratory movements [6]. In contrast, there has been no study in

which RG FMISO-PET/CT was evaluated. We investigated the usefulness of respi-

ratory gating in FMISO-PET/CT-based quantification of hypoxia.

25.2 Materials and Methods

25.2.1 Subjects

We examined 14 patients [8 men, 6 women; median age (range) 78 (50–90) year]

with pretreatment stages I–III NSCLC (Table 25.1). None of the patients had ever

Fig. 25.1 Coronal (a) and sagittal (b) sections of thorax of a NSCLC patient in FMISO-PET/CT.

The PET scan shows significant blurring and misregistration of a malignant lung lesion and the

liver boundary compared with the CT scan
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received radiotherapy. The respiratory status of the patients was not considered as

an exclusion criterion. All these patients gave their written informed consent to

participate in this study. This study was approved by the Institutional Review Board

of Hokkaido University.

25.2.2 FMISO-PET/CT Studies

PET images were acquired using a whole-body time-of-flight PET/CT scanner

(GEMINI-TF; Philips). We administered 400 MBq of 18F-FMISO intravenously.

Four hours after injection, static emission scans with the field of view covering the

entire thorax were obtained in the 3D mode. Our protocol included a 4D CT scan

and a 30-min list-mode PET acquisition in one bed position centered on the primary

tumor. Respiratory signals were detected using a respiratory monitor system

(Philips Bellows) with a length sensor in a belt strapped around the patient’s
upper abdomen.

The PET scanning protocol is shown in Fig. 25.2. To reconstruct RG images, the

respiratory cycle was divided into five phases of the same duration. The third phase,

which corresponds to expiration, was used for reconstruction. Non-respiratory-

gated (NG) images were reconstructed with 6 min of acquisition of PET data

(i.e., sub-dataset of 12–18 min were extracted from the complete dataset of

30 min). For all PET image reconstructions, photon attenuation was corrected

using 4D CT images. Reconstructions were performed using 3D-RAMLA (ordered

subset expectation maximization).

25.2.3 Image Analysis

FMISO uptake 4 h after injection was quantified using (1) standardized uptake

values (SUV¼ 1 g/mL X measured radioactivity X body weight/injected radioac-

tivity), (2) tumor-to-muscle ratio (TMR), and (3) tumor-to-blood ratio (TBR).

Paraspinal muscles were used as the reference muscle. Venous blood was

sampled immediately before the PET/CT scanning and counted for radioactivity

Table 25.1 Patient

characteristics
Characteristic Number/value

Male (Female) 8 (6)

Median age (range) [year] 78 (50–90)

Administered FMISO activity [MBq] 397.6� 15.7

T stage

I 8

II 5

III 1

Tumor length (range) [mm] 29.3 (12.0–53.8)
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using a cross-calibrated well counter. We also calculated hypoxic volume (HV) as

an area TBR higher than 1.5 [8]. Patients having nonzero HV were considered as

having hypoxic tumor. Differences in SUVmax, TMR, TBR, and HV between

RG and NG images were statistically analyzed for significance.

25.2.4 Statistical Analysis

All results are expressed here as mean� standard deviation (SD). A statistical

paired t-test was employed to evaluate the statistical significance of the differences

in SUVmax, TMR, and TBR between RG and NG. HV was compared between RG

and NG images using the Wilcoxon signed-rank test because of the non-normal

distribution of HV. P values smaller than 0.05 were considered statistically

significant.

25.3 Results and Discussion

In all the 14 patients, the tumor was visually identifiable from its higher signal

intensities than the surrounding lung tissues (Figs. 25.3 and 25.4). Quantitatively,

SUVmax, TMR, and TBR were all significantly higher on RG images (1.93� 1.11,

Fig. 25.2 Summary of the PET scan protocol. All the acquisitions lasted 30 min. For respiratory-

gated imaging, the third phase, which corresponds to expiration, was used for reconstruction. Non-

respiratory-gated images were reconstructed with 6 min of acquired PET data (i.e., 12–18 min)
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1.46� 0.78, and 1.42� 0.87, respectively) than on NG images (2.09� 1.11,

1.61� 0.78, and 1.53� 0.87, respectively) (Table 25.2, Fig. 25.5).

Whereas the NG images showed tumor hypoxia in three patients, the RG images

identified tumor hypoxia in two more patients (i.e., a total of 5 patients). In patients

with hypoxia, HV on NG images was 12.8� 22.6, whereas that on RG images was

13.2� 22.7, which was significantly higher (Table 25.3).

The results of this study showed significant differences in various quantitative

values between RG and NG. Theoretically, RG is less affected by motion artifacts,

and thus the images acquired with RG are considered to be more accurate than those

with NG. Our data suggest the risk of using non-respiratory gating for FMISO PET

in NSCLC, because non-respiratory gating could significantly underestimate tumor

hypoxia. Instead, the use of respiratory gating is recommended as a standard

technique for treatments targeting a hypoxic region.

The ability to determine the degree and extent of hypoxia in NSCLC is not only

important prognostically but also in the selection of candidate patients for hypoxia-

modifying treatments. [9] Among different treatments, radiotherapy would most

benefit from hypoxia imaging techniques. Radiobiological modeling suggests that

hypoxia would have a greater impact on the efficacy of a single-large-fraction

treatment than on that of fractionated treatment because of the lack of

Fig. 25.3 Axial and coronal sections of NG and RG PET images of a patient with a NSCLC lesion

in the left lower lobe. In addition to the difference in morphological appearances of the lesion

between the NG and RG images, there are considerable increases in SUVmax, TMR, and TBR
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reoxygenation in the former [9]. Information on tumor hypoxia may be used to

modify the radiation planning, especially the treatment fraction, to maximize

cytotoxic effects.

However, as mentioned above, respiratory motion during PET image quantifi-

cation can introduce image misregistration errors, and if uncorrected images are

acquired, such errors may eventually hinder adequate patient management [10]. As

a combined treatment strategy with functional information provided by PET imag-

ing, correction of PET images for respiratory motion artifacts may increase the

efficacy of individually tailored therapy. If FMISO-PET imaging predicts local

failure, then it can be used for guiding the selection of patients who would benefit

from dose escalation, modification of fractionation, or additional treatment with a

hypoxic cell radiosensitizer.

Fig. 25.4 Images of an 87-year-old female with stage II NSCLC in the right lower lobe. In non-

respiratory-gated maximum intensity projection (MIP) imaging, no primary lesion was detected.

However, in respiratory-gated MIP imaging, the lesion was visually detected

Table 25.2 SUVmax, TMR,

and TBR of lesions on RG and

NG images

SUVmax TMR TBR

NG RG NG RG NG RG

Mean 1.93 2.09 1.46 1.61 1.42 1.53

SD 1.11 1.11 0.78 0.78 0.87 0.86

Abbreviations: NG non-gating, RG respiratory gating, SD stan-

dard deviation, SUVmax maximum standardized uptake value,

TBR tumor-to-blood ratio, TMR tumor-to-muscle ratio
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One of the limitations of our study was the relatively small number of patients

examined. Further clinical study will be required to clarify the diagnostic value of

the quantitative evaluation of hypoxia with RG in association with local recurrence

and prognosis.

25.4 Conclusion

Respiratory gating in FMISO-PET/CT could provide higher sensitivity of hypoxic

evaluation and accurate quantification of hypoxia.

Fig. 25.5 SUVmax, TMR, and TBR were significantly higher on RG images than on NG images

(*p< 0.05, paired t-test)

Table 25.3 Increase in HV

with RG
Age Sex HV in NG HV in RG

72 Male 0 0.19

50 Male 9.15 9.92

62 Female 52.54 53.12

85 Male 2.05 2.69

81 Male 0.00 0.13

Mean 12.8 13.2

SD 22.6 22.7

Abbreviations: HV hypoxic volume, NG non-gating, RG respira-

tory gating, SD standard deviation
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