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Chapter 5
Role of Glycans in Viral Infection

Tadanobu Takahashi and Takashi Suzuki

Abstract  A variety of viruses show specific binding to glycans on the cellular 
surface, such as sialoglycoconjugates, glycosaminoglycans, and histo-blood 
group antigens. The viral surface proteins recognize terminal sugar chain moieties 
of glycan and select glycans for binding to specific tissues and hosts. For example, 
orthomyxoviruses (influenza viruses) and paramyxoviruses recognize terminal 
moieties of sialic acid linked to galactose for infecting target cells. In most cases, 
glycans are thought to be involved in cellular surface attachment and cell entry of 
viruses, as viral receptors and/or coreceptors. Expression of sugar chain moieties 
is generally dependent on specific tissues, cells, and hosts. Therefore, the specific 
interactions of viruses with glycans significantly affect tissue tropism and pathoge-
nicity by selection of the viral replication site. For example, human influenza A 
virus preferentially binds to sialic acid α2,6 linkage to galactose, which is expressed 
in the human upper respiratory tract. On the other hand, avian influenza A virus 
preferentially binds to sialic acid α2,3 linkage to galactose, which is expressed in 
chicken eggs and trachea. The difference in recognition is believed to determine 
host specificity of influenza A virus. Platforms of the sugar chain are N-linked 
glycan, O-linked glycans (containing proteoglycans), and sphingolipid. Difference 
in these platforms also affects functions of viral receptors. This chapter presents 
a review about glycans bound and recognized by representative viruses including 
coronavirus, flavivirus, herpesvirus, norovirus, orthomyxovirus, paramyxovirus, 
parvovirus, polyomavirus, retrovirus, and reovirus.
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Abbreviations

AAV	 Adeno-associated virus
AAV1	 AAV type 1
AAV2	 AAV type 2
AAV4	 AAV type 4
AAV5	 AAV type 5
AAV6	 AAV type 6
AAV9	 AAV type 9
AIBV	 Avian infectious bronchitis virus
ApoE	 Apolipoprotein E
BCV	 Bovine coronavirus
BKV	 BK virus
BPV	 Bovine parvovirus
CPV	 Canine parvovirus
DEN	 Dengue virus
GAG	 Glycosaminoglycan
GalCer	 Galactosylceramide
HA	 Hemagglutinin
HCoV-OC43	 Human coronavirus OC43 strain
HCV	 Hepatitis C virus
HE	 Hemagglutinin-esterase
HN	 Hemagglutinin-neuraminidase
HIV	 Human immunodeficiency virus
HPAI	 Highly pathogenic avian IAV
FPV	 Feline parvovirus
hPIV	 Human parainfluenza virus
hPIV1	 hPIV type 1
hPIV3	 hPIV type 3
HSV	 Herpes simplex virus
HSV-1	 HSV serotype 1
HSV-2	 HSV serotype 2
IAV	 Influenza A virus
IBV	 Influenza B virus
ICV	 Influenza C virus
JCV	 JC virus
JEV	 Japanese encephalitis virus
MHV	 Mouse hepatitis virus
MVM	 Parvovirus minute virus of mice
MPV	 Murine polyomavirus
Neu5Ac	 N-Acetylneuraminic acid
MuV	 Mumps virus
NDV	 Newcastle disease virus
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Neu5Acα2,3Gal	 Neu5Ac α2,3-linked to galactose
Neu4,5Ac2	 N-Acetyl-4-O-acetylneuraminic acid
Neu5,9Ac2	 N-Acetyl-9-O-acetylneuraminic acid
Neu5,9Ac2α2,3Gal	 Neu5,9Ac2 α2,3-linked to galactose
Neu5,9Ac2α2,6Gal	 Neu5,9Ac2 α2,6-linked to galactose
Neu5Gc	 N-Glycolylneuraminic acid
NoV	 Human norovirus
NSP4	 Nonstructural glycoprotein 4
ReV	 Reovirus
ReV1	 ReV type 1
ReV3	 ReV type 3
RoV	 Rotavirus
RSV	 Human respiratory syncytial virus
SeV	 Sendai virus
SV40	 Simian virus 40
TGEV	 Porcine transmissible gastroenteritis virus
TNF	 Tumor necrosis factor
VLP	 Virus-like particle
vRNP	 Viral ribonucleoprotein complexes
WNV	 West Nile virus

5.1  �Introduction

All viruses replicate in host cells only and show host (cell) ranges and specificities. 
Glycans on the cellular surface are highly diverse and species specific. Viral  
host (cell) ranges and specificities are often dependent on specificity and diversity 
of glycans on the surface membranes of host cells. In fact, various viruses bind 
to glycans on the surface membranes of host cells as specific receptors. Typical 
receptors are sialic acid-containing glycans and sulfated glycans, for example,  
gangliosides and heparan sulfate, respectively. In many cases, the minus charge of 
sialic acid and sulfate is likely to play an important role in viral binding with  
glycans. The typical life cycle of an enveloped virus consists of receptor binding, 
entry, uncoating of the viral capsid, synthesis of viral components (genomes and 
proteins), glycosylation of viral proteins, intracellular traffic of viral components, 
packaging of viral particles, and budding and release of progeny viruses on the 
cellular surface. Functions of glycans in these steps except for receptor binding 
mostly remain unknown. This chapter presents a review, mainly in terms of a viral 
receptor, about glycans recognized by viruses including coronavirus, flavivirus, 
herpesvirus, norovirus, orthomyxovirus, paramyxovirus, parvovirus, polyomavirus, 
retrovirus, and reovirus.

5  Role of Glycans in Viral Infection
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5.2  �Viruses that Bind to Glycans

5.2.1  �Coronavirus

Coronaviruses are positive-stranded RNA viruses and enveloped viruses that are 
classified within the family Coronaviridae. They are a diverse group of viruses that 
infect various mammalian and avian species. The viruses often affect the respiratory 
or intestinal tract. It has been shown that many coronaviruses agglutinate erythro-
cytes (Bingham et al. 1975; Pokorný et al. 1975). Coronaviruses recognize a type of 
sialic acid as a receptor on cell surface components. Bovine coronavirus (BCV) and 
human coronavirus OC43 strain (HCoV-OC43) have binding activity to glyco
conjugates containing N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2), through 
hemagglutinin-esterase (HE) protein and/or spike (S) protein on the viral surface 
membrane (Schultze et al. 1991a, b; Künkel and Herrler 1993). The HE protein only 
agglutinates cells that contain a high content of Neu5,9Ac2 such as mouse and rat 
erythrocytes (Schultze et al. 1991b). The S protein is able to agglutinate chicken 
erythrocytes, but the HE protein cannot (Schultze et al. 1991a). Bovine corona-
virus is more efficient in recognizing Neu5,9Ac2 α2,3-linked to galactose 
(Neu5,9Ac2α2,3Gal), whereas HCoV-OC43 is superior with respect to Neu5,9Ac2 
α2,6-linked to galactose (Neu5,9Ac2α2,6Gal) (Krempl et  al. 1995). BCV and 
HCoV-OC43 use Neu5,9Ac2 as a receptor to initiate infection of cultured cells 
(Schultze and Herrler 1992; Künkel and Herrler 1993). These viruses also have 
esterase activity in the HE protein to cleave the 9-O-acetyl group of Neu5,9Ac2, as 
does influenza C virus (ICV). The esterase activity is believed to help release of 
progeny viruses from cellular surfaces of host cells. In contrast to most of the coro-
naviruses, mouse hepatitis virus (MHV) recognizes N-acetyl-4-O-acetylneuraminic 
acid (Neu4,5Ac2) rather than Neu5,9Ac2 (Regl et al. 1999; Langereis et al. 2012). 
Receptor recognition of MHV may reflect change in host tropism from other 
species to mice.

Porcine transmissible gastroenteritis virus (TGEV) and avian infectious bron-
chitis virus (AIBV) bind to N-acetylneuraminic acid (Neu5Ac) α2,3-linked to 
galactose (Neu5Acα2,3Gal) (Schultze et al. 1992, 1993) via viral S protein. TGEV 
infects the porcine small intestine, brush border membranes of which express 
mucin-like and Neu5Ac-rich glycoprotein. Although TGEV uses aminopeptidase 
N as the main cellular receptor, TGEV S protein may support viral attachment to 
the brush border membranes (Schwegmann-Wessels and Herrler 2008). TGEV 
also recognizes N-glycolylneuraminic acid (Neu5Gc) (Schultze et al. 1996), which 
is expressed in pigs (Suzuki et al. 1997). S protein of AIBV shows much higher 
binding activity to Neu5Acα2,3Gal than does that of TGEV.  AIBV uses only 
Neu5Ac as the main cellular receptor (Winter et al. 2006; Shahwan et al. 2013). 
AIBV Beaudette strain shows binding activity to heparan sulfate (HS). This virus 
is an embryo-adapted virus that has the extended tropism in cell culture. HS may 
in part contribute to extended tropism of AIBV Beaudette strain (Madu et al. 2007) 
(Table 5.1).
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5.2.2  �Flavivirus

Flaviviruses are positive-stranded RNA viruses and enveloped viruses that are 
classified within the family Flaviviridae. Dengue virus (DEN) is the most important 
mosquito-mediated human pathogen. Clinical manifestations of the virus range 
from a simple self-limited febrile illness known as dengue fever to a hemor-
rhagic fever and potentially fatal hemorrhagic shock syndrome. All serotypes 
(1–4) of DEN recognize nLc4Cer (Galβ1,4GlcNAcβ1,3Galβ1,4Glc1,1’Cer) from 
mammalian cells (Aoki et  al. 2006). DEN type 2 also recognizes Ar3Cer 
(GlcNAcβ1,3Manβ1,4Glcβ1,1’Cer) from mosquito cells (Wichit et al. 2011). It is 
thought that neutral glycosphingolipids share the important determinant for DEN 
binding and that the β-GlcNAc residue may play a key role in DEN binding. 
Chemically synthesized derivatives carrying multiple carbohydrate residues of nLc4 
inhibit binding of DEN type 2, indicating that a binding inhibitor based on nLc4 
could be as a potential DEN drug (Aoki et  al. 2006). DEN also binds to some 
glycosaminoglycans (GAGs) such as HS (Chen et al. 1997; Watterson et al. 2012), 
heparin (Marks et al. 2001), fucoidan (Hidari et al. 2008), and chondroitin sulfate E 
(Kato et al. 2010) through the virus envelope E glycoprotein, but does not bind to 
chondroitin sulfates A, B, C, and D or hyaluronic acid (Kato et  al. 2010). DEN 
infection is inhibited by some GAGs such as heparin (Marks et al. 2001), fucoidan 
(Hidari et  al. 2008), and chondroitin sulfate E (Kato et  al. 2010). Most GAGs 
include GlcA and sulfated GlcA. 3-O-Sulfated GlcA inhibits DEV infection, but 
2-O-sulfated and 3,6-di-O-sulfated ones do not (Hidari et al. 2012). It is thought that 
3-O-GlcA is in part a key structure in DEN binding to GAGs. DEN causes leakage 
of the vascular endothelium, resulting in dengue hemorrhagic fever. Human endo-
thelial cells are highly susceptible to infection by DEN. The susceptibility may be 
attributed to DEN attachment directed to HS-containing proteoglycan receptors on 
endothelial cells (Dalrymple et al. 2011). Two encephalitis flaviviruses, Japanese 
encephalitis virus (JEV) and West Nile virus (WNV), have a binding activity to 
heparin (Lee et al. 2004). JEV also binds to and is inhibited by HS (Su et al. 2001). 

Table 5.1  Binding activities of coronaviruses to glycans

Virus Glycan (references)

BCV Neu5,9Ac2α2,3Gal (Krempl et al. 1995; Künkel and Herrler 1993; Schultze 
et al. 1991a, b)

HCoV-OC43 Neu5,9Ac2α2,6Gal (Krempl et al. 1995; Künkel and Herrler 1993; Schultze 
et al. 1991a, b)

MHV Neu4,5Ac2 (Langereis et al. 2012; Regl et al. 1999)

TGEV Neu5Acα2,3Gal (Schultze et al. 1993; Schwegmann-Wessels and Herrler 2008)

Neu5Gc (Schultze et al. 1996)

AIBV Neu5Acα2,3Gal (Schultze et al. 1992, 1993; Shahwan et al. 2013; Winter  
et al. 2006)

HS (Madu et al. 2007)

5  Role of Glycans in Viral Infection
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The binding affinity of WNV and JEV for GAG has been suggested to be a 
determinant for the neuroinvasiveness of encephalitic flaviviruses (Lee et al. 2004).

E1 and E2 envelope glycoproteins of hepatitis C virus (HCV) recognize HS 
through an important structure such as 6-O-sulfation and N-sulfation, not through 
simple ionic interactions (Barth et  al. 2003; Kobayashi et  al. 2012). Since HCV 
strongly binds to HS from liver tissues, HS appears to be one of the molecules that 
confer the liver-specific tissue tropism of HCV infection (Kobayashi et al. 2012). 
Binding of HCV to the cell surface is not markedly inhibited by heparin, different 
from other flaviviruses such as DEN and JEV. Cellular HS may act as an alternative 
receptor for HCV, not a primary receptor (Heo 2008). However, chondroitin sulfate 
E from squid cartilage strongly interacts with both E1 and E2 proteins and inhibits 
the entry of pseudotype HCV into cells, suggesting that chondroitin sulfate E is a 
potential candidate of an anti-HCV drug (Kobayashi et al. 2012). Apolipoprotein E 
(ApoE), which has a heparin-binding activity, mediates HCV attachment to the cell 
surface through specific interactions with cellular HS (Jiang et al. 2012). Syndecan-1, 
which is a core protein to form HS proteoglycans, serves as the major receptor 
protein for HCV attachment to cells (Shi et al. 2013).

Sulfated GAGs (especially HS) may serve as receptor proteoglycans for the 
attachment of flaviviruses to target cells. Elucidation of the mechanism by which 
flaviviruses bind to sulfated GAGs would contribute to the discovery and develop-
ment of anti-flavivirus drugs (Table 5.2).

5.2.3  �Herpesvirus

Herpesviruses are double-stranded linear DNA viruses and enveloped viruses that 
are classified within the family Herpesviridae. The most common manifestations 
of herpes simplex virus (HSV) infection are mucocutaneous lesions. The initial 
contact of HSV serotypes 1 and 2 (HSV-1 and HSV-2) with the cellular surface is 

Table 5.2  Binding activities 
of flaviviruses to glycans

Virus Glycan (references)

DEN nLc4Cer (Aoki et al. 2006)

Ar3Cer (Wichit et al. 2011)

HS (Chen et al. 1997; Watterson et al. 2012)

Heparin (Marks et al. 2001)

Fucoidan (Hidari et al. 2008)

Chondroitin sulfate E (Kato et al. 2010)

JEV Heparin (Lee et al. 2004)

HS (Su et al. 2001)

WNV Heparin (Lee et al. 2004)

HCV HS (Barth et al. 2003; Kobayashi et al. 2012)

Chondroitin sulfate E (Kobayashi et al. 2012)
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believed to be binding of the virus to HS through the viral envelope glycoproteins 
gB and gC (Herold et al. 1991; Trybala et al. 2000). However, interactions of gB and 
gC with HS are not sufficient for HSV entry into cells. After adsorption of HSV 
with HS on the cellular surface, cell entry requires engagement of the viral envelope 
glycoprotein gD with one of three classified coreceptors, herpesvirus entry mediator, 
tumor necrosis factor (TNF) receptor family, and immunoglobulin superfamily 
(Spear et  al. 2000). Additionally, 3-O-sulfation of glucosamine residues in HS 
generated by multiple D-glucosaminyl 3-O-sulfotransferase isoforms is a key 
determinant of the gD binding site. HSV-1 cell entry requires interactions of gD 
with 3-O-sulfated HS or other coreceptors described above (Shukla et al. 1999). 
3-O-Sulfated HS appears to play an important role in HSV-1 entry into many 
different cell lines (O’Donnell et al. 2010). The glycoprotein gB has a sequence of 
a putative fusion activity, suggesting that interactions of gB with cellular surface 
molecules allow the fusion process for cell entry. However, HS-deficient cells are 
susceptible to HSV-1 infection (Banfield et al. 1995). HSV-1 bearing gB lacking an 
HS binding site also maintains cell infectivity (Laquerre et al. 1998). Soluble gB, 
which was generated by a baculovirus protein expression system, also binds to 
HS-deficient cells and inhibits HIV-1 infection (Bender et al. 2005). Interaction of 
gB with other molecules except HS may play an important role in HSV-1 infection. 
3-O-Sulfated HS and HS-binding peptide have been investigated as anti-HSV 
agents (Copeland et al. 2008; Ali et al. 2012) (Table 5.3).

5.2.4  �Norovirus

Human noroviruses (NoVs) are single-stranded positive-sense RNA viruses and 
small, round, non-enveloped viruses with a diameter of 38 nm that are classified 
within the family Caliciviridae. These viruses are the major causative pathogens of 
acute viral gastroenteritis characterized by severe diarrhea. NoV virus-like particles 
(VLPs) bind to histo-blood group antigens demonstrating A, B, and O phenotypes, 
through the P domain of viral capsid protein, VP1 (Harrington et al. 2002; Marionneau 
et al. 2002; Chen et al. 2011). For example, the VLPs derived from Norwalk/68 strain 
bind to H1 antigen (Fucα1,2Galβ1,3GlcNAc; O phenotype), H2 antigen 
(Fucα1,2Galβ1,4GlcNAc; O phenotype), Leb antigen [Fucα1,2Galβ1,3(Fucα1,4)
GlcNAc], A1 antigen [GalNAcα1,3(Fucα1,2)Galβ1,3GlcNAc; A phenotype], 
and A2 antigen [GalNAcα1,3(Fucα1,2)Galβ1,4GlcNAc; A phenotype] but not to 
B1 antigen [Galα1,3(Fucα1,2)Galβ1,3GlcNAc, B phenotype] or B2 antigen 
[Galα1,3(Fucα1,2)Galβ1,4GlcNAc, B phenotype] (Harrington et  al. 2002; 

Table 5.3  Binding activities of herpesviruses to glycans

Virus Glycan (references)

HSV-1, 2 HS (especially 3-O-sulfated) (Herold et al. 1991; Shukla et al. 1999; Trybala 
et al. 2000)

5  Role of Glycans in Viral Infection
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Huang et al. 2003, 2005; Hutson et al. 2003; Lindesmith et al. 2003). Humans with 
O phenotype, but not those with B phenotype, are susceptible to NoV Norwalk/68 
strain infection (Hutson et  al. 2002; Lindesmith et  al. 2003). These studies 
suggested that histo-blood group antigens are receptors of NoV. However, other 
NoV VLPs display different ABH and Lewis carbohydrate-binding profiles 
(Harrington et al. 2002; Huang et al. 2005; Shirato et al. 2008; Shirato-Horikoshi 
et al. 2007). Indeed, Rockx’s epidemiological research indicated that some NoVs 
can infect individuals with different ABH phenotypes (Rockx et  al. 2005). For 
example, VLPs derived from BUDS strain bind to A and B antigens but not to H 
antigens. The binding activities of NoVs to histo-blood group antigens vary greatly 
in a strain-dependent manner. NoVs include at least 36 genotypes in VP1 nucleotide 
sequence. Various genotype NoVs appear to infect humans with any blood types 
through binding combinations of some histo-blood group antigens (Table 5.4).

5.2.5  �Orthomyxovirus

Representative orthomyxoviruses are influenza A virus (IAV), influenza B virus 
(IBV), and ICV, which are classified within the family Orthomyxoviridae. Influenza 
viruses are enveloped viruses with a diameter of 100 nm and are respiratory patho-
gens with strong infection spread. IAVs and IBVs are eight-segmented single-
stranded negative-sense RNA viruses, and ICVs are seven-segmented single-stranded 
negative-sense RNA viruses. Viral hosts are wide species including humans, pigs, 
birds, and horses for IAVs and mainly humans for IBVs and ICVs. Host receptors 
on the cellular surface membrane are sialic acid residues existing at the terminal 
position of glycoconjugates, Neu5Ac for IAVs and IBVs and Neu5,9Ac2 for ICVs 
(Rogers et al. 1986; Suzuki et al. 1992). IAVs and IBVs have sialidase activity (an 
enzyme cleaving Neu5Ac from glycoconjugates), and ICVs also have esterase 
activity (an enzyme cleaving 9-O-acetyl group from Neu5,9Ac2) to prevent trapping 
of progeny viruses to sialic acid residues on the cellular surface and on viral glyco-
proteins. These receptors containing sialic acids are thought to be gangliosides and/
or N-glycans (Suzuki 1994; Chu and Whittaker 2004). In general, human IAVs 
show preferential binding to Neu5Acα2,6Gal linkage, whereas avian IAVs show 
preferential binding to Neu5Acα2,3Gal linkage. Swine IAVs bind to both 
Neu5Acα2,3Gal and Neu5Acα2,6Gal linkages, equally or with predominance 
toward Neu5Acα2,6Gal linkage (Ito et al. 1997a; Suzuki et al. 1997). IBVs show 
preferential binding to Neu5Acα2,6Gal linkage (Suzuki et al. 1992). IAVs and IBVs 
strongly recognize Neu5Acα2,6(or 3)Galβ1,3GlcNAc and Neu5Acα2,6(or 3)

Table 5.4  Binding activities of noroviruses to glycans

Virus Glycan (references)

NoV ABH and Lewis antigens in human blood (Harrington et al. 2002; Marionneau 
et al. 2002)
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Galβ1,4GlcNAc through interactions of the viral surface glycoprotein, hemagglutinin 
(HA) (Suzuki et al. 1992, 2000; Suzuki 1994). The human trachea predominantly 
expresses Neu5Acα2,6Gal linkage (Baum and Paulson 1990). The pig trachea 
expresses both Neu5Acα2,3Gal and Neu5Acα2,6Gal linkages (Suzuki et al. 1997, 
2000). Chicken eggs and trachea express Neu5Acα2,3Gal linkage (Ito et al. 1997b; 
Abd El Rahman et  al. 2009). Glycoconjugates recognized by respective IAVs 
coincide with respective virus replication sites expressing their glycoconjugates, 
strongly suggesting that their glycoconjugates are receptors of IAVs. Some H5N1 
highly pathogenic avian IAVs (HPAIs) and H7N9 avian IAVs, isolated from humans, 
show increased binding activity to Neu5Acα2,6Gal linkage (Yamada et al. 2006; 
Watanabe et al. 2013; Zhang et al. 2013). Acquisition of Neu5Acα2,6Gal linkage 
binding activity of H5N1 HPAIs is one of the factors that lead to airborne transmis-
sion among ferrets (human infection and transmission model) (Imai et  al. 2012; 
Herfst et al. 2012). Increased binding activity of avian IAVs and animal IAVs other 
than human IAVs to Neu5Acα2,6Gal linkage could cause a pandemic of a new 
subtype of IAV among humans. As an alternate pandemic mechanism, a new 
subtype of IAV could arise by genetic reassortment among segmented viral RNAs 
from simultaneous infections of human and avian IAVs in pigs, which express both 
Neu5Acα2,3Gal and Neu5Acα2,6Gal linkages in the trachea. In this way, Neu5Ac 
binding properties of IAVs may be involved in the pandemic occurrence of a new 
subtype of IAV.

Since 2008, it has been reported that some IAVs, 2009 pandemic H1N1 IAVs  
and avian IAVs including H5, H6, H7, and H9 subtypes, show preferential binding 
to 6-sulfo sialyl Lewis X.  These IAVs appear to recognize terminal tri- or  
tetra-oligosaccharides [Neu5Acα2,3Galβ1,4(6-O-SO3H)GlcNAc and Neu5Acα2, 
3Galβ1,4(Fucα1,3)(6-O-SO3H)GlcNAc] of 6-sulfo sialyl Lewis X (Gambaryan 
et al. 2008, 2012; Childs et al. 2009).

Major sialic acids are classified into two types: Neu5Ac and Neu5Gc. Almost all 
equine IAVs show strong preferential binding to Neu5Gc α2,3-linked to galactose 
(Neu5Gcα2,3Gal) (Ito et al. 1997a; Suzuki et al. 2000). Almost all avian IAVs also 
show binding activity to one, although Neu5Gc binding activity is weaker than their 
Neu5Ac binding activity (Ito et  al. 1997a, 2000). Some human and swine IAVs 
show binding activity to Neu5Gc (preferentially to Neu5Gcα2,6Gal linkage) 
(Suzuki et  al. 1997; Masuda et  al. 1999; Takahashi et  al. 2009). Neu5Gc and 
Neu5Gcα2,3Gal linkage is expressed in the horse trachea, duck intestine, and pig 
trachea, which are natural replication sites of IAVs (Suzuki et al. 1997, 2000; Ito 
et  al. 2000). The function of Neu5Gc is predicted to be an IAV receptor, like 
Neu5Ac. There is a possibility that human and avian IAVs facilitate transmission to 
pigs through interactions with Neu5Gc. As described above, pigs are potential inter-
mediate hosts that produce a new subtype of IAV between human IAV and avian 
IAV. Neu5Gc binding properties of these IAVs may also be involved in a pandemic 
occurrence.

Sulfatide is a 3-O-sulfated galactosylceramide (GalCer). IAV specifically binds 
to sulfatide, even though it does not contain any sialic acids (Suzuki et al. 1996). 
Sulfatide is not an IAV receptor for initial infection, different from sialic acids. 

5  Role of Glycans in Viral Infection
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Caspase-3-dependent apoptosis enhances IAV replication through enhancement of 
nuclear export of viral ribonucleoprotein complexes (vRNP) (Wurzer et al. 2003). 
Sulfatide has interacted with newly synthesized HA transferred to the surface 
membranes of infected cells. The interaction of HA with sulfatide facilitates forma-
tion and replication of progeny virus particles through enhancement of nuclear 
export of vRNP by inducing caspase-3-independent apoptosis (Takahashi et  al. 
2008, 2010, 2013b). The binding mechanism of the HA ectodomain with sulfatide 
is thought to be different from that with Neu5Ac (Takahashi et al. 2013a). An inhibitor 
of HA binding with sulfatide would become a novel drug that inhibits formation 
of IAV particles and IAV replication. Sulfatide is involved in various biological 
properties such as the immune system, nervous system, kidney functions, insulin 
control, hemostasis/thrombosis, cancer, and other microbes (Takahashi and Suzuki 
2012). Further study on sulfatide binding of IAVs would contribute to elucidation of 
these biological mechanisms and diseases associated with sulfatide (Table 5.5).

5.2.6  �Paramyxovirus

Paramyxoviruses are single-stranded negative-sense RNA viruses and enveloped 
viruses with a diameter of 150–250  nm that are classified within the family 
Paramyxoviridae. Some paramyxoviruses have the envelope glycoprotein, 
hemagglutinin-neuraminidase (HN), displaying both sialic acid binding activity and 
sialidase activity. Such viruses that infect humans are human parainfluenza virus 
(hPIV) and mumps virus (MuV), which are members of the genus Respirovirus and 
Rubulavirus, respectively. hPIVs [mainly type 1 (hPIV1) and type 3 (hPIV3)] 
account for 20 % of causative pathogens isolated from children with pneumonia 
(Sinaniotis 2004). hPIV1 causes most cases of laryngotracheobronchitis (croup) 
in children, and hPIV type 3 (hPIV3) often causes pneumonia and bronchiolitis 

Table 5.5  Binding activities of orthomyxoviruses to glycans

Virus Glycan (references)

Human IAV Neu5Ac (Neu5Gc) α2,6Gal (Masuda et al. 1999; Suzuki et al. 1992; Suzuki 
1994; Takahashi et al. 2009)

Avian IAV Neu5Ac (Neu5Gc) α2,3Gal (Ito et al. 1997a, 2000; Suzuki et al. 1992; 
Suzuki 1994)

Swine IAV Neu5Acα2,6Gal (Suzuki et al. 1997)

Neu5Ac (Neu5Gc) α2,3Gal (Suzuki et al. 1997)

Equine IAV Neu5Gcα2,3Gal (Ito et al. 1997a; Suzuki et al. 2000)

IAV 6-Sulfo sialyl Lewis X (Gambaryan et al. 2008, 2012; Childs et al. 2009)

Sulfatide (Suzuki et al. 1996; Takahashi et al. 2008, 2010, 2013a, b)

IBV Neu5Acα2,6Gal (Suzuki et al. 1992)

ICV Neu5,9Ac2 (Rogers et al. 1986; Suzuki et al. 1992)
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in infants younger than 6 months of age. hPIV1 shows preferential binding  
to Neu5Acα2,3Galβ1,3GlcNAc (Suzuki et  al. 2001; Tappert et  al. 2011),  
whereas hPIV3 shows binding activity to both Neu5Acα2,3Galβ1,3GlcNAc and 
Neu5Acα2,6Galβ1,3GlcNAc, in addition to Neu5Gcα2,3Galβ1,3GlcNAc. Higher 
pathogenicity of hPIV3 may be involved in the broader range of receptor recogni-
tion than that of hPIV1. Interestingly, both hPIVs strongly bind to oligosaccharides 
containing branched N-acetyllactosaminoglycans (Suzuki et al. 2001). Blood group 
I-type polylactosamine antigens may be major receptors of hPIVs. Also, HS binding 
of hPIV3 suggests that HS may play an important role in cell entry of hPIV3 (Bose 
and Banerjee 2002). On the other hand, sulfatide, which binds to hPIV3, inhibits 
hPIV3 infection and multinucleated syncytial giant cell formation of infected cells 
through suppression of viral fusion activity (Takahashi et al. 2012). MuV is a caus-
ative pathogen of childhood disease manifested by swelling of parotid glands and 
salivary glands, sometimes accompanied by complications such as aseptic meningitis, 
meningoencephalitis, and orchitis. MuV also has an HN spike protein, which 
was shown to be sensitive to the sialidase inhibitor 2-deoxy-2,3-didehydro-N-
acetylneuraminic acid (Waxham and Wolinsky 1986). However, binding of MuV 
with sialoglycoconjugates remains unknown.

Sendai virus (SeV) is a highly transmissible animal respiratory virus in mice, 
hamsters, guinea pigs, and rats. SeV is a member of the genus Respirovirus pos-
sessing HN. Gangliosides and glycophorin were investigated as host cell receptors 
for SeV (Markwell et al. 1981; Hansson et al. 1984; Suzuki et al. 1985; Wybenga 
et al. 1996). SeV recognizes ganglio-series gangliosides (GD1a, GT1b, and GQ1b) 
containing the sequence NeuAcα2,3Galβ1,3GalNAc as viral receptors (Markwell 
et  al. 1981). SeV shows preferential binding to neolacto-series gangliosides 
containing Neu5Acα2,3Galβ1,4GlcNAc, especially branched blood group I-type 
and/or linear i-type gangliosides (Suzuki et al. 1985). SeV can also bind to bovine 
erythrocyte glycoprotein GP-2 containing blood group I-type branched polylactos-
amine oligosaccharides with Neu5Gcα2,3Gal (Suzuki et al. 1983, 1984). Neu5Gc is 
expressed in animals other than humans (genetically lacking an active enzyme for 
synthesis of Neu5Gc in humans). SeV can utilize both species of sialic acid Neu5Ac 
and Neu5Gc to infect animals.

Newcastle disease virus (NDV) is a transmissible pathogen of bird disease 
and sometimes of mild conjunctivitis and influenza-like symptoms for human 
infection. NDV is a member of the genus Avulavirus possessing HN. NDV shows 
preferential binding to gangliosides such as sialylparagloboside (IV3Neu5Acα-
nLc4Cer or IV3Neu5Gcα-nLc4Cer) containing Neu5Acα2,3Galβ1,4GlcNAc  
or Neu5Gcα2,3Galβ1,4GlcNAc and GM3 containing Neu5Acα2,3Gal or 
Neu5Gcα2,3Gal. NDV also binds to blood group I-type gangliosides, GD3, GM1a, 
and GD1b, although their binding is weaker than that of sialylparagloboside and 
GM3 (Suzuki et  al. 1985). Gangliosides (GM1, GM2, GM3, GD1a, GD1b, and 
GT1b) may act as primary receptors, and N-linked glycoproteins may function as 
secondary receptors for NDV entry into cells (Ferreira et al. 2004). On the other 
hand, pretreatment of chicken East Lansing Line ELL-0 cells with both α2,3- and 
α2,6-specific sialidases and α2,3(N)- and α2,6(N)-sialyltransferase incubation 
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showed that both α2,3- and α2,6-linked sialic acids containing glycoconjugates may 
be used for NDV infection (Sánchez-Felipe et al. 2012). Receptor binding properties 
of NDVs may depend on the viral strain.

Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory 
tract diseases in infants and young children. RSV is a member of the genus 
Pneumovirus possessing viral surface glycoproteins, attachment G and fusion F 
proteins, but not including sialidase unlike all paramyxoviruses described above. 
For virus infection, RSV requires interactions of the G protein and/or the F protein 
with heparin, HS, and chondroitin sulfate B on the cell surface (Bourgeois et al. 
1998; Feldman et al. 1999; Hallak et al. 2000). The G protein and the F protein 
independently recognize heparin and HS (Feldman et al. 2000). These GAGs and 
their destroying enzymes also have inhibitory activity against RSV infection (Hallak 
et al. 2000) (Table 5.6).

5.2.7  �Parvovirus

Parvoviruses are non-enveloped viruses that belong to the family Parvoviridae. 
Adeno-associated virus (AAV) is a nonpathogenic human parvovirus with diameters 
of 20–30 nm. Recombinant AAV has been used for gene transfer to various cells 
and several organs. AAV type 1 (AAV1), type 4 (AAV4), type 5 (AAV5), and 
type 6 (AAV6) recognize sialic acids and use them as receptors of infection, but 
AAV type 2 (AAV2) and type 9 (AAV9) do not. AAV4 specifically recognizes 
Neu5Acα2,3Gal of O-linked glycans, whereas AAV1 and AAV6 specifically recog-
nize both Neu5Acα2,3Gal and Neu5Acα2,6Gal of N-linked glycans. Therefore, 
AAV4 infection is inhibited by mucin that possesses rich O-glycans, but AAV1 and 

Table 5.6  Binding activities of paramyxoviruses to glycans

Virus Glycan (references)

hPIV1 Neu5Acα2,3Gal (Suzuki et al. 2001; Tappert et al. 2011)

hPIV3 Neu5Acα2,3Gal (Suzuki et al. 2001)

Neu5Acα2,6Gal (Suzuki et al. 2001)

Neu5Gcα2,3Gal (Suzuki et al. 2001)

HS (Bose and Banerjee 2002)

Sulfatide (Takahashi et al. 2012)

MuV Sialic acid? (Waxham and Wolinsky 1986)

SeV Neu5Acα2,3Gal (Suzuki et al. 1985)

Neu5Gcα2,3Gal (Suzuki et al. 1983, 1984)

NDV Neu5Acα2,3Gal (Suzuki et al. 1985; Ferreira et al. 2004)

Neu5Gcα2,3Gal (Suzuki et al. 1985)

RSV Heparin (Bourgeois et al. 1998; Feldman et al. 1999; Hallak et al. 2000)

HS (Bourgeois et al. 1998; Feldman et al. 1999; Hallak et al. 2000)

Chondroitin sulfate B (Hallak et al. 2000)
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AAV6 infections are not. AAV5 binds to Neu5Acα2,3Gal of N-glycans. Binding of 
AAV5 to Neu5Acα2,6Gal of N-glycans remains unknown. AAV1 efficiently binds 
to N-linked sialylated glycans possessing lactosamine (Galβ1,4GlcNAc) (Walters 
et al. 2001; Kaludov et al. 2001; Wu et al. 2006). AAV2 infection is strongly or 
moderately inhibited by heparin or chondroitin sulfate B, respectively. HS mediates 
AAV2 attachment to the cellular surface and infection (Summerford and Samulski 
1998). AAV9 uses the terminal Gal residue of N-linked glycans as a receptor (Shen 
et al. 2011).

Animal parvoviruses sometimes cause fetal diseases for hosts such as dogs and 
cats. Canine, feline, bovine, and mouse parvoviruses also bind to sialic acids. Bovine 
parvovirus (BPV) binds to Neu5Acα2,3Gal of both N- and O-linked glycans for 
attachment to the cellular surface (Johnson et al. 2004). BPV can strongly bind to 
glycophorin A through the Neu5Acα2,3Gal moiety of O-linked glycans (Blackburn 
et  al. 2005). Parvovirus minute virus of mice (MVM) shows specific binding to 
terminal moieties, Neu5Acα2,3Galβ1,4GlcNAc such as sialyl Lewis X and 
Neu5Acα2,8Neu5Ac linkages such as gangliosides GD2, GD3, and GT3 (Nam et al. 
2006). Canine parvovirus (CPV) has hemagglutination activity, indicating virus 
binding to sialic acid (Tresnan et al. 1995). CPV and feline parvovirus (FPV) recog-
nize Neu5Gc but not Neu5Ac. However, Neu5Gc on the cellular surface is unlikely 
to be a receptor for CPV and FPV infections because overexpression of Neu5Gc has 
no effect on virus infectivities of some cell lines (Löfling et al. 2013) (Table 5.7).

5.2.8  �Polyomavirus

JC virus (JCV) and BK virus (BKV) are non-enveloped viruses with diameters of 
40–45 nm that are classified within the family Polyomaviridae, closely related to 
simian virus 40 (SV40) and murine polyomavirus (MPV). Initial JCV infection is 

Table 5.7  Binding activities of parvoviruses to glycans

Virus Glycan (references)

AAV1, AAV6 Neu5Acα2,6Gal (N-linked) (Wu et al. 2006)

Neu5Acα2,3Gal (N-linked) (Wu et al. 2006)

AAV2 HS (Summerford and Samulski 1998)

AAV4 Neu5Acα2,3Gal (O-linked) (Kaludov et al. 2001)

AAV5 Neu5Acα2,3Gal (Neu5Acα2,6Gal?) (N-linked) (Kaludov et al. 2001; 
Walters et al. 2001)

AAV9 Terminal Gal (N-linked) (Shen et al. 2011)

BPV Neu5Acα2,3Gal (N- and O-linked) (Johnson et al. 2004)

MVM Neu5Acα2,3Galβ1,4GlcNAc (Nam et al. 2006)

Neu5Acα2,8Neu5Ac linkages (Nam et al. 2006)

CPV Neu5Gc (Löfling et al. 2013)

FPV Neu5Gc (Löfling et al. 2013)
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thought to occur in childhood and not to cause symptomatic illness but to be a risk 
factor for progressive multifocal leukoencephalopathy. JCV shows stronger binding 
to Neu5Acα2,6Gal linkage (of N-linked glycans), in addition to binding to 
Neu5Acα2,3Gal linkage such as gangliosides GM3, GD2, GD3, GD1b, GT1b, and 
GQ1b, through the major viral capsid protein VP1 (Gee et  al. 2004). A linear 
sialylated pentasaccharide with the sequence LSTc (Neu5Acα2,6Galβ1,4GlcNAcβ
1,3Galβ1,4Glc) binds with JCV and inhibits JCV infection of target cells, strongly 
suggesting that LSTc is a functional receptor of JCV infection (Neu et al. 2010). 
JCV binds to an asialoglycolipid, lactosylceramide, but not to GalCer. Therefore, 
JCV can also bind to GM3 and GD3 after sialidase treatment (i.e., lactosylce-
ramide). JCV weakly binds to GD1a but does not bind to GM1a or GM2 (Liu et al. 
1998; Komagome et al. 2002). These studies suggest that both Neu5Acα2,3Gal and 
Neu5Acα2,6Gal of N-linked glycans are also used for cellular surface binding and 
infection of JCV (Dugan et al. 2008).

BKV infection rarely causes symptom illness in humans but can lead to 
polyomavirus-associated nephropathy in renal transplant recipients undergoing 
immunosuppressive therapy. BKV binds to a cellular receptor, Neu5Acα2,3Gal 
of N-linked glycans, via VP1 protein (Dugan et  al. 2005, 2007). For nonhuman 
polyomaviruses, VP1s specifically bind to GD1a and GT1b for MPV and to GM1 
for SV40, suggesting that Neu5Acα2,3Gal is a key determinant in the interactions. 
Gangliosides appear to transport polyoma and SV40 from the cellular surface to the 
endoplasmic reticulum, and then the viruses enter the nucleus to initiate infection 
(Tsai et al. 2003) (Table 5.8).

5.2.9  �Retrovirus

Retroviruses are single-stranded positive-sense RNA and round enveloped viruses 
with a diameter of 100 nm that are classified within the family Retroviridae. Human 
immunodeficiency virus (HIV), which is a member of the genus Lentivirus, is a 
pathogen causing long-term and chronic disease that gradually progresses to acquired 
immunodeficiency syndrome. The viral surface glycoprotein gp120 of HIV binds to 
some glycolipids containing GalCer (Delézay et al. 1997; Hammache et al. 1998; 
Harouse et  al. 1991), Gb3Cer (Galα1,4Galβ1,4Glc1,1’Cer) (Mahfoud  et  al.  2002; 

Table 5.8  Binding activities of polyomaviruses to glycans

Virus Glycan (references)

BKV Neu5Acα2,3Gal (N-linked) (Dugan et al. 2005, 2007)

JCV Neu5Acα2,6Gal (strong binding, N-linked) (Komagome et al. 2002; Liu et al. 1998)

Neu5Acα2,3Gal (gangliosides) (Komagome et al. 2002)

LSTc (the strongest binding) (Neu et al. 2010)

MPV Neu5Acα2,3Gal? (GD1a and GT1b) (Tsai et al. 2003)

SV40 Neu5Acα2,3Gal? (GM1) (Tsai et al. 2003)
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Lund et al. 2006), GM3 (Hammache et al. 1998), and sulfatide (Delézay et al. 1996; 
van den Berg et al. 1992), in addition to heparin (and HS) (Crublet et al. 2008). CD4 
is a main primary receptor of HIV for viral attachment to the cellular surface. After 
interaction of the gp120 with CD4, these glycolipids and HS are thought to interact 
with gp120 and to act as coreceptors for the fusion process between the cellular 
membrane and viral membrane of HIV for entry into cells. However, sulfatide may 
not be a coreceptor for HIV because the fusion process is initiated by mediating 
binding to GalCer but not to sulfatide (Delézay et al. 1997; Harouse et al. 1991) 
(Table 5.9).

5.2.10  �Reovirus

Reoviruses (ReV) are double-stranded RNA viruses and non-enveloped regular 
icosahedra non-enveloped viruses with a diameter of 60–80 nm that are classified 
within the family Reoviridae. ReVs can infect the gastrointestinal and respiratory 
tracts of various mammals. For humans, most children are infected by the age of 
5 years. The viral attachment σ1 protein of ReVs recognizes sialic acids of glyco-
conjugates on the cellular surface. ReV type 1 (ReV1) binds to Neu5Acα2,3Gal 
and binds strongly to ganglioside GM2, which contains sialic acid linked to the 
inner galactose residue. The interaction of ReV1 with GM2 is involved in viral 
infection (Helander et al. 2003; Reiss et al. 2012). ReV type 3 (ReV3) binds to 
Neu5Acα2,3Gal, Neu5Acα2,6Gal, and Neu5Acα2,8Neu5Ac linkages, in addition 
to Neu4,5Ac2 (Gentsch and Pacitti 1987; Reiter et al. 2011). Interactions of ReV 
with sialic acids are believed to act for cellular surface attachment of ReV by rapid 
but low-affinity adhesion, followed by transition to a higher affinity interaction with 
an unidentified receptor for cell entry. Therefore, sialic acid is considered to be a 
coreceptor rather than a main receptor for ReV infection (Barton et  al. 2001). 
ReV1 spreads to the central nervous system via a hematogenous route and infects 
ependymal cells in the brain, leading to nonlethal hydrocephalus. In contrast, ReV3 
spreads to the central nervous system via neural and hematogenous routes and 
infects neurons, causing lethal encephalitis. These serotype-dependent differences 
in tropisms and pathogenesis are thought to be involved in the distinct binding 
with glycochain moieties.

Table 5.9  Binding activities of retroviruses to glycans

Virus Glycan (references)

HIV GalCer (Delézay et al. 1997; Hammache et al. 1998; Harouse et al. 1991)

Gb3Cer (Lund et al. 2006; Mahfoud et al. 2002)

GM3 (Hammache et al. 1998)

Sulfatide (Delézay et al. 1996; van den Berg et al. 1992)

Heparin (HS?) (Crublet et al. 2008)
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Rotavirus (RoV) is a member of the genus Rotavirus and the most important 
pathogen of severe gastroenteritis in children. There are two groups of RoV in the 
hemagglutination activity of erythrocytes and sialidase sensitivity of viral infection: 
sialic acid-dependent and sialic acid-independent RoVs (Isa et al. 2006). A few animal 
RoVs are sialic acid dependent on the interactions of the viral surface spike VP8* 
protein, which is formed from the viral VP4 protein by proteolytic cleavage, with 
sialic acids, whereas human RoVs and the majority of animal RoVs are sialic acid 
independent. For cell entry, sialic acid-dependent RoVs require gangliosides con-
taining Neu5Ac and/or Neu5Gc, such as GM1(a), GM2, GM3, GD1a, GD1b, GD3, 
and GT1b, which can inhibit RoV infection (Guo et al. 1999; Martínez et al. 2013; 
Rolsma et al. 1998; Superti and Donelli 1991; Yu et al. 2012). In addition, some sialic 
acid-independent RoVs, such as Wa and KUN strains, bind to GM1(a) containing 
internal Neu5Ac, which can also inhibit infections of these viruses (Guo et al. 1999; 
Haselhorst et al. 2009; Martínez et al. 2013). These studies suggest that sialic 
acid-dependent RoVs bind to gangliosides containing terminal Neu5Ac, whereas 
sialic acid-independent RoVs bind to gangliosides containing internal Neu5Ac. 
The VP8* protein of human sialic acid-independent RoVs also recognizes histo-
blood group antigens, trisaccharide GalNAcα1,3(Fucα1,2)Gal of A antigen for 
HAL1166 P[11] viral genotype strain (Hu et al. 2012), H1 antigen for P[4] and 
P[8] viral genotypes, and Leb antigen for the P[6] viral genotype (Huang et al. 
2012). The interactions of RoVs with sialo- or asialo-receptors are dependent on viral 
strains and genotypes. Nonstructural glycoprotein 4 (NSP4) encoded by RoVs is 
believed to function as an enterotoxin. NSP4 is secreted as an oligomeric lipoprotein 
from infected cells and binds to sulfated GAGs (Didsbury et al. 2011). Thus, gly-
cans appear to be involved in the infection and pathogenesis of RoVs and NSP4 
through cellular surface attachment (Table 5.10).

Table 5.10  Binding activities of reoviruses to glycans

Virus Glycan (references)

ReV1 Neu5Acα2,3Gal (Helander et al. 2003)

GM2 (Reiss et al. 2012)

ReV3 Neu5Acα2,3Gal (Reiter et al. 2011)

Neu5Acα2,6Gal (Reiter et al. 2011)

Neu5Acα2,8Neu5Ac (Reiter et al. 2011)

Neu4,5Ac2 (Gentsch and Pacitti 1987)

RoV Gangliosides (Neu5Ac and/or Neu5Gc) (Guo et al. 1999; Martínez et al. 2013; 
Rolsma et al. 1998; Superti and Donelli 1991; Yu et al. 2012)

Histo-blood group A1 antigen (Hu et al. 2012)

Histo-blood group H1 antigen (Huang et al. 2012)

Histo-blood group Leb antigen (Huang et al. 2012)

RoV NSP4 Sulfated GAGs (Didsbury et al. 2011)
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5.3  �Conclusion

A variety of viruses recognize glycans such as sialoglycoconjugates, GAGs, and 
histo-blood group antigens. These glycans are often thought to serve as receptors 
and/or coreceptors for cellular surface attachment and cell entry of viruses and viral 
toxins. The interactions of viruses with glycans determine virus-dependent tissue 
tropism, host, and pathogenicity. In rare cases, the interaction of IAV HA with sul-
fatide functions as a start switch of progeny virus particle formation, not as a recep-
tor for IAV infection. It may be important to evaluate the interactions of viruses with 
glycans in terms of insights different from a receptor function. Further studies com-
bining virology and glycobiology should lead to the elucidation and discovery of 
novel infection and replication mechanisms of a variety of viruses.
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