Chapter 2 Development of Divergent Synthetic Methods of Pyrimidobenzothiazine and Related Tricyclic Heterocycles

2.1 Cu(II)-Mediated *Ortho*-Selective Intermolecular C–H Functionalization

3,4-Dihydro-2*H*,6*H*-pyrimido[1,2-*c*][1,3]benzothiazin-6-imine (PD 404182, **1**, Fig. 2.1) is a promising anti-HIV agent lead discovered by a random screening project. To develop the highly potent derivatives, it is valuable to establish practical and short-step synthetic approaches for the preparation of several derivatives^{1,2}. The author planned to develop a diversity-oriented approach to synthesize tricyclic heterocycles related to PD 404182 based on the *sp*²-carbon-heteroatom (O, N, and S) bond formations (Scheme 2.1). It was expected that the *ortho*-selective introduction of a heteroatom on 2-phenyl-1,4,5,6-tetrahydropyr-imidine derivatives **3** [6], which is easily obtained from the corresponding benz-aldehydes **2**, followed by functional group transformations leads to various types of heterocycles **5** including PD 404182.

Directing group-assisted intermolecular C–H functionalization is considered to be one of the most promising approaches for constructions of various heterocycles, providing several biologically active compounds since a new or carbon–heteroatom bond is selectively formed at a non-functionalized position proximal to the directing group. (Scheme 2.2)^{3,4}. In general, C–H functionalization proceeds via metallacycle formation by oxidative addition of transition-metal and subsequent coordination of nucleophile and reductive elimination. Recent research has revealed that nitrogen-containing functional groups such as pyridines [14–16],

$$\overbrace{C|}^{0} \underbrace{ \begin{array}{c} \mathsf{N}_{2NH_2H_2} \mathsf{H}_2 \mathsf{N}_2}_{\mathsf{EiOH}} \\ \underset{\mathsf{S}_8}{\overset{\mathsf{EiOH}}{\overset{\mathsf{I}}{\underset{\mathsf{S}}}} \\ \overbrace{\mathsf{S}_{4\%}}^{\mathsf{S}} \underbrace{ \begin{array}{c} \mathsf{N}_{3} \mathsf{S}_{3} \\ \overbrace{\mathsf{S}_{3}} \mathsf{N}_{3} \mathsf{C}(\mathsf{H}_2)_{3} \mathsf{N}_{4}_{2} \\ \overbrace{\mathsf{S}_{3}} \mathsf{N}_{3} \mathsf{N}_{3} \mathsf{N}_{3} \\ \overbrace{\mathsf{S}_{4\%}} \overset{\mathsf{N}}{\underset{\mathsf{S}_{4\%}} \mathsf{N}_{3} \mathsf{N}_{3} \\ \overbrace{\mathsf{S}_{5\%}} \overset{\mathsf{N}_{3} \mathsf{N}_{3}}{\overset{\mathsf{N}_{3}}{\underset{\mathsf{S}_{5\%}} \mathsf{N}_{4}} \\ \overbrace{\mathsf{S}_{5\%}} \overset{\mathsf{N}_{3} \mathsf{N}_{3}}{\overset{\mathsf{N}_{3}}{\underset{\mathsf{S}_{5\%}} \mathsf{N}_{4}} \\ \overbrace{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}{\underset{\mathsf{N}_{5\%}} \mathsf{N}_{4}} \\ \overbrace{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}{\underset{\mathsf{N}_{5\%}} \mathsf{N}_{4}} \\ \overbrace{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}}{\underset{\mathsf{N}_{5\%}} \overset{\mathsf{N}_{5\%}}}{\underset{\mathsf{N}_{5\%}} }} }$$

² See [4-5].

³ For reviews on transition-metal-catalyzed directed C-H activations, See [7-9].

⁴ See [10–13].

 $^{^{1}}$ In the previous reports, compound **1** was obtained via benzo-1,2-dithiole-3-thiones and 2-(1,4,5,6-tetrahydro-2-pyrimidinyl)benzenethiol in 3 % yield from 2-chlorobenzyl chloride, see [1–3]

Fig. 2.1 Structure of PD 404182

Scheme 2.1 Synthetic scheme for PD 404182 derivatives via carbon-heteroatom bond formation

Scheme 2.2 Carbon-heteroatom bond formation by C-H functionalization

imines [17–19], oxazolines [20, 21], and amidines [22] effectively act as directing groups for regioselective C–H functionalization.

Cu-mediated reactions⁵ have facilitated the synthesis of biologically active compounds because of its cost, earth abundance, and lower toxicity. Reinaud and co-workers have reported a Cu-mediated *ortho*-hydroxylation reaction of benzamide **6** using a carboxyl group as a directing group (Scheme 2.3, eq 1) [24]. Yu et al. (eq 2) [25] and Chatani et al. (eq 3) [26] have independently reported Cu-mediated oxidative intermolecular C–H functionalization using a pyridine moiety as a directing group. The author designed an experiment for the oxidative introduction of heteroatoms by aromatic C–H functionalization with the assistance of an *ortho*-tetrahydropyrimidinyl group (eq 4).

A few recent reports have revealed that amidine moieties effectively act as directing groups for the *ortho*-selective C–H functionalization (Scheme 2.4). Inoue and co-workers have reported *ortho*-selective arylation of 2-arylimidazolines with aryl halides in the presence of a Ru(II)–phosphine complex [22]. The reaction of

⁵ For a review on Cu-mediated C–H functionalization, see [23].

Scheme 2.3 Cu-mediated intermolecular C-H functionalization

2-phenylimidazoline **13** with 1.2 equiv of bromobenzene using $[RuCl_2(\eta^6-C_6H_6)]_2$ yielded the mono- and diarylated products (**14** and **15**) in a 64 % yield and in 31:69 ratio (eq 1). Buchwald and co-workers have reported the formation of aryl-benzimidazole **17** by Cu(OAc)₂-catalyzed oxidative cyclization of amidine **16** [27]. The best result was obtained by using 15 mol % of Cu(OAc)₂ and 2–5 equiv of HOAc under an O₂ atmosphere. In this reaction, an amidine moiety acts as a directing group as well as a nucleophile. These contributions prompted the author to investigate a tetrahydropyrimidine group-assisted regioselective C–H functionalization.

The author initially investigated the reaction conditions for C–H hydroxylation (Table 2.1). In the presence of H₂O (1.0 equiv), treatment of 2-phenyl-1,4,5,6-tetrahydropyrimidine (**18a**) with CuO, Cu(OH)₂, Cu(OTf)₂ or Cu(tfa)₂ (1.0 equiv) in DMF at 130 °C under an O₂ atmosphere led to the recovery of unchanged starting material and the desired C–H oxidation did not occur (entries 1–4). Using Cu(OAc)₂, [25, 26] however, led to the formation of the desired *ortho*-hydroxyl-ated compound **19a** (ca. 69 % yield) although the product yield of compound **19a** was poorly reproducible because of its high basicity. The author then attempted to isolate **20a** as the tricyclic PD 404182 derivative: after the disappearance of **18a** (monitored by TLC), the solvent was evaporated *in vacuo* and the treatment with triphosgene (1.05 equiv) and triethylamine (4.0 equiv) in CH₂Cl₂ afforded pure **20a** in a yield of 61 % (entry 5, Condition A). When acetonitrile or dioxane was used as the solvent instead of DMF, yields of **20a** decreased considerably (11 %, entries 6 and 7). Lowering the loading of Cu(OAc)₂ to 0.2 equiv also resulted in a decreased yield for **20a** (30 %, entry 8), which indicates low catalyst efficiency.

Scheme 2.4 Amidine directed regioselective C-H functionalization

	N N H N H H2O, O ₂ solvent 130 °C		triphosgene Et ₃ N CH ₂ Cl ₂	
	18a	19a	20a	
Entry	Cu salt (equiv)	Solvent	Time (min)	Yield $(\%)^b$
1	CuO (1.0)	DMF	20	No reaction
2	Cu(OH) ₂ (1.0)	DMF	20	No reaction
3	$Cu(OTf)_2$ (1.0)	DMF	20	No reaction
4	Cu(tfa) ₂ (1.0)	DMF	20	No reaction
5	$Cu(OAc)_2$ (1.0)	DMF	20	61
6	$Cu(OAc)_2$ (1.0)	MeCN	60	11
7	$Cu(OAc)_2$ (1.0)	Dioxane	60	11
8	$Cu(OAc)_2$ (1.0)	DMF	60	30
9	$Cu(OAc)_2$ (2.0)	DMF	15	27
10 ^c	$Cu(OAc)_2$ (1.0)	DMF	20	70
$11^{c,d}$	$Cu(OAc)_2$ (1.0)	DMF	20	56

Table 2.1 Optimization of reaction conditions for C-H hydroxylation^a

^{*a*} After completion of C–H hydroxylation (monitored by TLC), the reaction mixture was evaporated and treated with triphosgene (1.05 equiv) and Et_3N (4.0 equiv) in CH₂Cl₂ at 0 °C to rt for 1 h (Condition A)

^b Isolated yields

 c After completion of C–H hydroxylation (monitored by TLC), the reaction mixture was treated with TMEDA (4.0 equiv) at 130 °C for 1 min. In this case, TMEDA (additional 4.0 equiv) was used for the next step instead of Et₃N (Condition B)

^d Reaction was carried out under air

TMEDA = N, N, N', N'-tetramethylethylenediamine

When using 2.0 equiv of $Cu(OAc)_2$, the yield also decreased contrary to the author's expectation (27 %, entry 9).

Considering that the *ortho*-hydroxylated product **19a** may form a complex with the Cu salt, the author further optimized the reaction conditions including the carbonylation procedure. Initially, N,N,N',N'-tetramethylethylenediamine (TMEDA)

was added as a bidentate ligand to the oxidative C–H functionalization reaction mixture and this resulted in the complete inhibition of the desired transformation. Similarly, use of TMEDA instead of triethylamine as a base for the carbonylation did not improve the yield of **20a**. On the other hand, treatment with TMEDA (4.0 equiv) at 130 °C for 1 min after the C–H hydroxylation followed by the carbonylation using additional TMEDA (4.0 equiv) increased the yield to 70 % (entry 10, Condition B). The reaction under air resulted in a decreased yield (56 %, entry 11).

Using the condition B, the author examined the reaction of several substituted substrates (Table 2.2). Substitution with electron-donating groups such as methoxy (**18b**, entry 1) or methyl groups (**18c**, entry 2) was tolerated to afford the desired products **20b** and **20c** in 64 % and 61 % yields, respectively. The chemoselectivity of this reaction was evaluated by a reaction where aryl bromide **18d** was used and the desired product **20d** was obtained in a 45 % yield (entry 3). Methoxycarbonyl (entry 4) and trifluoromethyl groups (entry 5) had relatively small effects on the reactivity of these substrates and the use of the highly electron-deficient arene **18g** bearing a nitro group decreased the yield considerably (19 %, entry 6). These results indicate that this reaction is sensitive to the presence of electron-with-drawing groups on the aromatic ring. In all cases, reactions under condition A gave less favorable results.

To confirm the actual source of *ortho*-hydroxyl group, the author carried out the C–H hydroxylation reaction using $H_2^{18}O$ under an Ar atmosphere (Scheme 2.5). This reaction provided compound **20a** with ¹⁶O, suggesting that *ortho*-hydroxyl group was derived from Cu(OAc)₂ [25] Notably, the reaction under an Ar atmosphere gave the product in low yield, suggesting that molecular O₂ participates in the reoxidation of the Cu catalyst.

Next, the author investigated the ability of other amidine analogues to function as directing groups (Fig. 2.2). The reaction of the *N*-methylated analog **21** and 2phenylimidazole **22** did not produce the desired *ortho*-hydroxylated products under the standard reaction conditions and the starting materials were recovered. Unexpectedly, the five-membered ring amidine in **13** was not effective as a directing group either. These results suggest that subtle differences in the intermediate formed by a Cu salt and a directing group strongly affect the reactivity of the substrates.

Although the exact mechanism of the *ortho* C–H oxidation is unclear, on the basis of these observations and the seminal work of others, the author proposes the two possible reaction mechanisms (Scheme 2.6): a single electron transfer (SET) pathway (A) [25, 28] and electrophilic substitution pathway (B) [27]. In pathway A, Cu–N adduct **II** is initially formed by the reaction of compound **I** with Cu(OAc)₂ [29, 30]. A SET from an aryl ring to the coordinated Cu(II) led to radical cation intermediate **III**. Intramolecular acetate transfer followed by another SET step and transfer of a proton yielded the acetoxylated compound **V**. Subsequent hydrolysis gave an *ortho*-hydroxylated product **VI**. The observed *ortho*-selectivity could be attributed to an intramolecular transfer of the coordinating group on the Cu atom. Alternatively, in pathway B, addition of a π -system to the Cu center yielded metallacycle **VII**. Compound **V** was formed through

	R 18b-a N H H H H H H H H H H H H H	triphosgene TMEDA CH ₂ Cl ₂	
Entry	Substrate (R)	Product	Yield (%) ^b
1	18b (OMe)	20b	64 (53)
2	18c (Me)	20c	61 (54)
3	18d (Br)	20d	45 (37)
4	18e (CO ₂ Me)	20e	46 (43)
5	18f (CF ₃)	20f	43 (38)
6	18g (NO ₂)	20g	19 (16)

 Table 2.2 Cu-mediated C-H hydroxylation of Para-substituted-2-phenyl-1,4,5,6-tetrahydro-pyrimidines^a

 Cu(OAc)₂

^{*a*} These reactions were carried out using the optimized procedure (Condition B, Table 2.1, entry 10) ^{*b*} Isolated yields. Yields in parentheses indicate those of the reactions at condition A (Table 2.1, entry 5)

Scheme 2.5 C–H hydroxylation reaction with $H_2^{18}O$

Fig. 2.2 Various amidine analogs used for the ortho-hydroxylation experiments

Scheme 2.6 Proposed reaction mechanisms

Scheme 2.7 C–N and C–S bond formations with various nucleophiles. *Reagents and conditions:* (a) Cu(OAc)₂, BocNH₂, O₂, DMF, 100 °C, 53 %; (b) (i) Cu(OAc)₂, TsNH₂, O₂, DMF, 130 °C; (ii) triphosgene, Et₃N, CH₂Cl₂, 0 °C to rt, 47 % (2 steps); (c) Cu(OAc)₂, CS₂, O₂, 1,4-dioxane, 130 °C, 11 %

rearomatization and subsequent reductive elimination. These mechanisms are supported by the findings that the presence of an electron-withdrawing group on the benzene ring considerably decreased the product yields. Recently, involvement of Cu(III) species in the C–H oxidation reaction has been demonstrated.^{6,7} Therefore, it is possible that this reaction proceeded via the formation of Cu(III)–substrate I complex.

Finally, the author investigated C–N and C–S bond formations (Scheme 2.7). The author found that the reaction of amidine **18a** with Cu(OAc)₂ (1.0 equiv) and *tert*-butyl carbamate (3.0 equiv) in DMF at 100 °C for 40 min directly afforded the tricyclic aniline derivative (**23a**) in 53 % yield. This reaction occurred by cyclization involving the elimination of *tert*-butoxide. *p*-Toluenesulfonamide [37] also reacted with **18a** under identical condition to afford **23b** in 47 % yield after alumina column chromatography⁸ followed by treatment with triphosgene–Et₃N. In addition, the reaction with CS₂ in 1,4-dioxane at 130 °C directly gave pyrimido[1,2-*c*][1,3]benzothiazine derivative **24**. The C–N and C–S bond forming

⁶ For a review on high-valent Cu(III) species in catalysis, see [31].

⁷ See [32–36].

⁸ Because the separation of **23b** and the by-product **20a** was difficult, separation by alumina column chromatography was necessary before carbonylation.

Scheme 2.8 Proposed reaction mechanisms of C-N and C-S bond formations

Scheme 2.9 Alternative proposed reaction mechanisms with BocNH2 and CS2

reactions can be explained by a similar mechanism as depicted in Scheme 2.7 including ligand exchange step.^{9,10}

In conclusion, the author has developed a Cu-mediated oxidative *ortho* C–H functionalization using tetrahydropyrimidine as a directing group. This reaction was applied to 2-phenyl-1,4,5,6-tetrahydropyrimidines having an electron-donating or a weak electron-withdrawing group to afford the corresponding pyrimido[1,2-c][1,3]benzoxazine derivatives. Use of *tert*-butyl carbamate, *p*-toluenesulfonamide,

 $^{^9}$ Examples for the reaction mechanism including the ligand exchange are shown above (Scheme 2.8).

¹⁰ Different reaction pathways are not excluded at present. Some examples are shown above (Scheme 2.9).

or CS_2 instead of H_2O promotes the introduction of a nitrogen or sulfur functionality to give pyrimido[1,2-*c*]quinazoline or pyrimido[1,2-*c*][1,3]benzothiazine derivative, respectively.

2.1.1 Experimental Section

2.1.1.1 General Methods

All moisture-sensitive reactions were performed using syringe-septum cap techniques under an Ar atmosphere and all glasswares were dried in an oven at 80 °C for 2 h prior to use. Melting points were measured by a hot stage melting point apparatus (uncorrected). For flash chromatography, Wakogel C-300E (Wako) or aluminum oxide 90 standardized (Merck) was employed. ¹H-NMR spectra were recorded using a JEOL AL-400 or a JEOL ECA-500 spectrometer, and chemical shifts are reported in δ (ppm) relative to Me₄Si (CDCl₃) as internal standards. ¹³C-NMR spectra were recorded using a JEOL AL-400 or JEOL ECA-500 spectrometer and referenced to the residual CHCl₃ signal. ¹⁹F-NMR spectra were recorded using a JEOL ECA-500 and referenced to the internal CFCl₃ ($\delta_{\rm F}$ 0.00 ppm). ¹H-NMR spectra are tabulated as follows: chemical shift, multiplicity (b = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet),coupling constant(s), and number of protons. Exact mass (HRMS) spectra were recorded on a JMS-HX/HX 110A mass spectrometer. Infrared (IR) spectra were obtained on a JASCO FT/IR-4100 FT-IR spectrometer with JASCO ATR PRO410-S.

2.1.1.2 General Procedure for Preparation of the Substrates. Synthesis of 2-Phenyl-1,4,5,6-tetrahydropyrimidine (18a)

To a solution of benzaldehyde (5.00 g, 47.1 mmol) in *t*-BuOH (470 mL) was added propylenediamine (3.84 g, 51.8 mmol). After being stirred at 70 °C for 30 min, K₂CO₃ (19.53 g, 141.3 mmol) and I₂ (14.95 g, 58.8 mmol) were added. After being stirred at same temperature for 3 h, the reaction mixture was quenched with sat. Na₂SO₃ until the iodine color disappeared. The organic layer was separated and concentrated *in vacuo*. The resulting solid was dissolved with H₂O, and then pH was adjusted to 12–14 with 2 N NaOH. The whole was extracted with CHCl₃ and dried over MgSO₄. After concentration, the resulting solid was recrystallized from CHCl₃–*n*-hexane to give the title compound **18a** as colorless crystals (6.62 g, 82 %): mp 88–89 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1618 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.83–1.85 (m, 2H, CH₂), 3.49 (t, J = 5.9 Hz, 4H, 2 × CH₂), 5.02 (br s, 1H, NH), 7.34–7.38 (m, 3H, Ar), 7.63–7.66 (m, 2H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.7, 42.3 (2C), 126.0 (2C), 128.2

(2C), 129.6, 137.3, 154.5; *Anal.* calcd for $C_{10}H_{12}N_2$: C, 74.97; H, 7.55; N, 17.48. Found; C, 74.79; H, 7.53; N, 17.43.

2.1.1.3 2-(4-Methoxyphenyl)-1,4,5,6-tetrahydropyrimidine (18b)

p-Methoxybenzaldehyde (1.36 g, 10 mmol) was subjected to the general procedure. Colorless crystals (1.40 g, 74 %): mp 132–134 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1611 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.81–1.87 (m, 2H, CH₂), 3.49 (t, J = 5.7 Hz, 4H, 2 × CH₂), 3.81 (s, 3H, OCH₃), 4.87 (br s, 1H, NH), 6.86 (d, J = 9.4 Hz, 2H, Ar), 7.60 (d, J = 9.4 Hz, 2H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.9, 42.4 (2C), 55.2, 113.5 (2C), 127.2 (2C), 130.0, 153.9, 160.6; *Anal.* calcd for C₁₁H₁₄N₂O: C, 69.45; H, 7.42; N, 14.73. Found: C, 69.18; H, 7.46; N, 14.58.

2.1.1.4 2-(4-Tolyl)-1,4,5,6-tetrahydropyrimidine (18c)

p-Tolualdehyde (1.20 g, 10 mmol) was subjected to the general procedure. Colorless crystals (1.03 g, 59 %): mp 120–121 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1615 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.82–1.85 (m, 2H, CH₂), 2.35 (s, 3H, CH₃), 3.49 (t, J = 5.7 Hz, 4H, 2 × CH₂), 4.90 (br s, 1H, NH), 7.15 (d, J = 8.3 Hz, 2H, Ar), 7.54 (d, J = 8.3 Hz, 2H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.8, 21.2, 42.3 (2C), 125.8 (2C), 128.9 (2C), 134.5, 139.5, 154.3; *Anal.* calcd for C₁₁H₁₄N₂: C, 75.82; H, 8.10; N, 16.08. Found: C, 75.76; H, 8.01; N, 15.91.

2.1.1.5 2-(4-Bromophenyl)-1,4,5,6-tetrahydropyrimidine (18d)

p-Bromobenzaldehyde (1.85 g, 10 mmol) was subjected to the general procedure. Colorless crystals (1.82 g, 76 %): mp 174–175 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1619 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.81–1.88 (m, 2H, CH₂), 3.49 (t, J = 5.7 Hz, 4H, 2 × CH₂), 4.81 (br s, 1H, NH), 7.48 (d, J = 8.8 Hz, 2H, Ar), 7.53 (d, J = 8.8 Hz, 2H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.7, 42.4 (2C), 123.8, 127.6 (2C), 131.4 (2C), 136.3, 153.5; *Anal.* calcd for C₁₀H₁₁BrN₂: C, 50.23; H, 4.64; N, 11.72. Found: C, 50.20; H, 4.51; N, 11.66.

2.1.1.6 Methyl 4-(1,4,5,6-tetrahydropyrimidin-2-yl)benzoate (18e)

Methyl 4-formylbenzoate (1.00 g, 6.09 mmol) was subjected to the general procedure. Colorless crystals (1.63 g, 80 %): mp 152–153 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1721 (C=O), 1620 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ :

1.83–1.89 (m, 2H, CH₂), 3.52 (t, J = 5.7 Hz, 4H, 2 × CH₂), 3.92 (s, 3H, OCH₃), 5.04 (br s, 1H, NH), 7.72 (d, J = 8.5 Hz, 2H, Ar), 8.02 (d, J = 8.5 Hz, 2H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.5, 42.3 (2C), 52.1, 126.0 (2C), 129.5 (2C), 130.8, 141.5, 153.6, 166.6; *Anal.* calcd for C₁₂H₁₄N₂O₂: C, 66.04; H, 6.47; N, 12.84. Found: C, 65.76; H, 6.28; N, 12.69.

2.1.1.7 2-[4-(Trifluoromethyl)phenyl]-1,4,5,6-tetrahydropyrimidine (18f)

p-(Trifluoromethyl)benzaldehyde (1.74 g, 10 mmol) was subjected to the general procedure. Colorless crystals (1.71 g, 75 %): mp 176–177 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1620 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.83–1.89 (m, 2H, CH₂), 3.51 (t, J = 5.7 Hz, 4H, 2 × CH₂), 4.92 (br s, 1H, NH), 7.61 (d, J = 8.3 Hz, 2H, Ar), 7.76 (d, J = 8.3 Hz, 2H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.6, 42.4 (2C), 122.6, 125.2 (q, J = 3.7 Hz, 2C), 126.4 (2C), 131.4 (d, J = 32.3 Hz), 140.7, 153.3; ¹⁹F-NMR (500 MHz, CDCl₃) δ : –62.6; *Anal.* calcd for C₁₁H₁₁F₃N₂: C, 57.89; H, 4.86; N, 12.28. Found: C, 57.89; H, 4.82; N, 12.29.

2.1.1.8 2-(4-Nitrophenyl)-1,4,5,6-tetrahydropyrimidine (18g)

p-Nitrobenzaldehyde (1.51 g, 10 mmol) was subjected to the general procedure. Yellow crystals (1.63 g, 80 %): mp 169–171 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1623 (C=N), 1519 (NO₂), 1339 (NO₂); ¹H-NMR (400 MHz, CDCl₃) δ : 1.85-1.90 (m, 2H, CH₂), 3.54 (t, *J* = 5.6 Hz, 4H, 2 × CH₂), 5.08 (br s, 1H, NH), 7.83 (d, *J* = 9.1 Hz, 2H, Ar), 8.20 (d, *J* = 9.1 Hz, 2H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.4, 42.3 (2C), 123.4 (2C), 127.0 (2C), 143.2, 148.3, 152.7; *Anal.* calcd for C₁₀H₁₁N₃O₂: C, 58.53; H, 5.40; N, 20.48. Found: C, 58.61; H, 5.45; N, 20.48.

2.1.1.9 1-Methyl-2-phenyl-1,4,5,6-tetrahydropyrimidine (21)

Benzaldehyde (1.06 g, 10 mmol) and *N*-methyl- propandiamine (0.97 g, 11 mmol) was subjected to the general procedure. Product was used to next step without further purification. Yellow oil (1.49 g, 85 %); IR (neat) cm⁻¹: 1600 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.92–1.98 (m, 2H, CH₂), 2.74 (s, 3H, NCH₃), 3.27 (t, *J* = 5.6 Hz, 2H, CH₂), 3.51 (t, *J* = 5.2 Hz, 2H, CH₂), 7.32–7.40 (m, 5H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 22.0, 40.3, 45.0, 49.0, 127.9 (2C), 128.0 (2C), 128.4, 138.1, 159.1; HRMS (EI): *m/z* calcd for C₁₁H₁₃N₂ [M–H]⁻ 173.1084; found: 173.1082.

2.1.1.10 General Procedure for the C–O Bond Formation (Condition B). Synthesis of 3,4-dihydro-2*H*-pyrimido- [1,2c][1,3]benzoxazin-6-one (20a)

DMF (0.83 mL) and water (4.5 µL, 0.25 mmol) were added to a flask containing **18a** (40.1 mg, 0.25 mmol) and $Cu(OAc)_2$ (45.4 mg, 0.25 mmol) under an O_2 atmosphere. After being stirred at 130 °C for 20 min. N.N.N'.N'-tetramethylethylenediamine (TMEDA, 150 µL, 1 mmol) was added. After being stirred at same temperature for 1 min, the reaction mixture was concentrated in vacuo. To a solution of residue and TMEDA (150 µL, 1 mmol) in CH₂Cl₂ (16.6 mL) was added dropwise a solution of triphosgene (77.9 mg, 0.26 mmol) in CH₂Cl₂ (1.7 mL) at 0 °C. After being stirred at rt for 1 h under an Ar atmosphere, the mixture was quenched with sat. NH₄Cl, and CH₂Cl₂ was removed in vacuo. The resulting mixture was made basic with 28 % NH₄OH. The whole was extracted with EtOAc and washed with sat. NH₄Cl-28 % NH₄OH, brine, and dried over MgSO₄. After concentration, the residue was purified by flash chromatography over silica gel with *n*-hexane–EtOAc (1:1) to give the title compound 20a as colorless solid (35.2 mg, 70 %): mp 146-147 °C (from CHCl₃-n-hexane); IR (neat) cm⁻¹: 1730 (C=O), 1647 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.98-2.04 (m, 2H, CH₂), 3.68 (t, J = 5.6 Hz, 2H, CH₂), 3.95 (t, J = 6.0 Hz, 2H, CH₂), 7.14 (d, J = 8.3 Hz, 1H, Ar), 7.23-7.30 (m, 1H, Ar), 7.48-7.51 (m, 1H, Ar), 8.02 (d,)J = 7.8 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.3, 42.5, 44.1, 116.2, 125.0, 125.5, 127.8, 129.0, 132.9, 147.5, 150.4; HRMS (FAB): m/z calcd for $C_{11}H_{11}N_2O_2 [M + H]^+$ 203.0821; found: 203.0813.

2.1.1.11 3,4-Dihydro-2*H*-9-methoxypyrimido[1,2-*c*][1,3]benzoxazin-6one (20b)

2-(4-Methoxyphenyl)-1,4,5,6-tetrahydropyrimidine **18b** (47.6 mg, 0.25 mmol) was subjected to the general procedure. Pale yellow solid (37.3 mg, 64 %): mp 160–161 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1731 (C=O), 1650 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 1.97–2.02 (m, 2H, CH₂), 3.64 (t, *J* = 5.7 Hz, 2H, CH₂), 3.85 (s, 3H, OCH₃), 3.92 (t, *J* = 6.0 Hz, 2H, CH₂), 6.59 (d, *J* = 2.3 Hz, 1H, Ar), 6.79 (dd, *J* = 8.6, 2.3 Hz, 1H, Ar), 7.90 (d, *J* = 8.6 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 20.5, 42.5, 44.0, 55.7, 100.0, 108.8, 112.6, 126.6, 142.7, 147.8, 151.7, 163.3; HRMS (FAB): *m*/*z* calcd for C₁₂H₁₃N₂O₃ [M + H]⁺ 233.0926; found: 233.0921.

2.1.1.12 3,4-Dihydro-2*H*-9-methylpyrimido[1,2-*c*][1,3]benzoxazin-6one (20c)

2-(4-Tolyl)-1,4,5,6-tetrahydropyrimidine **18c** (43.6 mg, 0.25 mmol) was subjected to the general procedure. Yellow solid (32.8 mg, 61 %): mp 153–154 °C (from

CHCl₃-*n*-hexane); IR (neat) cm⁻¹: 1736 (C=O), 1650 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 1.98-2.02 (m, 2H, CH₂), 2.40 (s, 3H, CH₃), 3.66 (t, J = 5.4 Hz, 2H, CH₂), 3.93 (t, J = 6.0 Hz, 2H), 6.93 (s, 1H, Ar), 7.05 (d, J = 8.0 Hz, 1H, Ar), 7.88 (d, J = 8.0 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 20.4, 21.5, 42.5, 44.1, 113.4, 116.2, 125.2, 126.2, 143.0, 144.0, 148.0, 150.4; HRMS (FAB): m/z calcd for C₁₂H₁₃N₂O₂ [M + H]⁺ 217.0977; found: 217.0979.

2.1.1.13 9-Bromo-3,4-dihydro-2*H*-pyrimido[1,2-*c*][1,3]benzoxazin-6one (20d)

2-(4-Bromophenyl)-1,4,5,6-tetrahydropyrimidine **18d** (59.8 mg, 0.25 mmol) was subjected to the general procedure. Pale yellow solid (31.3 mg, 45 %): mp 206–207 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1729 (C=O), 1651 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 1.98–2.03 (m, 2H, CH₂), 3.65 (t, J = 5.7 Hz, 2H, CH₂), 3.93 (t, J = 6.0 Hz, 2H, CH₂), 7.31 (d, J = 1.7 Hz, 1H, Ar), 7.37 (dd, J = 8.6, 1.7 Hz, 1H, Ar), 7.87 (d, J = 8.6 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 20.3, 42.6, 44.2, 115.2, 119.4, 126.4, 126.8, 128.4, 142.1, 147.0, 150.7; HRMS (FAB): m/z calcd for C₁₁H₁₀BrN₂O₂ [M + H]⁺ 280.9926; found: 280.9922.

2.1.1.14 3,4-Dihydro-2*H*-9-(methoxycarbonyl)pyrimido[1,2*c*][1,3]benzoxazin-6-one (20e)

2-[(4-Methoxycarbonyl)phenyl]-1,4,5,6-tetrahydropyrimidine **18e** (54.6 mg, 0.25 mmol) was subjected to the general procedure. Pale yellow solid (30.2 mg, 46 %): mp 136–137 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1741 (C=O), 1718 (C=O), 1644 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 2.00–2.05 (m, 2H, CH₂), 3.70 (t, J = 5.4 Hz, 2H, CH₂), 3.94–3.96 (m, 5H, CH₂, OMe), 7.78 (d, J = 1.4 Hz, 1H, Ar), 7.88 (dd, J = 8.6, 1.4 Hz, 1H, Ar), 8.09 (d, J = 8.6 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 20.2, 42.5, 44.4, 52.6, 117.6, 119.7, 125.6, 125.8, 134.3, 142.2, 147.1, 150.2, 165.4; HRMS (FAB): *m/z* calcd for C₁₃H₁₃N₂O₄ [M + H]⁺ 261.0875; found: 261.0874.

2.1.1.15 3,4-Dihydro-2*H*-9-(trifluoromethyl)pyrimido[1,2c][1,3]benzoxazin-6-one (20f)

2-[4-(Trifluoromethyl)phenyl]-1,4,5,6-tetrahydropyrimidine **18f** (57.1 mg, 0.25 mmol) was subjected to the general procedure. Yellow solid (28.8 mg, 43 %): mp 141–142 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1739 (C=O), 1650 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 2.00–2.05 (m, 2H, CH₃), 3.70 (t, J = 5.7 Hz, 2H, CH₂), 3.95 (t, J = 6.0 Hz, 2H, CH₂), 7.40 (d, J = 1.1 Hz, 1H, Ar), 7.49 (dd, J = 8.0, 1.1 Hz, 1H, Ar), 8.15 (d, J = 8.0 Hz, 1H, Ar); ¹³C-NMR

(100 MHz, CDCl₃) δ : 20.3, 42.7, 44.5, 113.9 (q, J = 4.1 Hz), 119.3, 121.6 (q, J = 3.6 Hz), 124.5, 126.7, 134.7 (q, J = 33.7 Hz), 141.8, 146.9, 150.4; ¹⁹F-NMR (500 MHz, CDCl₃) δ : -63.0; HRMS (FAB): m/z calcd for C₁₂H₁₀F₃N₂O₂ [M + H]⁺ 271.0694; found: 271.0692.

2.1.1.16 3,4-Dihydro-2*H*-9-nitropyrimido[1,2-*c*][1,3]benzoxazin-6-one (20g)

2-(4-Nitrophenyl)-1,4,5,6-tetrahydropyrimidine **18g** (51.3 mg, 0.25 mmol) was subjected to the general procedure. Yellow solid (11.9 mg, 19 %): mp 235–236 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1732 (C=O), 1641 (C=N), 1531 (NO₂), 1349 (NO₂). ¹H-NMR (400 MHz, CDCl₃) δ : 2.01–2.07 (m, 2H, CH₂), 3.72 (t, J = 5.6 Hz, 2H, CH₂), 3.96 (t, J = 6.0 Hz, 2H, CH₂), 8.00 (d, J = 2.2 Hz, 2H, Ar), 8.08 (dd, J = 8.8, 2.2 Hz, 1H, Ar), 8.22 (d, J = 8.8 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.1, 42.6, 44.5, 112.2, 119.4, 121.4, 127.1, 141.3, 146.4, 150.3, 150.5; HRMS (FAB): *m/z* calcd for C₁₁H₁₀N₃O₄ [M + H]⁺ 248.0671; found: 248.0670.

2.1.1.17 C–N Bond Formation with BocNH₂. Synthesis of 3,4-Dihydro-2*H*,6*H*-pyrimido[1,2-*c*]quinazolin-6(7*H*)-one (23a)

DMF (0.83 mL) was added to a flask containing **18a** (40.1 mg, 0.25 mmol), Cu(OAc)₂ (45.4 mg, 0.25 mmol) and *tert*-butyl carbamate (87.9 mg, 0.75 mmol) under an O₂ atmosphere. After being stirred at 100 °C for 40 min, the mixture was concentrated *in vacuo*. The residue was purified by flash chromatography over aluminum oxide with CHCl₃–MeOH (1:0 to 99:1) to give **23a** as colorless solid (26.5 mg, 53 %): mp 250–251 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1682 (C=O), 1616 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.95–2.00 (m, 2H, CH₂), 3.67 (t, J = 5.6 Hz, 2H, CH₂), 3.94 (t, J = 6.0 Hz, 2H, CH₂), 6.86 (d, J = 8.0 Hz, 1H, Ar), 7.09–7.13 (m, 1H, Ar), 7.38–7.42 (m, 1H, Ar), 8.07 (d, J = 8.0 Hz, 1H, Ar), 8.30 (br s, 1H, NH); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.3, 40.8, 44.5, 114.6, 116.5, 123.0, 125.8, 132.0, 136.5, 145.7, 151.2; HRMS (FAB): *m/z* calcd for C₁₁H₁₂N₃O [M + H]⁺ 202.0980; found: 202.0988.

2.1.1.18 C–N Bond Formation with TsNH₂. Synthesis of 7-Tosyl-3,4dihydro-2*H*,6*H*-pyrimido[1,2-*c*]quinazolin-6(7*H*)-one (23b)

DMF (0.83 mL) was added to a flask containing **18a** (40.1 mg, 0.25 mmol), $Cu(OAc)_2$ (45.4 mg, 0.25 mmol) and *p*-toluene sulfonamide (85.6 mg, 0.5 mmol) under an O₂ atmosphere. After being stirred at 130 °C for 20 min, the mixture was concentrated *in vacuo*. The residue was subjected to flash chromatography over aluminum oxide with CHCl₃–MeOH (95:5) to give crude *ortho*-amidated

compound. To a solution of the *ortho*-amidated compound and Et₃N (145 μ L, 1.0 mmol) in CH₂Cl₂ (16.6 mL) was added dropwise a solution of triphosgene (77.9 mg, 0.26 mmol) in CH₂Cl₂ (1.7 mL) at 0 °C. After being stirred at rt for 1 h under an Ar atmosphere, the mixture was quenched with sat. NaHCO₃, and CH₂Cl₂ was removed in vacuo. The whole was extracted with EtOAc and washed with sat. NaHCO₃, brine, and dried over MgSO₄. After concentration, the residue was purified by flash chromatography over silica gel with *n*-hexane–EtOAc (1:1) to give 23b as colorless solid (42.2 mg, 47 %): mp 159-161 °C (from CHCl₃-nhexane): IR (neat) cm⁻¹: 1695 (C=O), 1644 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.85–1.91 (m, 2H, CH₂), 2.46 (s, 3H, CH₃), 3.63 (t, J = 5.7 Hz, 2H, CH₂), 3.75 $(t, J = 6.2 \text{ Hz}, 2H, CH_2), 7.27-7.31 \text{ (m, 1H, Ar)}, 7.37 \text{ (d, } J = 8.3 \text{ Hz}, 2H, Ar),$ 7.48–7.53 (m, 1H, Ar), 7.87 (d, J = 8.5 Hz, 1H, Ar), 8.03 (d, J = 8.3 Hz, 2H, Ar), 8.07 (dd, J = 8.0, 1.7 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.5, 21.8, 41.8, 44.6, 120.3, 121.0, 125.7, 126.4, 128.4 (2C), 129.8 (2C), 131.3, 134.6, 136.7, 144.5, 145.4, 148.3; HRMS (FAB): m/z calcd for $C_{18}H_{18}N_3O_3S$ [M + H]⁺ 356.1069; found: 356.1074.

2.1.1.19 C–S Bond Formation with CS₂. Synthesis of 3,4-Dihydro-2*H*,6*H*-pyrimido[1,2-*c*][1,3]benzothiazine-6-thione (24)

To a solution of **18a** (40.1 mg, 0.25 mmol), Cu(OAc)₂ (45.4 mg, 0.25 mmol) in 1,4-dioxane (0.83 mL) was added CS₂ (0.045 mL, 0.75 mmol) under an O₂ atmosphere. After being stirred at 130 °C for 15 min, the mixture was concentrated. The residue was purified by flash chromatography over silica gel with *n*-hexane–EtOAc (9:1) to give the title compound **24** as pale yellow solid (6.6 mg, 11 %): mp 139–141 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1624 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 2.01–2.07 (m, 2H, CH₂), 3.76 (t, *J* = 5.6 Hz, 2H, CH₂), 4.45 (t, *J* = 6.2 Hz, 2H, CH₂), 7.03 (dd, *J* = 7.8, 1.5 Hz, 1H, Ar), 7.28–7.33 (m, 1H, Ar), 7.41 (ddd, *J* = 8.0, 7.6, 1.5 Hz, 1H, Ar), 8.20 (dd, *J* = 8.0, 1.2 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 21.6, 45.5, 48.6, 121.6, 126.5, 127.5, 128.9, 131.1, 131.8, 144.2, 189.8; *Anal.* calcd for C₁₁H₁₀N₂S₂: C, 56.38; H, 4.30; N, 11.95. Found: C, 56.23; H, 4.44; N, 11.85.

2.2 S_NAr-Type C–S, C–N, or C–O Bond Formation with Heterocumulenes

The C–H functionalization methodology described in Chap 2.1 provides a facile access to tricyclic heterocycles related to PD 404182; however, C–S bond formation failed to synthesize several derivatives with the pyrimido[1,2-*c*][1,3]benzothiazin-6-imine scaffold because of the low yield.

Scheme 2.10 Examples of transition-metal-catalyzed coupling of haloarene and heterocumulene

The transition-metal-catalyzed carbon-heteroatom bond formations such as Ullmann–Goldberg reactions and Buchwald–Hartwig cross coupling are becoming a powerful methods for construction of various heterocycles.^{11,12} Orain and co-workers have reported a Pd-catalyzed intramolecular *S*-arylation of thioureas **2** to yield 3,4-dihydro-2*H*-benzo[*e*][1,3]thiazin-2-imine derivatives **3** (Scheme 2.10, eq 1) [43] Thioureas were easily obtained by the reaction of 2-halobenzyl-amine derivatives **1** and isothiocyanates. Bao and co-workers have reported the formation of 2-amino-benzothiazoles **5** by CuI-catalyzed coupling of 2-haloanilines **4** and isothiocyanates (eq 2) [44] Li and co-workers have revealed that thses 2-amino-benzothiazole formation reactions were assisted by an Fe(III) catalyst [45]. These reactions proceed via nucleophilic addition of aniline to isothiocyanate followed by transition-metal-catalyzed intramolecular *S*-arylation.

With these findings [38–53], the author investigated the transition-metal (Pd, Cu, Fe, etc.) catalyzed coupling of haloarenes **6aa** and heterocumulenes. During examination of the coupling reaction of **6aa** with CS_2 (Scheme 2.11, eq 1), the author noticed that the desired compound **7a** was formed without using a transition-metal catalyst (eq 2).

Scheme 2.11 Synthesis of PD 404182 Derivatives 7a by the coupling of haloarene and heterocumulene. TMEDA N,N,N',N'-tetramethylethylenediamine

¹¹ For reviews on transition-metal-catalyzed carbon-heteroatom bond formation, see [38-41].

¹² For recent examples of the transition-metal-catalyzed coupling reaction of haloarene and hetelocumulenes, see [41–53].

There are several reports of transition-metal-free C–S bond formation. Kobayashi and co-workers have reported the coupling reaction of 2-chloropyridine derivatives **8** with CS₂ (Scheme 2.12, eq 1) [57]. In this reaction, *S*-functionality is introduced at electronically activated C-2 position through the aromatic nucleophilic substitution (S_NAr) reaction. This report encouraged the author to examine the coupling of haloarenes **6aa** and heterocumulenes by S_NAr reaction for the synthesis of PD 404182 derivatives [54–61].¹³ After the authors' report, [59] Xi and co-workers reported [59] DBU-promoted tandem reaction of 2-haloanilines **10** and CS₂ (eq 2) [60].

The author initially examined the reaction of **6aa** [6] with 5 equiv of sodium hydride and CS₂ (Table 2.3). The desired reaction efficiently proceeded in DMF to give **7a** in 75 % yield (entry 1). In contrast, when acetonitrile or THF was used as

Scheme 2.12 Examples of transition-metal-free coupling of haloarene and heterocumulene

			CS ₂ base solvent 80 °C			
		6aa (X = Br) 6ab (X = F)		7a		
Entry	Х	Base (equiv)	Solvent	Time (h)	Yield (%) ^b	
1	Br	NaH (5)	DMF	6	75	
2	Br	NaH (5)	MeCN	4	Trace	
3	Br	NaH (5)	THF	4	Trace	
4	Br	NaH (2)	DMF	12	88	
5	Br	None	DMF	12	12	
6	Br	Et ₃ N (2)	DMF	12	Trace	
7	Br	KH (2)	DMF	6	Trace	
8	Br	NaOt-Bu (2)	DMF	6	27	
9	F	NaH (2)	DMF	12	86	

Table 2.3 Optimization of reaction conditions with CS_2^a

^{*a*} All reactions were carried out at 80 °C with 2 or 5 equiv of CS_2 (corresponding to the base loading)

^b Isolated yields

¹³ For examples of the transition-metal-free coupling reaction of haloarene and hetelocumulenes, see [58–61].

the solvent instead of DMF, yields of **7a** decreased considerably (entries 2 and 3). A decreasing amount of sodium hydride and CS_2 (2.0 equiv) slightly improved the yield of **7a** (88 %) under the reaction for 12 h (entry 4). The reaction in the absence of sodium hydride provided a yield of **7a** of only 12 % (entry 5). The author next screened several bases such as triethylamine, potassium hydride¹⁴ and sodium *tert*-butoxide (entries 6-8): sodium hydride was the most effective (entry 4). The fluoride **6ab** gave a comparable result with the bromide **6aa** to afford **7a** in 86 % yield under optimized conditions (entry 9).

With knowledge of the optimized conditions, the author examined the reaction of several substituted substrates (Table 2.4). Substrates **6b–d** having a methoxy, methyl, or fluoro group at the 4-position provided the corresponding cyclized

Entry	Substrate	Product	Yield $(\%)^b$
		R S S	
1	6b ($R = OMe, X = F$)	7b (R = OMe)	95
2	6c ($R = Me, X = Br$)	7c (R = Me)	88
3	6d ($R = F, X = Br$)	7d ($R = F$)	76
4	6e $(R = NO_2, X = F)$	$7e (R = NO_2)$	$(73)^{c}$
		R N N N N N N N N N N N N N N N N N N N	
5	$\mathbf{6f} \ (\mathbf{R} = \mathbf{OMe})$	7f (R = OMe)	17
6	$\mathbf{6g} \ (\mathbf{R} = \mathbf{NO}_2)$	$7\mathbf{g} (\mathbf{R} = \mathbf{NO}_2)$	$(57)^{c}$
7	N N Br 12	$ \begin{array}{c} $	18
8	N Br 14	$ \begin{array}{c} N \\ N \\ N \\ S \\ 15 \end{array} $	71
9	Br 16	N S S S	>99

Table 2.4 Reaction of substituted 2-(2-halophenyl)-1,4,5,6-tetrahydropyrimidines^a

 $^{\overline{a}}$ Unless otherwise stated, reactions were carried out with CS₂ (2.0 equiv) and NaH (2.0 equiv) in DMF at 80 °C for 12 h

^b Isolated yields

^c Yields in parentheses indicate those of the reactions at rt

¹⁴ A reason for the significant countercation effect (NaH vs. KH) on the reactivity is unclear.

Entry	Substrate	R-NCX	Product	Yield (%) ^b
1	6aa (X = Br)	BnNCS	18	82
2	6ab (X = F)			97
3 ^c	6ab	t-BuNCS		$62^{d,e}$
			S ^{Nt-Bu}	
4	6ab	BnNCO	N N N	>99
			N Bn	
5 ^c	6ab	t-BuNCO	20 N	
			21 (Y = N <i>t</i> -Bu, Z = O)	54
			22 (Y = O, Z = N <i>t</i> -Bu)	18^e
6	6ab	PhNCO		>99
			23	
7		t-BuNCS		49 ^e
	24		25	

Table 2.5 Reaction with isothiocyanates or isocyanates^a

 a Unless otherwise stated, reactions were carried out with R-NCX (2.0 equiv) and NaH (2.0 equiv) in DMF at rt for 2–3 h

^b Isolated yields

 c These reactions were carried out at 80 $^{\circ}$ C

^d A trace amount of regioisomeric N-arylation product was also formed

^e Isolated as a single isomer

products 7b–d in good-to-excellent yields (76–95 %, entries 1–3). Whereas the reaction of **6e** bearing the 4-nitro group at 80 °C resulted in the formation of a complex mixture, the reaction at room temperature gave the cyclization product **7e** in 73 % yield (entry 4). A methoxy group on the 5-position considerably diminished the reactivity, affording **7f** in only 17 % yield (entry 5). This was presumably due to increased electron density at the carbon substituted by a bromine atom. In the case of **6g** bearing a 5-nitro group, the corresponding product **7g** was obtained by the reaction at room temperature (entry 6), similarly to **6e** (entry 4). Pyridine derivatives **12** and **14** showed different reactivity depending on the position of the

nitrogen atom: the 2-bromopyridine derivative **14** gave a better result (71 %, entry 8) than the 3-bromopyridine derivative **12** (18 %, entry 7). The naphthalene derivative **16** afforded the tetracyclic compound **17** in quantitative yield (entry 9).

To further expand this methodology for the construction of other heterocyclic frameworks, the author investigated the reaction using isothiocyanates or isocyanates¹⁵ as heterocumulene (Table 2.5). When benzylisothiocyanate was employed, the reaction of **6aa** or **6ab** efficiently proceeded to give the corresponding Narylated product 18 in 82 % or 97 % yields, respectively (entries 1 and 2). The reaction with *tert*-butylisothiocvanate exclusively furnished an S-arylated product 19 as a single isomer (entry 3). These results indicate that the regioselectivity of the reaction can be perfectly switched by changing a substituent on the nitrogen atom. As expected, the reaction of **6ab** with benzylisocyanate provided an Narylated product 20 in quantitative yield (entry 4) as in the case with isothiocyanate (entries 1 and 2). Interestingly, tert-butylisocyanate showed moderate selectivity to mainly afford an N-arylation product 21 (54 %), formed by the arylation at the more bulky position, as well as an O-arylation product 22 (18 %, entry 5). Phenylisocyanate also provided an N-arylated product 23 (entry 6). The 2-phenylimidazoline derivative 24 (a 5-membered-ring amidine congener) also provided the corresponding S-arylated product 25 in a slightly decreased yield (49 %, entry 7).

This reaction would proceed via a nucleophilic addition of the amidine moiety to heterocumulene followed by an intramolecular S_NAr reaction^{16,17} of the resulting adducts such as **B** (Scheme 2.13). Nonactivated aromatic rings efficiently reacted under relatively mild conditions, so two molecules of the heterocumulene may be involved in the reaction to form the intermediate **C** in which the amidine moiety can be a more powerful electron-withdrawing group suitable for the S_NAr -type reaction. The regioselectivity in the nucleophilic attack on the aromatic ring (Y vs. Z) is controlled by a subtle balance of inherent nucleophilicity and steric hindrance of these functionalities.

The author finally focused on the synthesis of PD 404182 (26) (Scheme 2.14). Hydrolysis of the carbamodithioate derivative 7a followed by treatment with cyanogen bromide [3] readily afforded the desired compound 26. The same compound was also obtained in a single step by heating compound 19 in trifluoroacetic acid in the presence of molecular sieves.

In conclusion, the author developed a simple and practical synthetic method for tricyclic heteroarenes related to PD 404182. This reaction provides divergent access to several related heterocycles under mild conditions without a powerful activating group.

¹⁵ For related reactions of electron-deficient (haloaryl)isothiocyanates, see [62-64].

¹⁶ For reviews on nucleophilic aromatic substitution reaction, see [65, 66].

¹⁷ For examples on nucleophilic aromatic substitution reaction, see [67–73].

Scheme 2.13 Proposed reaction mechanisms

Scheme 2.14 Synthesis of PD 404182. Reagents and conditions: (a) NaOH, MeOH-H₂O (9:1), reflux; (b) BrCN, EtOH, reflux, 61 % (2 steps); (c) TFA, MS4Å, CHCl₃, reflux, 85 %

2.2.1 Experimental Section

2.2.1.1 General Methods

All moisture-sensitive reactions were performed using syringe-septum cap techniques under an Ar atmosphere and all glasswares were dried in an oven at 80 °C for 2 h prior to use. Melting points were measured by a hot stage melting point apparatus (uncorrected). For flash chromatography, Wakogel C-300E (Wako) or aluminum oxide 90 standardized (Merck) was employed. ¹H-NMR spectra were recorded using a JEOL AL-400 or a JEOL ECA-500 spectrometer, and chemical shifts are reported in δ (ppm) relative to Me₄Si (CDCl₃) as internal standards. ¹³C-NMR spectra were recorded using a JEOL AL-400 or JEOL ECA-500 spectrometer and referenced to the residual CHCl₃ signal. ¹⁹F–NMR spectra were recorded using a JEOL ECA-500 and referenced to the internal CFCl₃ (δ _F 0.00 ppm). ¹H-NMR spectra are tabulated as follows: chemical shift, multiplicity (b = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant(s), and number of protons. Exact mass (HRMS) spectra were recorded on a JMS-HX/HX 110A mass spectrometer. Infrared (IR) spectra were obtained on a JASCO FT/IR-4100 FT-IR spectrometer with JASCO ATR PRO410-S.

2.2.1.2 General Procedure for Preparation of the Substrates. 2-(2-Bromophenyl)-1,4,5,6-tetrahydropyrimidine (6aa)

To a solution of 2-bromobenzaldehyde (5.55 g, 30.0 mmol) in t-BuOH (280 mL) was added propylenediamine (2.45 g, 33.0 mmol). The mixture was stirred at 70 °C for 30 min, and then K_2CO_3 (12.4 g, 90.0 mmol) and I_2 (9.52 g, 37.5 mmol) were added. After being stirred at same temperature for 3 h, the mixture was guenched with sat. Na₂SO₃ until the iodine color disappeared. The organic layer was separated and concentrated in vacuo. The resulting solid was dissolved with H₂O, and then pH was adjusted to 12–14 with 2 N NaOH. The whole was extracted with $CHCl_3$. The extract was dried over Na_2SO_4 . After concentration, the resulting solid was recrystallized from $CHCl_3-n$ -hexane to give the compound **6aa** as colorless crystals (6.63 g, 92 %): mp 136–137 °C; IR (neat) cm⁻¹: 1625 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ: 1.81-1.86 (m, 2H, CH₂), 3.42 (t, J = 5.7 Hz, 4H, 2 × CH₂), 4.83 (br s, 1H, NH), 7.18 (ddd, J = 8.0, 7.7, 1.7 Hz, 1H, Ar), 7.27-7.31 (m, 1H, Ar), 7.41 (dd, J = 7.7, 1.7 Hz, 1H, Ar), 7.53 (d, J = 8.0 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 20.5, 42.2 (2C), 120.7, 127.3, 129.9, 130.2, 132.7, 139.3, 155.3; HRMS (FAB): m/z calcd for C₁₀H₁₂BrN₂ $[M + H]^+$ 239.0184; found: 239.0185.

2.2.1.3 2-(2-Fluorophenyl)-1,4,5,6-tetrahydropyrimidine (6ab)

2-Fluorobenzaldehyde (1.24 g, 10.0 mmol) was subjected to the general procedure. Colorless crystals (1.28 g, 71 %): mp 112–113 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1629 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.82–1.88 (m, 2H, CH₂), 3.49 (t, J = 5.7 Hz, 4H, 2 × CH₂), 5.33 (br s, 1H, NH), 7.03 (ddd, J = 11.9, 8.2, 1.1 Hz, 1H, Ar), 7.14 (ddd, J = 7.8, 7.8, 1.1 Hz, 1H, Ar), 7.29–7.34 (m, 1H, Ar), 7.80 (ddd, J = 7.8, 7.8, 2.0 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.6, 42.2 (2C), 115.8 (d, J = 23.2 Hz), 124.2 (d, J = 3.3 Hz), 124.5 (d, J = 11.6 Hz), 130.5 (d, J = 3.3 Hz), 130.7 (d, J = 8.3 Hz), 151.5, 160.1 (d, J = 247.5 Hz); ¹⁹F-NMR (500 MHz, CDCl₃) δ : –116.1; *Anal.* calcd for C₁₀H₁₁FN₂: C, 67.40; H, 6.22; N, 15.72. Found: C, 67.15; H, 6.32; N, 15.63.

2.2.1.4 2-(2-Fluoro-4-methoxyphenyl)-1,4,5,6-tetrahydropyrimidine (6b)

2-Fluoro-4-methoxybenzaldehyde (0.77 g, 5.0 mmol) was subjected to the general procedure. Pale yellow crystals (0.70 g, 67 %): mp 77 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1623 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.82-1.88 (m, 2H, CH₂), 3.48 (t, J = 5.7 Hz, 4H, 2 × CH₂), 3.79 (s, 3H, OCH₃), 5.13 (br s, 1H, NH), 6.56 (dd, J = 13.8, 2.6 Hz, 1H, Ar), 6.69 (dd, J = 8.8, 2.6 Hz, 1H, Ar), 7.77 (dd, J = 8.8, 8.8 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 20.8, 42.2 (2C), 55.5, 101.5 (d, J = 27.6 Hz), 110.2 (d, J = 2.4 Hz), 116.7 (d, J = 10.8 Hz), 131.3 (d, J = 6.0 Hz), 151.4 (d, J = 2.4 Hz), 160.7 (d, J = 205.1 Hz), 161.7 (d, J = 30.0 Hz); ¹⁹F-NMR (500 MHz, CDCl₃) δ : –113.8; *Anal.* calcd for C₁₁H₁₃FN₂O: C, 63.45; H, 6.29; N, 13.45. Found: C, 63.38; H, 6.29; N, 13.49.

2.2.1.5 2-(2-Bromo-4-methylphenyl)-1,4,5,6-tetrahydropyrimidine (6c)

2-Bromo-4-methylbenzaldehyde (1.00 g, 5.0 mmol) was subjected to the general procedure. Colorless crystals (1.11 g, 88 %): mp 128–129 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1639 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.83-1.89 (m, 2H, CH₂), 2.31 (s, 3H, CH₃), 3.46 (t, J = 5.7 Hz, 4H, 2 × CH₂), 4.65 (br s, 1H, NH), 7.07–7.10 (m, 1H, Ar), 7.27–7.35 (m, 2H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.7, 20.8, 42.3 (2C), 120.4, 128.1, 130.1, 133.2, 136.5, 140.3, 155.3; *Anal.* calcd for C₁₁H₁₃BrN₂: C, 52.19; H, 5.18; N, 11.07. Found: C, 52.37; H, 5.21; N, 11.12.

2.2.1.6 2-(2-Bromo-4-fluorophenyl)-1,4,5,6-tetrahydropyrimidine (6d)

2-Bromo-4-fluorobenzaldehyde (1.02 g, 5.0 mmol) was subjected to the general procedure. Colorless crystals (1.25 g, 97 %): mp 130 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1623 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 1.83-1.87 (m, 2H, CH₂), 3.44 (t, J = 6.0 Hz, 4H, 2 × CH₂), 4.42 (br s, 1H, NH), 7.01 (ddd, J = 8.6, 8.3, 2.7 Hz, 1H, Ar), 7.27 (dd, J = 8.3, 2.7 Hz, 1H, Ar), 7.40 (dd, J = 8.6, 5.7 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 20.5, 42.3 (2C), 114.6 (d, J = 20.4 Hz), 120.0 (d, J = 24.0 Hz), 121.1 (d, J = 9.6 Hz), 131.4 (d, J = 8.4 Hz), 135.6 (d, J = 3.6 Hz), 154.5, 162.2 (d, J = 251.9 Hz); ¹⁹F-NMR (500 MHz, CDCl₃) δ : -116.1. *Anal.* calcd for C₁₀H₁₀BrFN₂: C, 46.72; H, 3.92; N, 10.90. Found: C, 46.64; H, 3.87; N, 10.97.

2.2.1.7 2-(2-Fluoro-4-nitrophenyl)-1,4,5,6-tetrahydropyrimidine (6e)

2-Fluoro-4-nitrobenzaldehyde (0.68 g, 4.0 mmol) was subjected to the general procedure. Yellow crystals (0.69 g, 77 %): mp 141–142 °C (from CHCl₃–*n*-

hexane); IR (neat) cm⁻¹: 1625 (C=N), 1603 (NO₂), 1519 (NO₂); ¹H-NMR (400 MHz, CDCl₃) δ : 1.84-1.90 (m, 2H, CH₂), 3.50 (t, J = 5.7 Hz, 4H, 2 × CH₂), 5.51 (br s, 1H, NH), 7.90–8.02 (m, 3H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 20.4, 44.8 (2C), 112.0 (d, J = 30.0 Hz), 119.2 (d, J = 3.6 Hz), 130.5 (d, J = 12.0 Hz), 131.9 (d, J = 3.6 Hz), 148.8 (d, J = 9.6 Hz), 149.8, 159.4 (d, J = 251.9 Hz); ¹⁹F-NMR (500 MHz, CDCl₃) δ : -111.8; *Anal.* calcd for C₁₀H₁₀FN₃O₂: C, 53.81; H, 4.52; N, 18.83. Found: C, 54.05; H, 4.53; N, 19.05.

2.2.1.8 2-(2-Bromo-5-methoxyphenyl)-1,4,5,6-tetrahydropyrimidine (6f)

2-Bromo-5-methoxybenzaldehyde (0.86 g, 4.0 mmol) was subjected to the general procedure. Colorless crystals (0.98 g, 91 %): mp 124 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1626 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 1.84–1.89 (m, 2H, CH₂), 3.46 (t, J = 6.0 Hz, 4H, 2 × CH₂), 3.79 (s, 3H, OCH₃), 4.63 (br s, 1H, NH), 6.76 (dd, J = 9.2, 3.2 Hz, 1H, Ar), 6.98 (d, J = 3.2 Hz, 1H, Ar), 7.39 (d, J = 9.2 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 20.6, 42.3 (2C), 55.5, 110.9, 115.0, 116.9, 133.5, 140.0, 155.3, 158.9; *Anal.* calcd for C₁₁H₁₃BrN₂O: C, 49.09; H, 4.87; N, 10.41. Found: C, 49.21; H, 4.84; N, 10.44.

2.2.1.9 2-(2-Bromo-5-nitrophenyl)-1,4,5,6-tetrahydropyrimidine (6g)

2-Bromo-5-nitrobenzaldehyde (0.58 g, 2.5 mmol) was subjected to the general procedure. Yellow crystals (0.41 g, 58 %): mp 139–141 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1631 (C=N), 1608 (NO₂), 1524 (NO₂); ¹H-NMR (400 MHz, CDCl₃) δ : 1.87–1.93 (m, 2H, CH₂), 3.50 (t, J = 5.7 Hz, 4H, 2 × CH₂), 4.59 (br s, 1H, NH), 7.72 (d, J = 8.8 Hz, 1H, Ar), 8.03 (dd, J = 8.8, 2.7 Hz, 1H, Ar), 8.27 (d, J = 2.7 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.5, 42.4 (2C), 124.4, 125.3, 128.3, 134.0, 140.5, 147.1, 153.4; *Anal.* calcd for C₁₀H₁₀BrN₃O₂: C, 42.27; H, 3.55; N, 14.79. Found: C, 42.55; H, 3.80; N, 14.52.

2.2.1.10 2-(3-Bromopyridin-4-yl)-1,4,5,6-tetrahydropyrimidine (12)

3-Bromoisonicotinaldehyde (0.93 g, 5.0 mmol) was subjected to the general procedure. Yellow solid (0.73 g, 61 %): mp 141 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1630 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.84-1.90 (m, 2H, CH₂), 3.46 (t, J = 5.7 Hz, 4H, $2 \times$ CH₂), 4.93 (br s, 1H, NH), 7.35 (d, J = 4.6 Hz, 1H, Ar), 8.50 (d, J = 4.6 Hz, 1H, Ar), 8.70 (s, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.3, 42.3 (2C), 118.8, 124.5, 145.9, 148.5, 152.4, 153.0; *Anal.* calcd for C₉H₁₀BrN₃: C, 45.02; H, 4.20; N, 17.50. Found: C, 44.74; H, 4.13; N, 17.43.

2.2.1.11 2-(2-Bromopyridin-3-yl)-1,4,5,6-tetrahydropyrimidine (14)

2-Bromonicotinaldehyde (0.93 g, 5.0 mmol) was subjected to the general procedure. Yellow solid (1.14 g, 95 %): mp 106–108 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1626 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.84–1.89 (m, 2H, CH₂), 3.44 (t, J = 5.9 Hz, 4H, 2 × CH₂), 4.89 (br s, 1H, NH), 7.27–7.30 (m, 1H, Ar), 7.72 (dd, J = 7.6, 2.0 Hz, 1H, Ar), 8.35 (d, J = 4.8, 2.0 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.3, 42.3 (2C), 122.7, 136.1, 138.7, 140.1, 150.1, 153.8; HRMS (FAB): m/z calcd for C₉H₁₁BrN₃ [M + H]⁺ 240.0136; found: 240.0139.

2.2.1.12 2-(1-Bromonaphthalen-2-yl)-1,4,5,6-tetrahydropyrimidine (16)

1-Bromo-2-naphthaldehyde (0.94 g, 4.0 mmol) was subjected to the general procedure. Colorless crystals (1.04 g, 90 %): mp 151–153 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1625 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.89–1.95 (m, 2H, CH₂), 3.52 (t, J = 5.7 Hz, 4H, 2 × CH₂), 4.72 (br s, 1H, NH), 7.47-7.62 (m, 3H, Ar), 7.77–7.82 (m, 2H, Ar), 8.33 (d, J = 8.5 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.7, 42.5 (2C), 121.2, 126.8, 126.9, 127.6, 127.6, 127.9, 128.1, 132.1, 134.2, 137.5, 156.1; *Anal.* calcd for C₁₄H₁₃BrN₂: C, 58.15; H, 4.53; N, 9.69. Found: C, 58.02; H, 4.47; N, 9.71.

2.2.1.13 2-(2-Bromophenyl)-4,5-dihydro-1H-imidazole (24)

2-Bromobenzaldehyde (0.93 g, 5.0 mmol) was subjected to the general procedure using ethylenediamine (0.33 g, 5.5 mmol) instead of propylenediamine. Colorless crystals (0.77 g, 68 %): mp 98–99 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1619 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 3.79 (s, 4H, 2 × CH₂), 4.99 (br s, 1H, NH), 7.25 (ddd, J = 8.0, 7.5, 1.7 Hz, 1H, Ar), 7.33 (ddd, J = 8.0, 7.5, 1.1 Hz, 1H, Ar), 7.64 (d, J = 8.0, 1.7 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 50.6 (2C), 120.8, 127.4, 131.0, 131.2, 133.0, 133.2, 164.4; HRMS (FAB): *m/z* calcd for C₉H₁₀BrN₂ [M + H]⁺ 225.0027; found: 225.0030.

2.2.1.14 General Procedure for Cyclization Using CS₂. 3,4-Dihydro-2*H*,6*H*-pyrimido[1,2-*c*][1,3]benzo- thiazine-6-thione (7a)

To a mixture of **6aa** (59.8 mg, 0.25 mmol) and NaH (20.0 mg, 0.50 mmol; 60 % oil suspension) in DMF (0.83 mL) was added CS₂ (30.5 μ L, 0.50 mmol) under an Ar atmosphere. After being stirred at 80 °C for 12 h, the mixture was concentrated *in vacuo*. The residue was purified by flash chromatography over silica gel with *n*-

hexane–EtOAc (9:1) to give the compound **7a** as a pale-yellow solid (51.4 mg, 88 %). Spectral data were in good agreement with compound **24** in Chap. 2.

2.2.1.15 3,4-Dihydro-9-methoxy-2*H*,6*H*-pyrimido[1,2*c*][1,3]benzothiazine-6-thione (7b)

The fluoride **6b** (52.1 mg, 0.25 mmol) was subjected to the general procedure. Pale yellow solid (62.6 mg, 95 %): mp 120–122 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1624 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 2.00–2.05 (m, 2H, CH₂), 3.71 (t, J = 5.4 Hz, 2H, CH₂), 3.83 (m, 3H, OCH₃), 4.42 (t, J = 6.3 Hz, 2H, CH₂), 6.46 (d, J = 2.3 Hz, 1H, Ar), 6.83 (dd, J = 9.0, 2.3 Hz, 1H, Ar), 8.12 (d, J = 9.0 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 21.6, 45.3, 48.7, 55.6, 104.9, 114.9, 119.2, 130.7, 133.3, 143.9, 161.6, 189.7; *Anal.* calcd for C₁₂H₁₂N₂OS₂: C, 54.52; H, 4.58; N, 10.60. Found: C, 54.22; H, 4.62; N, 10.47.

2.2.1.16 3,4-Dihydro-9-methyl-2*H*,6*H*-pyrimido[1,2*c*][1,3]benzothiazine-6-thione (7c)

The bromide **6c** (63.3 mg, 0.25 mmol) was subjected to the general procedure. Colorless solid (54.6 mg, 88 %): mp 146–147 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1620 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.99–2.06 (m, 2H, CH₂), 2.35 (m, 3H, CH₃), 3.73 (t, J = 5.6 Hz, 2H, CH₂), 4.43 (t, J = 6.2 Hz, 2H, CH₂), 6.82 (d, J = 1.0 Hz, 1H, Ar), 7.10 (dd, J = 8.3, 1.0 Hz, 1H, Ar), 8.07 (d, J = 8.3 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 21.2, 21.6, 45.4, 48.7, 121.6, 123.8, 128.7, 128.7, 131.6, 141.8, 144.2, 190.0; *Anal.* calcd for C₁₂H₁₂N₂S₂: C, 58.03; H, 4.87; N, 11.28. Found: C, 57.84; H, 4.85; N, 11.19.

2.2.1.17 9-Fluoro-3,4-dihydro-2*H*,6*H*-pyrimido[1,2*c*][1,3]benzothiazine-6-thione (7d)

The bromide **6d** (64.3 mg, 0.25 mmol) was subjected to the general procedure. Colorless solid (47.9 mg, 76 %): mp 185 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1630 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 2.01–2.06 (m, 2H, CH₂), 3.73 (t, J = 5.7 Hz, 2H, CH₂), 4.42 (t, J = 6.0 Hz, 2H, CH₂), 6.73 (dd, J = 8.0, 2.9 Hz, 1H, Ar), 6.98 (ddd, J = 8.9, 8.9, 2.9 Hz, 1H, Ar), 8.22 (dd, J = 8.9, 5.4 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 21.5, 45.4, 48.7, 108.1 (d, J = 24.0 Hz), 115.1 (d, J = 22.8 Hz), 122.7 (d, J = 3.6 Hz), 131.7 (d, J = 9.6 Hz), 134.0 (d, J = 8.4 Hz), 143.4, 163.9 (d, J = 255.5 Hz), 188.9; ¹⁹F-NMR (500 MHz, CDCl₃) δ : -106.9; *Anal.* calcd for C₁₁H₉FN₂S₂: C, 52.36; H, 3.60; N, 11.10. Found: C, 52.10; H, 3.48; N, 11.15.

2.2.1.18 3,4-Dihydro-9-nitro-2*H*,6*H*-pyrimido[1,2*c*][1,3]benzothiazine-6-thione (7e)

Using the general procedure, the fluoride **6e** (55.8 mg, 0.25 mmol) was allowed to react with CS₂ at rt for 12 h. Pale yellow solid (50.7 mg, 73 %): mp 192–193 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1620 (C=N), 1598 (NO₂), 1520 (NO₂); ¹H-NMR (500 MHz, CDCl₃) δ : 2.05-2.09 (m, 2H, CH₂), 3.81 (t, J = 5.7 Hz, 2H, CH₂), 4.44 (t, J = 6.0 Hz, 2H, CH₂), 7.90 (d, J = 1.7 Hz, 1H, Ar), 8.06 (dd, J = 9.0, 1.7 Hz, 1H, Ar), 8.40 (d, J = 9.0 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 21.4, 45.8, 48.5, 117.0, 121.4, 130.7, 131.2, 133.8, 142.9, 149.0, 187.9; *Anal.* calcd for C₁₁H₉N₃O₂S₂: C, 47.30; H, 3.25; N, 15.04. Found: C, 47.07; H, 3.19; N, 14.99.

2.2.1.19 3,4-Dihydro-10-methoxy-2*H*,6*H*-pyrimido[1,2*c*][1,3]benzothiazine-6-thione (7f)

The bromide **6f** (67.3 mg, 0.25 mmol) was subjected to the general procedure. Pale yellow solid (11.3 mg, 17 %): mp 136 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1625 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.99–2.07 (m, 2H, CH₂), 3.76 (t, J = 5.7 Hz, 2H, CH₂), 3.86 (s, 3H, OCH₃), 4.46 (t, J = 6.2 Hz, 2H, CH₂), 6.94 (d, J = 8.8 Hz, 1H, Ar), 7.02 (dd, J = 8.8, 2.7 Hz, 1H, Ar), 7.75 (d, J = 2.7 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 21.6, 45.5, 48.6, 55.6, 111.6, 119.8, 123.0, 123.4, 127.6, 144.2, 159.2, 189.9; HRMS (FAB): *m/z* calcd for C₁₂H₁₃N₂OS₂ [M + H]⁺ 265.0469; found: 265.0461.

2.2.1.20 3,4-Dihydro-10-nitro-2*H*,6*H*-pyrimido[1,2*c*][1,3]benzothiazine-6-thione (7g)

Using the general procedure, the bromide **6g** (71.0 mg, 0.25 mmol) was allowed to react with CS₂ at rt for 12 h. Yellow solid (39.6 mg, 57 %): mp 176–177 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1627 (C=N), 1605 (NO₂), 1523 (NO₂); ¹H-NMR (500 MHz, CDCl₃) δ : 2.05-2.10 (m, 2H, CH₂), 3.81 (t, *J* = 5.4 Hz, 2H, CH₂), 4.44 (t, *J* = 6.0 Hz, 2H, CH₂), 7.18 (d, *J* = 8.9 Hz, 1H, Ar), 8.23 (dd, *J* = 8.9, 2.9 Hz, 1H, Ar), 9.09 (d, *J* = 2.9 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 21.3, 45.6, 48.6, 122.7, 124.6, 125.4, 127.4, 139.2, 142.4, 146.9, 187.3; HRMS (FAB): *m/z* calcd for C₁₁H₁₀N₃O₂S₂ [M + H]⁺ 280.0214; found: 280.0211.

2.2.1.21 3,4-Dihydro-2*H*,6*H*-pyrimido[1,2-*c*]pyrido[4,3-*e*][1,3]thiazine-6-thione (13)

The bromide **12** (60.0 mg, 0.25 mmol) was subjected to the general procedure. Orange solid (10.8 mg, 18 %): mp 205–207 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1619 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 2.03–2.09 (m, 2H, CH₂), 3.79 (t, J = 5.6 Hz, 2H, CH₂), 4.44 (t, J = 6.1 Hz, 2H, CH₂), 8.01 (d, J = 5.4 Hz, 1H, Ar), 8.36 (s, 1H, Ar), 8.51 (d, J = 5.4 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 21.4, 45.7, 48.4, 121.3, 128.2, 132.9, 142.6, 143.2, 148.3, 188.5; HRMS (FAB): m/z calcd for C₁₀H₁₀N₃S₂ [M + H]⁺ 236.0316; found: 236.0311.

2.2.1.22 3,4-Dihydro-2*H*,6*H*-pyrimido[1,2-*c*]pyrido[3,2-*e*][1,3]thiazine-6-thione (15)

The bromide **14** (60.0 mg, 0.25 mmol) was subjected to the general procedure. Colorless solid (41.9 mg, 71 %): mp 141–142 °C (from CHCl₃–*n*-hexane); IR (neat) cm-1: 1621 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 2.02–2.08 (m, 2H, CH₂), 3.76 (t, J = 5.6 Hz, 2H, CH₂), 4.45 (t, J = 6.2 Hz, 2H, CH₂), 7.22 (dd, J = 8.0, 4.5 Hz, 1H, Ar), 8.46 (dd, J = 8.0, 1.6 Hz, 1H, Ar), 8.54 (dd, J = 4.5, 1.6 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 21.3, 45.7, 48.6, 122.2, 124.0, 136.5, 143.8, 151.9, 153.3, 190.8; *Anal.* calcd for C₁₀H₉N₃S₂: C, 51.04; H, 3.85; N, 17.86. Found: C, 50.88; H, 3.95; N, 17.82.

2.2.1.23 2,3-Dihydronaphtho[2,1-*e*]pyrimido[1,2-*c*][1,3]thiazine-12(1*H*)-thione (17)

The bromide **16** (72.3 mg, 0.25 mmol) was subjected to the general procedure. Pale yellow solid (73.4 mg, >99 %): mp 230–231 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1620 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 2.06-2.12 (m, 2H, CH₂), 3.82 (t, J = 5.5 Hz, 2H, CH₂), 4.50 (t, J = 6.2 Hz, 2H, CH₂), 7.58-7.63 (m, 2H, Ar), 7.75 (d, J = 9.0 Hz, 1H, Ar), 7.83-7.86 (m, 1H, Ar), 7.96-8.00 (m, 1H, Ar), 8.26 (d, J = 8.8 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 21.5, 45.7, 48.7, 123.0, 124.0, 124.7, 126.0, 127.1, 127.3, 128.3, 128.4, 129.7, 133.9, 144.8, 188.4; *Anal.* calcd for C₁₅H₁₂N₂S₂: C, 63.35; H, 4.25; N, 9.85. Found: C, 63.36; H, 4.03; N, 9.70.

2.2.1.24 General Procedure for Cyclization Using Isothiocyanates or Isocyanates. N-Benzyl-3,4-dihydro-2H-pyrimido[1,2c]quinazolin-6(7H)-thione (18)

To a mixture of the fluoride **6ab** (44.6 mg, 0.25 mmol) and NaH (20.0 mg, 0.50 mmol; 60 % oil suspension) in DMF (0.83 mL) was added

benzylisothiocyanate (66.0 μL, 0.50 mmol) under an Ar atmosphere. After being stirred at rt for 2 h, EtOAc was added. The resulting solution was washed with sat. NaHCO₃, brine, and dried over Na₂SO₄. After concentration, the residue was purified by flash chromatography over aluminum oxide with *n*-hexane–EtOAc (29:1) to give the title compound **18** as a colorless solid (74.7 mg, 97 %): mp 137 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1635 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 2.02-2.07 (m, 2H, CH₂), 3.67 (t, *J* = 5.2 Hz, 2H, CH₂), 4.43 (t, *J* = 6.0 Hz, 2H, CH₂), 6.01 (br s, 2H, CH₂), 6.99 (d, *J* = 8.6 Hz, 1H, Ar), 7.15–7.36 (m, 7H, Ar), 8.18 (d, *J* = 7.4 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 21.7, 44.8, 50.3, 54.5, 115.6, 119.6, 124.4, 126.0, 126.2 (2C), 127.2, 128.8 (2C), 132.2, 135.6, 137.5, 143.2, 177.6; *Anal.* calcd for C₁₈H₁₇N₃S: C, 70.33; H, 5.57; N, 13.67. Found: C, 70.31; H, 5.66; N, 13.69.

2.2.1.25 *N*-(*tert*-Butyl)-3,4-dihydro-2*H*,6*H*-pyrimido[1,2*c*][1,3]benzothiazin-6-imine (19)

Using the general procedure, the fluoride **6ab** (44.6 mg, 0.25 mmol) was allowed to react with *tert*-butylisothiocyanate (63.4 µL, 0.50 mmol) at 80 °C for 2 h and purified by flash chromatography over aluminum oxide with *n*-hexane–EtOAc (1:0 to 9:1). Pale yellow solid (42.7 mg, 62 %): mp 62 °C (from *n*-hexane): IR (neat) cm⁻¹: 1622 (C=N), 1598 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.39 (s, 9H, $3 \times$ CH₃), 1.88–1.94 (m, 2H, CH₂), 3.62 (t, J = 5.6 Hz, 2H, CH₂), 3.87 (t, J = 6.2 Hz, 2H, CH₂), 7.11 (dd, J = 8.0, 7.3, 1.4 Hz, 1H, Ar), 7.20 (ddd, J = 8.0, 7.3, 1.2 Hz, 1H, Ar), 7.31 (ddd, J = 8.0, 7.3, 1.4 Hz, 1H, Ar), 8.18 (dd, J = 8.0, 1.4 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 21.9, 30.0 (3C), 45.1, 45.4, 54.1, 124.5, 126.0, 127.8, 128.4, 129.0, 130.1, 138.3, 148.0; HRMS (FAB): *m/z* calcd for C₁₅H₂₀N₃S [M + H]⁺ 274.1378; found: 274.1375.

2.2.1.26 N-Benzyl-3,4-dihydro-2H-pyrimido[1,2-c]quinazolin-6-one (20)

Using the general procedure, the fluoride **6ab** (44.6 mg, 0.25 mmol) was allowed to react with benzylisocyanate (61.6 μ L, 0.50 mmol) at rt for 2 h and purified by flash chromatography over aluminum oxide with *n*-hexane–EtOAc (1:0 to 9:1). White solid (74.8 mg, >99 %): mp 105–107 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1672 (C=O), 1625 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.97–2.03 (m, 2H, CH₂), 3.67 (t, *J* = 5.5 Hz, 2H, CH₂), 3.99 (t, *J* = 6.0 Hz, 2H, CH₂), 5.29 (s, 2H, CH₂), 6.93 (d, *J* = 8.3 Hz, 1H, Ar), 7.09 (dd, *J* = 8.0, 7.3 Hz, 1H, Ar), 7.23–7.35 (m, 6H, Ar), 8.18 (d, *J* = 8.0 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.6, 41.8, 44.5, 47.0, 114.1, 117.8, 122.7, 126.1, 126.4, 127.3, 127.3, 128.6, 128.8, 132.0, 136.4, 138.0, 145.3, 150.8; *Anal.* calcd for C₁₈H₁₇N₃O: C, 74.20; H, 5.88; N, 14.42. Found: C, 73.90; H, 6.04; N, 14.12.

2.2.1.27 N-(*tert*-Butyl)-3,4-dihydro-2*H*-pyrimido[1,2-*c*]quinazolin-6one (21) and N-(*tert*-Butyl)-3,4-dihydro-2*H*- pyrimido [1,2-*c*][1,3]benzoxazin-6-imine (22)

Using the general procedure, the fluoride **6ab** (44.6 mg, 0.25 mmol) was allowed to react with *tert*-butylisocyanate (57.1 μ L, 0.50 mmol) at 80 °C for 2 h and purified by flash chromatography over aluminum oxide with *n*-hexane–EtOAc (1:0 to 9:1).

Compound **21**: pale yellow oil (34.9 mg, 54 %): IR (neat) cm⁻¹: 1679 (C=O), 1631 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.68 (s, 9H, 3 × CH₃), 1.86–1.92 (m, 2H, CH₂), 3.61 (t, *J* = 5.5 Hz, 2H, CH₂), 3.77 (t, *J* = 6.2 Hz, 2H, CH₂), 7.07-7.11 (m, 1H, Ar), 7.25–7.27 (m, 1H, Ar), 7.33-7.37 (m, 1H, Ar), 7.95 (dd, *J* = 7.8, 1.2 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.9, 30.4 (3C), 41.3, 44.6, 59.6, 119.5, 122.5, 122.6, 125.9, 129.3, 138.8, 147.3, 151.7; HRMS (FAB): *m/z* calcd for C₁₅H₂₀N₃O [M + H]⁺ 258.1606; found: 258.1604.

Compound **22**: colorless crystals (11.4 mg, 18 %): mp 53–55 °C (from CHCl₃– *n*-hexane); IR (neat) cm⁻¹: 1637 (C=N), 1613 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 1.35 (s, 9H, 3 × CH₃), 1.91–1.96 (m, 2H, CH₂), 3.59 (t, J = 5.7 Hz, 2H, CH₂), 3.79 (t, J = 6.0 Hz, 2H, CH₂), 7.01 (d, J = 8.0 Hz, 1H, Ar), 7.12 (dd, J = 7.7, 7.4 Hz, 1H, Ar), 7.40 (ddd, J = 8.0, 7.4, 1.4 Hz, 1H, Ar), 8.00 (dd, J = 7.7, 1.4 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 21.0, 30.8 (3C), 43.4, 44.3, 52.5, 115.1, 116.6, 123.5, 125.5, 132.0, 139.1, 143.8, 150.6; HRMS (FAB): m/z calcd for C₁₅H₂₀N₃O [M + H]⁺ 258.1606; found: 258.1602.

2.2.1.28 N-Phenyl-3,4-dihydro-2H-pyrimido[1,2-c]quinazolin-6-one (23)

Using the general procedure, the fluoride **6ab** (44.6 mg, 0.25 mmol) was allowed to react with phenylisocyanate (54.5 μ L, 0.50 mmol) at rt for 2 h and purified by flash chromatography over aluminum oxide with *n*-hexane–EtOAc (1:0 to 9:1). White solid (69.6 mg, >99 %): mp 225–226 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1684 (C=O), 1629 (C=N); ¹H-NMR (400 MHz, CDCl₃) δ : 1.97-2.03 (m, 2H, CH₂), 3.69 (t, J = 5.6 Hz, 2H, CH₂), 3.95 (t, J = 6.0 Hz, 2H, CH₂), 6.37 (d, J = 8.3 Hz, 1H, Ar), 7.08–7.12 (m, 1H, Ar), 7.22–7.34 (m, 3H, Ar), 7.46-7.61 (m, 3H, Ar), 8.19 (dd, J = 7.9, 1.6 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 20.5, 41.5, 44.6, 115.1, 117.2, 122.8, 125.9, 128.8, 129.3 (2C), 130.1 (2C), 131.6, 137.2, 139.6, 145.4, 150.2; *Anal.* calcd for C₁₇H₁₅N₃O: C, 73.63; H, 5.45; N, 15.15. Found: C, 73.41; H, 5.27; N, 15.11.

2.2.1.29 N-(tert-Butyl)-2,3-dihydroimidazo[1,2-c][1,3]benzothiazin-5imine (25)

Using the general procedure, the bromide **24** (112.5 mg, 0.50 mmol) was allowed to react with *tert*-butylisothiocyanate (126.8 µL, 1.00 mmol) at rt for 3 h and purified by flash chromatography over aluminum oxide with *n*-hexane–EtOAc (1:0 to 9:1). White solid (63.0 mg, 49 %): mp 140–142 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1625 (C=N), 1604 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 1.37 (s, 9H, 3 × CH₃), 3.93–4.03 (m, 4H, 2 × CH₂), 7.17 (d, *J* = 8.0 Hz, 1H, Ar), 7.22 (dd, *J* = 8.0, 7.7 Hz, 1H, Ar), 7.37 (dd, *J* = 7.7, 7.4 Hz, 1H, Ar), 8.19 (d, *J* = 7.4 Hz, 1H, Ar); ¹³C-NMR (125 MHz, CDCl₃) δ : 30.1 (3C), 49.2, 52.2, 53.9, 121.8, 124.5, 126.0, 128.5, 131.5, 132.9, 134.6, 154.5; HRMS (FAB): *m/z* calcd for C₁₄H₁₈N₃S [M + H]⁺ 260.1221; found: 260.1219.

2.2.1.30 3,4-Dihydro-2*H*,6*H*-pyrimido[1,2-*c*][1,3]benzothiazin-6-imine (26)

Synthesis from **7a**: 0.1 M solution of NaOH in a mixed solvent of MeOH/H₂O (9:1; 5 mL) was added to a flask containing **7a** (58.6 mg, 0.25 mmol). After being stirred under reflux for 12 h, the mixture was concentrated *in vacuo* [azeotroped with MeOH (×2) and CHCl₃ (×2)]. The residue was suspended with anhydrous EtOH (1 mL), and BrCN (53.0 mg, 0.50 mmol) was added under an Ar atmosphere. After being stirred under reflux for 2 h, 2 N NaOH was added to the mixture. The whole was extracted with CHCl₃, and dried over Na₂SO₄. After concentration, the residue was purified by flash chromatography over aluminum oxide with *n*-hexane–EtOAc (9:1) to give the title compound **26** as white solid (33.2 mg, 61 % in 2 steps).

Synthesis from **19**: TFA (2 mL) was added to a mixture of **19** (54.7 mg, 0.20 mmol) in small amount of CHCl₃ (1 or 2 drops) and MS4Å (300 mg, powder, activated by heating with Bunsen burner). After being stirred under reflux for 1 h, the mixture was concentrated *in vacuo*. To a stirring mixture of this residue in CHCl₃ was added dropwise Et₃N at 0 °C to adjust pH to 8–9. The whole was extracted with EtOAc. The extract was washed with sat. NaHCO₃ (×2), brine, and dried over Na₂SO₄. After concentration, the residue was purified by flash chromatography over aluminum oxide with *n*-hexane–EtOAc (9:1) to give the title compound **26** as white solid (36.9 mg, 85 %).

Compound **26**: mp 105 °C (from $CHCl_3$ –*n*-hexane); IR (neat) cm⁻¹: 1621 (C=N), 1578 (C=N); ¹H-NMR (500 MHz, CDCl₃) δ : 1.95-2.00 (m, 2H, CH₂), 3.69 (t, J = 5.5 Hz, 2H, CH₂), 4.02 (t, J = 6.1 Hz, 2H, CH₂), 7.04 (dd, J = 7.5, 1.1 Hz, 1H, Ar), 7.17 (br s, 1H, NH), 7.21–7.24 (m, 1H, Ar), 7.34 (ddd, J = 7.5, 7.5, 1.4 Hz, 1H, Ar), 8.22 (dd, J = 7.5, 1.4 Hz, 1H, Ar); ¹³C-NMR (100 MHz, CDCl₃) δ : 21.1, 43.8, 44.9, 123.5, 126.2, 126.8, 128.8, 128.9, 130.5, 146.6, 153.4; *Anal.* calcd for C₁₁H₁₁N₃S: C, 60.80; H, 5.10; N, 19.34.

References

- 1. Helmut, H., Juergen, M., Hans, Z.: Eur. Pat. Appl. (1982) EP 43936
- 2. Brown, J.P.: J. Chem. Soc., Perkin Trans. 1 869-870 (1974)
- 3. Peter, S.; Gerhard, S. Ger. Offen. (1979) DE 2811131
- 4. Schreiber, S.L.: Science 287, 1964–1969 (2000)
- 5. Burke, M.D., Schreiber, S.L.: Angew. Chem. Int. Ed. 43, 46-58 (2004)
- 6. Ishihara, M., Togo, H.: Tetrahedron 63, 1474-1480 (2007)
- 7. Dyker, G.: Angew. Chem. Int. Ed. 38, 1698-1712 (1999)
- 8. Ritleng, V., Sirlin, C., Pfeffer, M.: Chem. Rev. 102, 1731-1770 (2002)
- 9. Alberico, D., Scott, M.E., Lautens, M.: Chem. Rev. 107, 174-238 (2007)
- 10. Chen, H., Schlecht, S., Semple, T.C., Hartwig, J.F.: Science 287, 1995-1997 (2000)
- 11. Dick, A.R., Hull, K.L., Sanford, M.S.J.: Am. Chem. Soc. 126, 2300-2301 (2004)
- 12. Yu, J.-Q., Giri, R., Chen, X.: Org. Biomol. Chem. 4, 4047 (2006)
- 13. Desai, L.V., Stowers, K.J., Sanford, M.S.J.: Am. Chem. Soc. 130, 13285-13293 (2008)
- Chatani, N., Asaumi, T., Yorimitsu, S., Ikeda, T., Kakiuchi, F., Murai, S.J.: Am. Chem. Soc. 123, 10935–10941 (2001)
- 15. Zaitsev, V.G., Shabashov, D., Daugulis, O.J.: Am. Chem. Soc. 127, 13154-13155 (2005)
- Berman, A.M., Lewis, J.C., Bergman, R.G., Ellman, J.A.J.: Am. Chem. Soc. 130, 14926–14927 (2008)
- Williams, N.A., Uchimura, Y., Tanaka, M.: J. Chem. Soc., Chem. Commun. 1129–1130 (1995)
- 18. Kakiuchi, F., Yamauchi, M., Chatani, N., Murai, S.: Chem. Lett. 111-112 (1996)
- 19. Pastine, S.J., Gribkov, D.V., Sames, D.J.: Am. Chem. Soc. 128, 14220-14221 (2006)
- 20. Kakiuchi, F., Sato, T., Yamauchi, M., Chatani, N., Murai, S.: Chem. Lett. 19-20 (1999)
- Chen, X., Li, J.-J., Hao, X.-S., Goodhue, C.E., Yu, J.-Q.J.: Am. Chem. Soc. 128, 78–79 (2006)
- 22. Oi, S., Aizawa, E., Ogino, Y., Inoue, Y.J.: Org. Chem. 70, 3113-3119 (2005)
- For a review on Cu-mediated C-H functionalization, see: Wendlandt, A.E., Suess, A.M., Stahl, S.S.: Angew. Chem., Int. Ed. 50, 11062–11087 (2011)
- 24. Reinaud, O., Capdevielle, P., Maumy, M.: Synthesis 612-614 (1990)
- 25. Chen, X., Hao, X.-S., Goodhue, C.E., Yu, J.-Q.J.: Am. Chem. Soc. 128, 6790-6791 (2006)
- 26. Uemura, T., Imoto, S., Chatani, N.: Chem. Lett. 35, 842-843 (2006)
- 27. Brasche, G., Buchwald, S.L.: Angew. Chem. Int. Ed. 47, 1932-1934 (2008)
- 28. Kochi, J.K., Tang, R.T., Bernath, T.J.: Am. Chem. Soc. 95, 7114-7123 (1973)
- 29. Ramsden, C.A., Rose, H.L.: J. Chem. Soc., Perkin Trans. 1 615-617 (1995)
- 30. Ramsden, C.A., Rose, H.L.: J. Chem. Soc., Perkin Trans. 1 2319-2327 (1997)
- 31. Hickman, A.J., Sanford, M.S.: Nature 484, 177-185 (2012)
- 32. Ribas, X., Jackson, D.A., Donnadieu, B., Mahía, J., Parella, T., Xifra, R., Hedman, B., Hodgson, K.O., Llobet, A., Stack, T.D.P.: Angew. Chem. Int. Ed. **41**, 2991–2994 (2002)
- 33. Xifra, R., Ribas, X., Llobet, A., Poater, A., Duran, M., Solà, M., Stack, T.D.P., Benet-Buchholz, J., Donnadieu, B., Mahía, J., Parella, T.: Chem. Eur. J. 11, 5146–5156 (2005)
- 34. Huffman, L.M., Stahl, S.S.J.: Am. Chem. Soc. 130, 9196-9197 (2008)
- 35. King, A.E., Brunold, T.C., Stahl, S.S.J.: Am. Chem. Soc. 131, 5044-5045 (2009)
- King, A.E., Huffman, L.M., Casitas, A., Costas, M., Ribas, X., Stahl, S.S.: J. Am. Chem. Soc. 132, 12068–12073 (2010)
- 37. John, A., Nicholas, M.J.: Org. Chem. 76, 4158-4162 (2011)
- 38. Hartwig, J.F.: Synlett 329-340 (1997)
- 39. Hartwig, J.F.: Angew. Chem. Int. Ed. 37, 2046–2067 (1998)
- 40. Wolfe, J.P., Wagaw, S., Marcoux, J.F., Buchwald, S.L.: Acc. Chem. Res. 31, 805-818 (1998)
- 41. Kunz, K., Scholz, U., Ganzer, D.: Synlett 2428–2439 (2003)
- 42. Ferraccioli, R., Carenzi, D.: Synthesis 1383-1386 (2003)
- 43. Orain, D., Blumstein, A.-C., Tasdelen, E., Haessig, S.: Synlett 2433-2436 (2008)

- 44. Shen, G., Lv, X., Bao, W.: Eur. J. Org. Chem. 5897-5901 (2009)
- 45. Qiu, J.-W., Zhang, X.-G., Tang, R.-Y., Zhong, P., Li, J.-H.: Adv. Synth. Catal. 351, 2319–2323 (2009)
- 46. Murru, S., Ghosh, H., Sahoo, S.K., Patel, B.K.: Org. Lett. 11, 4254-4257 (2009)
- 47. Murru, S., Mondal, P., Yella, R., Patel, B.K.: Eur. J. Org. Chem. 5406-5413 (2009)
- 48. Wang, F., Zhao, P., Xi, C.: Tetrahedron Lett. 52, 231-235 (2011)
- 49. Kaname, M., Minoura, M., Sashida, H.: Tetrahedron Lett. 52, 505-508 (2011)
- Ma, D., Lu, X., Shi, L., Zhang, H., Jiang, Y., Liu, X.: Angew. Chem. Int. Ed. 50, 1118–1121 (2011)
- 51. Yang, J., Li, P., Wang, L.: Tetrahedron 67, 5543-5549 (2011)
- 52. Wang, F., Cai, S., Liao, Q., Xi, C.J.: Org. Chem. 76, 3174-3180 (2011)
- 53. Lach, F.: Synlett 2639-2642 (2012)
- 54. D'Amico, J.J., Tung, C.C., Dahl, W.E., Dahm, D.J.J.: Org. Chem. 41, 3564–3568 (1976)
- 55. Leymarie-Beljean, M., Pays, M., Richer, J.-C.J.: Heterocycl. Chem. 17, 1175–1179 (1980)
- 56. Anderson-McKay, J.E., Liepa, A.J.: Aust. J. Chem. 40, 1179–1190 (1987)
- 57. Kobayashi, K., Komatsu, T., Konishi, H.: Heterocycles 78, 2559-2564 (2009)
- 58. Zhu, L., Zhang, M.J.: Org. Chem. 69, 7371-7374 (2004)
- 59. Mizuhara, T., Oishi, S., Fujii, N., Ohno, H.J.: Org. Chem. 75, 265-268 (2010)
- 60. Wang, F., Cai, F., Wang, Z., Xi, C.: Org. Lett. 13, 3202-3205 (2011)
- 61. Zhao, P., Wang, F., Xi, C.: Synthesis 1477–1480 (2012)
- 62. Muthusamy, S., Paramasivam, R., Ramakrishnan, V.T.J.: Heterocycl. Chem. 28, 759–763 (1991)
- 63. Zambounis, J.S., Christen, E., Pfeiffer, J., Ribs, G.J.: Am. Chem. Soc. 116, 925-931 (1994)
- 64. Huang, S., Connolly, P.J.: Tetrahedron Lett. 45, 9373-9375 (2004)
- 65. Bunnet, J.F., Zahler, R.E.: Chem. Rev. 49, 273-412 (1951)
- 66. Buncel, E., Dust, J.M., Terrier, F.: Chem. Rev. 95, 2261-2280 (1995)
- 67. Annulli, A., Mencarelli, P., Stegel, F.J.: Org. Chem. 49, 4065-4067 (1984)
- 68. Gorvin, J. H.: J. Chem. Soc., Perkin Trans. 1 1331-1335 (1988)
- 69. Raeppel, S., Raeppel, F., Suffert, J.: Synlett 794-796 (1998)
- 70. Ratz, A.M., Weigel, L.O.: Tetrahedron Lett. 40, 2239-2242 (1999)
- 71. Rogers, J.F., Green, D.M.: Tetrahedron Lett. 43, 3585-3587 (2002)
- 72. Grecian, S.A., Hadida, S., Warren, S.D.: Tetrahedron Lett. 46, 4683-4685 (2005)
- 73. Barbero, N., SanMartin, R., Domínguez, E.: Tetrahedron 65, 5729-5732 (2009)