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Application of Mass Spectrometry for Analysis
of Cesium and Strontium in Environmental
Samples Obtained in Fukushima Prefecture

Analysis of Cesium Isotope Compositions in
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Abstract For the assessment of Fukushima Daiichi Nuclear Power Plant accident,
the applicability of the thermal ionization mass spectrometry (TIMS), which is
a type of mass spectrometry, was studied. For the study of the recovery/analysis
method of cesium and strontium, at first, the radioactive cesium and strontium
were generated by the irradiation of natural uranium at KUR. After this study, the
applicability of this method to the environmental samples obtained in Fukushima
prefecture was verified.
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4.1 Introduction

On the accident of Fukushima Daiichi Nuclear Power Plant (FDNPP), fission
products (FP) such as radioactive Cs and Sr were widely released. The amounts
of FP generated in each reactor were calculated by using ORIGEN code [1].
Many studies of radioactive Cs and Sr were performed to estimate external and
internal exposures and to analyze the source of radioactive nuclides. These studies
were typically performed by y-ray spectrometry of '3*Cs (T}, =2.06 y) and '37Cs
(T12 =30.2 y) for the analysis of radioactive Cs and by B-spectrometry of *’Sr
(T2, = 28.9 y) for that of radioactive Sr.

In addition to '**Cs and '¥’Cs, radioactive ' Cs (T, = 2.3 x 10°) is also gen-
erated during the operation of reactors. Because of the difference in the generation
process and the half-life of radioactive Cs, the isotopic ratios of '**Cs/'*’Cs and
135Cs/137Cs have been used for analyzing the operations of nuclear facilities [2-6].
Naturally occurring Sr has four stable isotopes (34Sr, #Sr, ¥7Sr, and #Sr), on the
other hand, and the isotopic composition of Sr generated in reactors [1] are totally
different from the natural abundance [7]. From the analysis data of the isotopic com-
positions, thus, the information on the origin of radioactive nuclide release would
be obtained. The mass spectrometry provides the isotopic compositions of elements.
Although mass spectrometry has been used for the analysis of radioactive nuclides
and actinides, few studies have reported the analysis of radioactive Cs and Sr.

The purpose of the present study is to analyze Cs and Sr isotopes in environ-
mental samples in Fukushima prefecture for source analysis and safety assessment.
Although the amounts of radioactive Cs and Sr released in this accident were very
huge, the contaminated environmental samples show the small radioactivity per unit
weight of the contaminated environmental samples, since the contaminated area is
very wide. For the study of the recovery/analysis method of cesium and strontium, at
first, the radioactive Cs and Sr were generated by the irradiation of natural uranium
at KUR. After this study, the applicability of this method to the environmental
samples obtained in Fukushima prefecture was verified.

4.2 Experimental

4.2.1 Irradiation of UO; for Study of Radioactive Cs and Sr

10 mg of UO, of natural uranium was irradiated for 3 h at the Kyoto University
Research Reactor with the neutron flux 5.5 x 10'> n/s cm?. From the calculation
with ORIGEN-II code [8], the amounts of the major radionuclide of Cs and Sr
were estimated as 7.4 x 107! g (137Cs) and 4.5 x 107! g (*°Sr), respectively. After
standing for ca. 2 days, radioactive Cs and Sr were recovered and analyzed.
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4.2.2 Recovery of Cs and Sr
4.2.2.1 Isolation of TRU Elements

Cs and Sr were recovered with UTEVA™-resin (100-150 pwm, Eichrom Technolo-
gies), Sr-resin (100-150 pm, Eichrom Technologies), ammonium phosphomolyb-
date (AMP), the cation exchange resin DOWEX™ 50WX8 (100-200 mesh), and
the anion exchange resin DOWEX™ 1 X 8 (100-200 mesh).

The irradiated UO, was dissolved in 8 M HNO; (TAMAPURE-AA-100) and
was evaporated to dryness at 403 K. 8 M HNO3; was added and the insoluble
residues removed by centrifugation. After centrifugation, H,O, (TAMAPURE-AA
100) was added for the preparation of 8 M HNO3/0.3 % H,O, sample solution to
isolate TRU elements such as U and Pu by the extraction chromatography with
UTEVA-resin [9].

Three milliliter of the UTEVA-resin conditioned with diluted nitric acid was
filled into a column of 54 mm in length and 6.5 mm in diameter and pretreated
with 10 mL of 8 M HNO3/0.3 % H,0O, before loading the solution. After loading
the solution, the UTEVA-resin was rinsed with 8 M HNOs to elute alkaline earth
metal elements [10]. The effluent was evaporated to dryness and dissolved in 10 mL
of 3 M HNOj; solution for the extraction chromatography with Sr-resin.

4.2.2.2 Recovery of Strontium

The solution was loaded to the Sr-resin conditioned with diluted nitric acid and
filled into a column of 54 mm in length and 6.5 mm in diameter up to 3 mL. This
effluent was evaporated at 403 K and the residue dissolved in 0.05 M HNOj for the
recovery of Cs. After washing of the Sr-resin with 3 M HNO3s, Sr was recovered
with 20 mL of 0.05 M HNOs, evaporated to dryness, and dissolved in 10 pL of 1 M
HNO:;.

4.2.2.3 Recovery of Cesium

After adding of 0.1 g of AMP to the Cs solution and stirring for several hours, the
supernatant was removed from the mixed solution by centrifugation. A 20 mL 3 M
ammonium hydroxide (TAMAPURE-AA 100) solution was used to dissolve the
residue for subsequent anion-exchange ion chromatography.

After the final conditioning [11], a 3 mL portion of the anion-exchange resin
was added to a column of 54 mm in length and 6.5 mm in diameter. The sample
solution was added to the column, and the resulting eluate was collected and heated
to dryness. The residue was dissolved in 20 mL of 0.1 M HNOs; for the final
purification with the cation-exchange ion chromatography.
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The cation-exchange resin conditioned with hydrofluoric acid (TAMAPURE-
AA-100), etc. [12] was filled into a column of 42 mm in length and 5.0 mm in
diameter up to 1.5 mL. After loading the sample solution, the resin was washed
with diluted nitric acid followed by 20 mL of 1.5 M HCI (TAMAPURE-AA 100)
to recover Cs. The effluent was heated to dryness, and the residue was dissolved in
20 pL of 1 M HNO; for the analysis of the isotopic composition of Cs.

4.2.3 Analysis of Isotopic Composition of Cesium
and Strontium

Isotopic compositions of Cs and Sr were measured with a TIMS (Triton-T1, Thermo
Fisher Scientific). A 1 pL aliquot of each solution was loaded onto a rhenium
filament with a TaO activator [13]. The standard material of SRM987 [14] was used
as a reference material of mass spectrometry of Sr. The mass spectra of radioactive
Cs and Sr were obtained with a secondary electron multiplier detector (SEM)
because of the low total amounts of radionuclide loaded onto the filament.

4.2.4 Analysis of Environmental Samples

The plant samples were obtained from the south area of Iitate village, the northeast
area of Okuma town, the southeast area of Futaba town, and southwest area
of Futaba town in Fukushima prefecture from November 2012 and May 2013
(Table 4.1). The samples were washed three times with pure water and dried at
373 K. About 2.5 g of the dried samples was incinerated with a ring furnace at 873 K
and dissolved in concentrated HNO; at 403 K and evaporated to dryness. 20 mL of
8 HNO;3 was added and the insoluble residues removed by centrifugation for the
preparation of recovery of Cs and Sr. Recovery of Cs and Sr from environmental
samples was also carried out by the same manner described above.

The concentration of ¥ Sr was measured with an inductively coupled quadrupole
mass spectrometer (ICP-QMS, HP-4500, Yokoagawa) and radioactivity of *°Sr by
Cherenkov counting [15]. The total concentration of radioactive Cs was measured
by y-spectrometry. The sample solutions were prepared as 50 ppm of 8Srin 1 M
HNO; for the analysis of Sr and 5000 Bg/mL for '*’Cs in 1 M HNOj for the analysis
of Cs. The mass spectra of radioactive Cs and Sr were obtained with a SEM, while
those of stable Cs and Sr were obtained with Faraday cup detector, since the amounts
of stable nuclide were much larger than those of radionuclide.
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Table 4.1 List of samples and results of 8Sr/*Sr isotopic ratio measurement

Sampling area Sample ID Type 8s7/86" Remarks
[itate village ITTO1 Grass —3.28(01) ITT01 to 07
(37.61 N, (Artemisia were prepared
140.80E) indica) by division of
one sample
ITTO2 —3.04(04)
ITTO3 —3.20(09)
ITTO4 —3.05(07)
ITTOS —3.11(07)
ITTO6 —3.13(08)
ITTO7° —3.14(04)
ITT-av —3.14(06)
Okuma town OKMO1° Moss —1.42(12)
(3741 N,
141.03E)
OKMO02°¢ Moss —1.83(05)
OKMO03 Bark —4.42(08)
(Metasequoia
ghyp-
tostroboides)
Futaba town-1 FTBO1® Bark —2.51(08)
(3745 N, (Cryptomeria
141.62E) Jjaponica)
FTBO02 Leaves of tree —3.75(09)
(Camellia
Jjaponica)
FTBO3 Leaves of tree —3.87(15) Same tree
(Cryptomeria
Jjaponica), 03:
attached leaves;
04: fallen leaves
FTB04 Leaves of tree —4.14(09)
FTBO5 Grass —3.29(09)
(Artemisia
indica)
FTBO06 —4.23(08)
Futaba town-2 FTB35RP Grass(Artemisia | —2.96(08) Same grass,
(3745 N, indica) 35R: roots;
140.94E) 35 L: leaves
FTB35L —4.30(08)
Austria IAEA-156 Grass (Clover) —2.27(03)

2Parentheses means experimental error in £2 s.d

PIsotopic ratio of radioactive Cs has been reported in our previous study [11]
“Isotopic ratio of radioactive Cs was analyzed in this study
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4.3 Results and Discussion

4.3.1 Isotopic Analysis of Radioactive Cs and Sr
Jrom Irradiated UO,

Figure 4.1a shows the mass spectra of Cs recovered from the irradiated UO,.
In this measurement, '>Cs, 3°Cs, and '3’Cs were detected: '**Cs was not
detected, because of the difference in the generation scheme. The observed
isotopic ratios of *>Cs/!3”Cs and '3¢Cs/!*’Cs were obtained as 0.9103 4 0.0008 and
0.00022 £ 0.00001. From our calculation with ORIGEN-II code [8], the loading
amounts of '3°Cs, 136Cs, and '37Cs in this time were about 3.5, 0.03, and 3.7 pg
respectively. This means that the femtogram level of Cs is detectable by TIMS.

Figure 4.2 shows the mass spectra of Sr both of stable (a) and radioactive (b)
isotopes. At the measurement of 2.6 days later, 898r, 2Sr, and ! Sr were detected.
From our calculation with ORIGEN-II code [8], the loading amounts of 893r, 208,
and *!Sr in this time were about 3, 4, and 0.04 pg respectively. This means that the
femtogram level of Sr is also detectable by TIMS.

The measured isotopic ratios were 0.80 for ¥St/*°Sr and 0.01 for °'Sr/*°Sr
showing the agreement with the calculated value (0.79 for ¥St/*°Sr and 0.01
for °1Sr/*°Sr). Because the half-life of °'Sr is 9.5 h, the mass spectrum of °!Sr
disappeared at the measurement of 31 days later. The measured isotopic ratio of
8981/%Sr is 0.53 showing the agreement with the calculated value of 0.54. At
the measurement of 574 days later, only the mass spectrum of *°Sr was observed
because the half-life of 3°Sr is 50.5 days. This means that ¥Sr/*°Sr could not be
analyzed by using a typical mass spectrometer after Sep. 2012, if we obtain the
sample containing femtogram level of *°Sr. The isotopic ratio of *°Sr/**Sr would
be therefore needed for our purpose.

Fig. 4.1 Mass spectra of Cs. [a

(a) Recovered from UO, %
irradiated in KUR. (b) ;;
Recovered from ‘@
environmental sample from = 10 %10
Fukushima prefecture - S\
(Reproduced from Ref [11]) b

=

=

=

2 x10

i3]

L)

134 135 136 137 138

Atomic mass [u]



4 Application of Mass Spectrometry for Analysis of Cesium and Strontium. . . 39

x10

Intensity (arb)

x100

s ] |,

2.6 days later
(8Sr*Sr=0.79, #'SrS5r=0.012) \

-

2.9 days later

(*98r/*°Sr=0.79, *'Sr*Sr=0.008)
30.8 days later
(951" r=0.53) } \

104.7 days later

(#9511%5=0.20) — \
573.9 days later
. (Stonly) ;

84 85 86 87 88 89 90 91
Atomic mass [u]

Intensity (arb)

Fig. 4.2 Mass spectra of Sr. Stable isotopes (a) were obtained by measurement of Sr of SRM987
with a Faraday cup detector, and radioactive isotopes (b) were obtained by measurement of Sr
recovered from UQ, irradiated in KUR with a secondary electron multiplier detector

4.3.2 Analysis of Isotopic Compositions of Cs and Sr
Jrom Environmental Samples

4.3.2.1 Analysis of Cs

Figure 4.1b shows three peaks, representing **Cs, '°Cs, and '37Cs, were observed
on the typical mass spectra of Cs recovered from environmental samples obtained
in Fukushima prefecture [11], while the peak representing '*Cs was not observed
because of the half-life (T, = 13.2 d). From the calculation with ORIGEN-II code
[1], the isotopic ratio of '3®Cs/'3’Cs in the fuel was estimated as ca. 0.00032. This
value shows the same order compared with that of the irradiated UO,, suggesting
that we could obtain the three isotopic ratios of '3*Cs/'3’Cs, 13°Cs/'*’Cs, and
136Cs/137Cs until July 2011. Since there are three reactors in FDNPP, three isotopic
ratios would bring the important information for the source analysis of radioactive
Cs in the contaminated area in Fukushima prefecture.

Although we could not obtain the isotopic ratio of '**Cs/'3"Cs after July 2011,
we can obtain the two-dimensional map with the isotopic ratios of **Cs/'3’Cs and
135Cs/137Cs as shown in Fig. 4.3. All of the isotopic ratios of '*3Cs/!3’Cs showed less
than 0.4. This value was also much smaller than reported isotopic ratios of global
fallout (~0.5 for Chernobyl accident and ~2.7 for nuclear weapon testing, corrected
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Fig. 4.3 3°Cs/"*7Cs (atomic ratio) vs 3*Cs/!¥7Cs (activity ratio). Error here means £2SE. Data
of OKMO1, FTBO1, FTB35R and ITT07 were reproduced from Ref [11]. Both of isotopic ratio
was corrected to March 11, 2011. Single asterisk (*) represents calculation results from estimation
of radioactive nuclides with ORIGEN-II code [1]. Double asterisk (**) represents values reported
for 134Cs/!37Cs activity ratio in polluted water [22]

to March 11,2011 [11]) and the long half-life of 135Cs (Tip =2.3 x 10° y), meaning
that only the isotopic ratio of '*3Cs/!*’Cs would also provide the information for the
origin of radioactive Cs among Chernobyl accident, nuclear weapon testing, and
FDNPP accident for the long term.

4.3.2.2 Analysis of Sr

The FP of Sr in each reactor has mainly five isotopes [1]: two stable isotopes of
86Sr and 38Sr and three radioactive isotopes of 3°Sr, ®°Sr, and °' Sr. The relationship
between the isotopic ratio of radioactive Cs and that of Sr estimated by ORIGEN
Code calculation [1] is plotted in Fig. 4.4. In addition to the radioactive isotopes,
the stable isotopes of Sr generated in each reactor show the characteristic profile.
This suggests that the stable isotopes of Sr could be also used for the analysis of the
FP of Sr.

Among the isotopic ratios of stable isotopes, the isotopic ratio of 37Sr/%Sr is
important in the field of the geological chronology [16], because ¥ Sr is generated
by the B-decay of 8’Rb having the half-life of 4.9 x 10'° y. Thus, the isotopic ratio
of stable isotopes, in this study, will be focused on the isotopic ratio of 87 Sr/%Sr.
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Fig. 4.4 Estimated relationship between isotopic ratios of 1**Cs/'37Cs, 8Sr/°°Sr and 87 Sr/%¢Sr and
that of 133Cs/!37Cs. Isotopic ratios were estimated by calculation results with ORIGEN Code [1].
Open circle means isotopic ratio of 3?Sr/°°Sr. Closed circle represents isotopic ratio of 87Sr/%°Sr

The certified value for SRM987 of the isotopic ratio of 37Sr/%Sr showing the
95 % confidence intervals is 0.71036 &£ 0.00026 [14]. The averaged measurement
value was obtained as 0.71025 £ 0.00002 (n = 26) showing the agreement with the
certified value.

In this study, the variations in the isotopic ratio of 3’ St/%Sr were normalized with
that of SRM987; this would be expressed as delta-value (8g7/3¢) in per mill notation
as the following equation:

3 (¥7Sr/%6Sr) sample 1000
= X .
87/86 = \ (37Sr/%6Sr) SRM987

The samples of ITTO1 to ITTO7 were prepared by the division of one sample.
The 8g7/86—values of samples ITTO1 to ITTO7 in Table 4.1 agreed within the error
showing the reproducibility of the isotopic ratio measurement including chemical
treatment. From the 8g7,36—values of samples ITTO1 to ITTO7, the averaged 8g7/g6—
value of them was obtained to be 8g7/86 = —3.14 4= 0.06 %o.

The results of the isotopic ratio measurements for all samples are summarized in
Table 4.1 and shownin Fig. 4.5a. The result of the measurement for the reference
material of IAEA-156: Radionuclides in clover [17] is also included. This reference
material contains ca. 0.0075 Bg/g in June 2015. The 8g73¢-values of the samples of
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Fig. 4.5 Results of 87Sr/%Sr isotopic ratio measurement for plant samples (a), and isotopic ratio
of 87Sr/%°Sr as a function of '*3Cs/"*’Cs (b). Bark is results of comparison between OKMO03
and FTBOI. Grass shows results of comparison between FTB35R and FTB35L. Isotopic ratio
of 135Cs/137Cs of OKMO1, FTBO1, FTB35R and ITT07 were reproduced from Ref [11], and used
after time correlation on March 11, 2011. Open square and open circle mean analytical results in
this study and results of estimation by calculation results with ORIGEN Code [1]
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Okuma range from —1.4 to —4.4, while those of Futaba range from —2.5 to —4.2.
It is found that these values have significant difference, by comparison with the
8s7/36-value of Iitate samples.

Though the samples OKMO03 and FTBO1 are bark samples from the plants of
the same family, these showed different magnitudes (Fig. 4.5a and Table 4.1). The
isotopic ratio of 37 Sr/%0Sr has received attention as the indicator of the production
region of plants and reported the 837;36—values ranged from —25.0 to 5.5 [18]. As
the reason of the difference in the 8g7/36—values among samples OKMO03 and FTBO1,
two origins could be considered: the first is the difference in the 8g7,36—values of soils
of sampling point (as the supply source of Sr) and the second is the difference in
the degree of the isotope fractionation during the translocation process (considered
as the reason of the difference in the isotopic ratio between the parts of the identical
organism). Because of the comparison of the 8g7/36—values of the same parts in this
case, the difference in the 8g736—value among samples OKMO03 and FTBO1 might
be caused by the soils in sampling area.

If the difference of 8g7,36—values between samples OKMO03 and FTBO1 originated
from a difference of contamination level by the FP of Sr, the isotopic ratio may show
a correlation as

([87sr]OKM03/[Sésr]OKMOS) = ([87sr]nat/[gésr]nat) x (1-X)
+ ([87sr]FP/[86sr]FP) x X,

([87sr]FTB01/[86sr]FTB01) = ([87sr]nat/[gésr]nat) x(1-Y)
+ ([87sr]FP/[86sr]FP) xY.

According to the relation and the concentrations of Sr; 72 ppm for OKMO03 and
24 ppm for FTB03, the amount of the FP of % Sr contained in the sample OKMO03
would be higher than that of FTBO1, about 10.3 ng. This is equivalent to ca. 10.5 pg
of OSr (ca. 5.3 x 107 Bq) according to the averaged isotopic ratio of *°Sr/%6Sr of the
FP of Sr [1]. ®°Sr was not found in the plant samples by TIMS and Cherenkov
counting having the detection limit of several ten mBg/g [15], however, suggesting
that our samples contain *°Sr< <10 fg and was less than 1 Bq/g.

Sample FTB35R is roots, while FTB35L is leaves, of the same plant. The 8g7/36-
values (Fig. 4.5a and Table 4.1) showed a significant difference. Sample FTB35R
shows higher 8g7/¢-value compared with sample FTB35L. The isotopic fractiona-
tions were observed in some biological processes. For example, the isotopic analysis
of Sr [19], Fe [20], and Zn [21] proves that roots are isotopically heavy compared
with the aerial parts; the maximum 8g7,36-value was ca. —5.0 for Sr, the maximum
8s56/54-value was ca. —1.4 for Fe, and the maximum 8gg/64-value was ca. —0.26 for
Zn, respectively. Since the Cherenkov counting showed the amounts of *°Sr in these
samples were under the detection limit, the difference in the 8g7,36-value between
samples FTB35R and FTB35L might be caused by the isotopic fractionations in the
biological processes along with the contamination of sample FTB35R by the soil.
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The isotopic ratios of radioactive Cs in samples FTBO1, OKMO1, FTB35R, and
ITTO7 measured by TIMS have been reported in our previous study [11], and that
in OKMO2 was measured in this study. The relationships between the isotopic ratio
of 87Sr/%0Sr as 83736-value of these samples and that of '*3Cs/!¥’Cs are plotted in
Fig. 4.5b. The isotopic ratios of '3>Cs/!¥’Cs show the significant difference from
the reported values of the global fallout (ca. 0.5 for Chernobyl accident and ca. 2.7
for nuclear weapon testing corrected on March 11, 2011 [11]), while these values
agreed with the estimated values with the results of ORIGEN Code calculation [1].
This means that all of the samples are contaminated by radioactive Cs released from
FDNPP. The 8g7,36-values of these samples, on the other hand, are far from that of
the FP calculated by ORIGEN Code [1]. This suggests that the amount of deposit of
90Sr is very little compared with that of Cs and agrees with our previous report [15].

Although °°Sr was not found in the plant samples suggesting that our samples
contain ®Sr<< 10 fg, typical mass spectrometers have the external analytical
precision of ppm level. Assumed that this precision could be applied for the isotopic
ratio of “Sr/4lesSr the isotopic ratio of *°Sr/*eSr must be higher than 107°,
For the natural sample, since the Sr concentration ranges from ppb level to several
hundred ppm level (Fig. 4.6), the detectable lower limit of the isotopic ratio of
0Sr/stableSr can be evaluated.

1.0E+07 ; ;
B - .
S 1.0E+05 L
Q i A
» 1.0E+03 § ot
[72] E .
S ’ .
%5 1.0E+01 . .
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Fig. 4.6 Detectable lower limits of *°Sr in environmental samples with TIMS. Solid line indicates
a limit for 2°St/34Sr, and broken line a limit for °Sr/®8Sr
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If 38Sr having the natural abundance ca. 82 % was used as reference isotope, the
concentration of *°Sr should be higher than 1 Bg/g in almost any type of sample.
When the isotopic ratio of *°Sr/3Sr is used, because the abundance of 3*Sr (ca.
0.56 %) is lower than that of 38Sr, the applicable range will become much wider
than the case of 38Sr (Fig. 4.5). The improvement in the sensitivity of *’Sr detection
and the obtaining of samples including small amounts of natural Sr will also bring
wide applicable range.

4.4 Conclusions

Cs and Sr recovered from samples were analyzed by TIMS to study the applicability
of TIMS for safety assessment and source analysis.

For the study of the recovery/analysis method of Cs and Sr, Cs and Sr were
recovered from the natural uranium irradiated at KUR. From the measurement of
radionuclide recovered from irradiated UQO,, it was concluded that several tens of
femtogram level of radionuclide is detectable.

Cs and Sr were recovered from the environmental samples obtained from
Fukushima prefecture and were analyzed by a method based on the results of
irradiated UO;. In the case of the analysis of Cs, it was confirmed that the analysis
of the radioactive Cs by TIMS would provide important information for the source
analysis. The isotopic ratio of '*3Cs/!*’Cs was useful for the precise evaluation
of the radioactive Cs from FDNPP apart from that of global fallout after the
radioactivity of '3*Cs became below the detection limit of y-ray measurement.

In the case of the analysis of Sr, on the other hand, the presence of 90Sr was not
detected in any samples, while the changes in the isotopic ratios of 8’Sr/%¢Sr were
observed. From the discussion for the amount of the FP of Sr, it was conjectured
that the changes in the isotopic ratios of 3’ Sr/%6Sr might be brought by some isotopic
fractionation in the biological processes. The evaluation of the detectable lower limit
of the isotopic ratio of *°Sr/*®°Sr suggests that the isotopic ratio of *°Sr/3*Sr is the
most suitable index to judge a source of radioactive Sr released during the accident
of FDNPP by TIMS.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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