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Abstract

For decades, it has been recognized that proteins, which are encoded by our

genomes via transcription and translation, are building blocks that play vital

roles in almost all biological processes. Mutations identified in many protein-

coding genes are linked to various human diseases. However, this “protein-

centered” dogma has been challenged in recent years with the discovery that

majority of our genome is “noncoding” yet transcribed. Noncoding RNA has

become the focus of “next generation” biology. Here, we review the emerging

field of noncoding RNAs, including microRNAs (miRNAs) and long noncoding

RNAs (lncRNAs), and their function in cardiovascular biology and disease.
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44.1 Introduction

When the human genome project was completed, it was surprising that only about

20,000–25,000 protein-coding genes exist in our species, with less than 2 % of the

human genome used for coding proteins. What are the functions of noncoding

sequences, which make up more than 98 % of our genome? We are now finding

answers with the recognition that the majority of the genome is actively transcribed

to produce thousands of noncoding transcripts, including microRNAs (miRNAs)

and long noncoding RNAs (lncRNAs), in many cell types and tissues. miRNAs are

a class of small noncoding RNAs (~22 nucleotides) and were first discovered in
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C. elegans two decades ago. More than 2,000 miRNAs have been found in humans,

and many of them are evolutionarily conserved. By imperfect base pairing with

mRNAs in a sequence-dependent manner, miRNAs repress gene expression by

degrading target mRNAs and/or inhibiting their translation. Roles for miRNAs

have been demonstrated in the regulation of a broad range of biological activities

and diseases [1]. More recently, thousands of lncRNAs, which are transcribed

noncoding RNAs greater than 200 nucleotides, were discovered and implicated in

a variety of biological processes [2]. Clearly, investigating and understanding of

how miRNAs and lncRNAs regulate gene expression during cardiovascular devel-

opment and function will greatly facilitate therapeutic treatment of cardiovascular

disease.

44.2 miRNAs in Cardiac Development

Global disruption of all miRNA expression in the heart is the first step to under-

standing the function of miRNAs in cardiac development and physiology. Dicer, a

RNase III endoribonuclease, is a critical enzyme for the maturation of most

miRNAs. Conventional deletion of Dicer causes early embryonic lethality in

mice [3]. Disrupting miRNA expression in the early embryonic stage using

Nkx2.5-Cre leads to improperly compacted ventricular myocardium in mutant

embryos [4], and α-MHC-Cre-mediated conditional deletion of Dicer causes post-

natal lethality due to dilated cardiomyopathy and heart failure [5]. These studies

suggest that many miRNAs have crucial roles in cardiac development. miR-1 is

tissue-specifically expressed in the heart and skeletal muscle, and genetic deletion

of both miR-1-1 and miR-1-2 indicated that miR-1 is required for cardiomor-

phogenesis and the expression of many cardiac contractile proteins [6].

44.3 Cardiac Regeneration, Remodeling, and Ischemia
Regulated by miRNAs

Mammalian adult cardiomyocytes are terminally differentiated cells with very

limited regenerative ability. A recent report identified about 40 miRNAs that

strongly increased cell proliferation in neonatal mouse and rat cardiomyocytes.

Two of these miRNAs, miR-590 and miR-199a, were further demonstrated to

induce cardiomyocyte proliferation both in vitro and in vivo [7]. Using both gain-

and loss-of-function approaches in transgenic and knockout mice models, we

demonstrated that the miR-17-92 cluster is required for and sufficient to induce

cardiomyocyte proliferation. More specifically, we identified miR-19a/b as the

major contributors among the miR-17-92 cluster to the regulation of the

cardiomyocyte proliferation [8]. These studies suggest that miRNAs are key

regulators of cardiomyocyte proliferation and heart regeneration, suggesting their

significant therapeutic potential to treat cardiac-degeneration-associated heart

disease.
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Cardiac remodeling, which is defined as an alteration in the structure

(dimensions, mass, shape) of the heart, is one of the major responses of the heart

to biomechanical stress and pathological stimuli. Numerous studies have

demonstrated the functional involvement of many miRNAs during cardiac

remodeling [9]. Recently, we and others demonstrated that miR-22, a miRNA

enriched in cardiomyocytes but only mildly upregulated during cardiac hypertro-

phy, significantly promotes cardiac hypertrophy in vitro and in vivo [10, 11].

Ischemia is an independent risk factor of cardiovascular events, which leads to

myocardial infarction (MI) and ischemia-reperfusion (I/R) injury. Several miRNAs

participate in the regulation of these pathologic processes, especially

cardiomyocyte apoptosis following MI and I/R injury. miR-92a, a member of the

miR-17-92 cluster involved in cardiomyocyte proliferation, also participates in the

control of cardiomyocyte survival by targeting integrin subunit α5 and eNOS.

Inhibition of miR-92a by antagomir has improved cardiac function and reduced

cardiomyocyte apoptosis after MI in mice [12]. miR-21 serves as an anti-apoptotic

factor in MI animal models by targeting PDCD4 and repressing its expression.

Interestingly, miR-21 seems to target cardiac fibroblasts, not cardiomyocytes, in the

heart [13]. Conversely, miR-320 is downregulated after I/R injury. Gain- and loss-

of-function studies demonstrated that miR-320 promotes cardiomyocyte apoptosis

via maintaining HSP20 levels [14]. Together, these studies establish miRNAs as

key regulators of cardiomyocyte survival and cardiac remodeling in response to

pathophysiological stresses.

44.4 LncRNAs in Cardiac Development

While many lncRNAs have recently been discovered, relatively little is known

about their function. A novel lncRNA, Braveheart, has been defined as a critical

regulator of cardiovascular commitment from embryonic stem cells (ESCs)

[15]. Braveheart activates a cardiovascular gene network and functions upstream

of mesoderm posterior 1, a master regulator of a common multipotent cardiovascu-

lar progenitor. Braveheart mediates the epigenetic regulation of cardiac commit-

ment by interacting with SUZ12, a component of the polycomb repressive complex

2 (PRC2). Braveheart therefore represents the first lncRNA that defines cardiac cell

fate and lineage specificity, linking lncRNAs to cardiac development and disease. It

remains to be seen if Braveheart is required for normal heart development in vivo.

Equally critically, it will be important to determine whether genetic mutation of the

Braveheart gene is linked to human cardiovascular disorders. Nevertheless, the

discovery of Braveheart will significantly impact the cardiovascular research field

and link lncRNAs to human cardiovascular disease.

Fendrr, another novel lncRNA, has been defined as an essential regulator of

heart and body wall development. Fendrr is expressed in the mouse lateral plate

mesoderm, from which precursors for the heart and body wall are derived, and the

knockout of Fendrr resulted in defects in heart development [16]. Like Braveheart,
Fendrr interacts with the PRC2 complex to regulate gene expression. It is expected
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that many more lncRNAs will be found to play important roles in cardiovascular

development and function.

44.5 Noncoding RNAs in Cardiac Disease

The expression and function of multiple miRNAs have been associated with human

cardiovascular disease. Recent studies also linked several lncRNAs to heart disease.

ANRIL, a lncRNA, was identified as a risk factor for coronary disease [17]. Though
it is still not fully understood how ANRIL functions, evidence suggests that this

lncRNA may participate in the regulation of histone methylation [18]. Another

lncRNA MIAT (myocardial infarction-associated transcript) (or Gomafu/RNCR2)
was identified as a risk factor associated with patients with myocardial infarction

[19]. However, how MIAT controls MI status remains largely unknown. Intrigu-

ingly, the genetic loci that encode MYH6 and MYH7, the main myosin heavy chain

genes in cardiac muscle, appear to produce a noncoding antisense transcript (Myh7-
as). Myh7-as transcription may regulate the ratio of Myh6 and Myh7, altering the

function of muscle contraction [20].

We have just started the era of “noncoding.” We are looking forward to see more

and more reports on the roles of noncoding RNAs in the regulation of a variety of

essential biological processes. Furthermore, with efficient strategies for gain- and

loss-of-function investigations, more fruitful work about the molecular mechanism

and therapeutic application of noncoding RNAs in cardiovascular disease will

emerge.
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