
2 Use of Models in Software Engineering

In this chapter we discuss the use of models in software engineering. We exam-
ine the relation of MTCC to the fields of model-driven software development and
model-driven testing.

Based on the definition of Stachowiak [Sta73] of models as abstractions with a
purpose and a representation, the use of models is a well established practice in
software engineering as well as in computer science as a whole. Models are not
only used in approaches that are explicitly model-driven but are employed in a
number of different forms and for a multitude of tasks. We consider an approach
model-driven if models are the primary artifacts in a process from which the dif-
ferent implementation artifacts are generated. Models are used to abstract data and
control flow in programming languages [Sco05]. The design of a suitable domain
model [Fow03] is a central part in the development of complex software systems
and the elicitation of a suitable fault model [Bin99] is a central part of the testing
process. Section 2.1 discusses the definition of models we employ for MTCC and
examines the notions of meta models and model transformations.

Current model-driven processes and technologies are characterized by the uti-
lization of formal models on a level of abstraction above the specific implemen-
tation platform and by the use of model transformation, generally for the purpose
of code generation, in order to bridge the implementation gap [FR07] between an
abstract model and a specific platform.

A number of different approaches for model-driven development exist that influ-
ence the MTCC approach to different degrees. MTCC is closest to the generative
programming approach regarding the used models and the high degree to which
the details of the implementation domain are abstracted. We introduce these ap-
proaches in Section 2.2 and compare them with MTCC.

One concrete use of models is model-driven testing, the verification of a soft-
ware system based on a model of the system. Depending on the respective ap-
proach, the tested aspects of a system and its operating environment are repre-
sented by models that support the automatic generation of test cases and the allow
an automated assessment of the success of the each generated tests. We discuss
model-driven testing in Section 2.3 and relate it to MTCC.

18 2 Use of Models in Software Engineering

2.1 Roles and Properties of Models

The term model has a number of different meanings, depending on the context in
which its is used. Figure 2.1 gives an overview of 14 different definitions for the
term model taken from the online version of the Merriam-Webster Dictionary1.

For software engineering, the definitions of model as structural design and a
system of postulates, data, and inferences presented as a mathematical description
of an entity or state of affairs; also : a computer simulation based on such a system
are of particular relevance as they allude to the prescriptive and descriptive aspects
of modeling [Béz05].

Figure 2.1: Definition of model in the Merriam-Webster Dictionary

1http://www.merriam-webster.com/dictionary/model

2.1 Roles and Properties of Models 19

2.1.1 Attributes of Models

Greenfield [GS04] defines a model in the context of software development as fol-
lows: "... a model is an abstract description of software that hides information
about some aspects of the software to present a simpler description of others...".
Evans [Eva04] gives the following definition: "A system of abstractions that de-
scribes selected aspects of a domain and can be used to solve problems related to
that domain" where domain is defined as follows: "A sphere of knowledge, influ-
ence, or activity.". Stahl [SV06] define the meaning of a model such: "A model is
a abstract representation of structure, function or behavior of a system."

According to Stachowiak [Sta73], a model is characterized by three properties
(translation by the author):

• Representation property Models are reproductions or delineation of natu-
ral or artificial objects

• Abstraction property Models do not capture all attributes of represented
original but only those that appear relevant to the creators and/or users of
the model

• Pragmatic property Models are not always unambiguously assigned to
their original. They fulfill a substitution role a) for certain subjects, b) for
certain periods of time and c) under constraints on certain mental or physi-
cal operations

2.1.2 Types of Models

A common aspect of all definitions is the concept of abstraction. For this work we
define models as abstractions with a purpose [Lud03]. In the following, we further
differentiate models by two characteristics:

• Models may be formal or informal. We consider a model formal when it is
represented in a way that allows the automatic processing or transformation
of the model for its intended purpose. The structure and semantics of a
formal model are defined by its meta model.

Modeling languages like the UML can be used both formally and informally.
When used formally in the context of the MDA [Bro04], the MOF [ALP05]
serves as a meta model for the UML. Besides its use for formal modeling,
the UML can also be used as a sketch in order to outline the structure of
systems.

20 2 Use of Models in Software Engineering

Whether a modeling language is formal or informal is independent from the
question whether it uses a graphical or textual representation [HR04].

• Models can be used either prescriptively or descriptively. Prescriptive mod-
els are used for the design of systems that are yet to be constructed, descrip-
tive models represent an system that already exists [Béz05].

From the definition of a model as an abstraction with a purpose follows that the
subject represented by the model and the goal of modeling process must be con-
sidered in every modeling situation. The subject and the purpose of a model define
the domain that is covered by the model. This domain determines the criteria that
stipulate which aspects of reality have to be representable by the model at what
level of detail.

2.1.2.1 Meta Model

A meta model defines the structure of a model as well as its semantics. The se-
mantics that can be expressed are specific for a domain, therefore, the meta model
is a representation of that domain. Figure 2.2 examines the relationship between
formal models, their domain and the various concepts that define a meta model.
Models are expressed in a domain specific language (DSL). A DSL defines a con-
crete syntax or formal notation used to express concrete models. The abstract syn-
tax defines the basis concepts available for model construction, it is determined by
static semantics of the meta model.

Notwithstanding the existence of a multitude of standards and approaches for
meta modeling [KK02, BSM+03, ALP05], meta models and their use are an ac-
tive field of research. This is also true for the integration of different meta mod-
els [ES06, BFFR06] and the representation of constraints on meta models [CT06].
We argue that neither research nor practice have yet succeeded in establishing an
universal meta modeling standard.

Meta models are related to ontologies [SK06]. While ontologies aim at the
presentation of knowledge, the purpose of meta models is the definition of a formal
language.

Figure 2.2 illustrates one important property of models: The separation of the
representation of a model, its concrete syntax, from its semantics. This property
allows the use of multiple representations for one meta model, for instance the
textual representation of UML [Spi03] or — in the case of MTCC — the represen-
tation of the feature model through a graphical editor.

2.2 Model-Driven Software Development 21

Domain Metamodel

Formal
Model

Abstract
Syntax

Static
Semantic

Concrete
Syntax DSL

Semantic Modeling
Language

describes relevant
concepts of

expressed by means
of

«instanceof»

obtains meaning through

respects

«synonym»

subdomain

expressed by means
of

represents

Figure 2.2: Concepts of model-driven software development [SV06]

2.2 Model-Driven Software Development

The purpose of model-driven software development is to close the gap between
the problem domain and the solution domain [SV06]. Models abstract from the
technical details of an implementation and facilitate the use of concepts from the
subject domain not only in requirements engineering and design, but also during
the implementation of a system.

France [FR07] express this goal as follows: "current research in the area of
model driven engineering (MDE) is primarily concerned with reducing the gap
between problem and software implementation domains through the use of tech-
nologies that support systematic transformation of problem-level abstractions to
software implementations."

The stated goals and claims associated with model-driven software develop-
ment, in particular the MDA approach, have been the subject of critique [McN03,
Tho04]. We argue that potential deficits of specific approaches do not challenge
the effectiveness of model-driven software development in general but rather that
the methods and tools used for any software project must consider the individual
requirements of each project.

In the following, we introduce multiple approaches to model-driven software
development and relate them to the MTCC. We discuss the transformation of
models into implementations. Furthermore we explain the relationship of model-
driven development and programming languages with a particular focus on domain
specific languages [vDKV00]. We present a summary of relevant approaches to
model-driven development, a more detailed comparison can be found in [Völ06a].

22 2 Use of Models in Software Engineering

2.2.1 Model Driven Architecture

The Model Driven Architecture (MDA) is a standard for model-driven develop-
ment propagated by the Object Management Group [MSU04, Uhl06].

One defining aspect of the MDA is the successive refinement of models [SV06].
A Platform Independent Model (PIM) represents functional requirements in a for-
mal notation. The PIM is used as the basis for one or more Platform Specific Mod-
els (PSM). Each PSM is an abstract representation specific for one aspect of the
implementation, for instance, the database layer or the deployment architecture.
In order to create an implementation, each PSM undergoes one or more transfor-
mation steps, turning the PSM into successively more detailed models and finally
implementation artifacts. The MDA emphasizes model-to-model transformations
in the software construction process, as the description above illustrates.

We argue that the MTCC approach does not benefit from the advantages offered
by the MDA approach because the increase in complexity that the adoption of the
MDA would cause is not worthwhile.

2.2.2 Architecture-Centric Model-Driven Software

Architecture-Centric model-driven Software Development (AC-MDSD) is an ap-
proach introduced by Stahl and Voelter [SV06]. The purpose of AC-MDSD is the
"holistic automation during the development of infrastructure code respectively the
minimization of redundant, technical code in software development". A concept
central to the approach is the platform, the total of all parts of the infrastructure that
are used for the implementation. Compared to the MDA, the focus of AC-MDSD
is more on the abstraction of technical detail than on the complete representation
and implementation of a system with models. We argue that this approach is more
pragmatic than the vision offered by the MDA. MTCC shares the goal of AC-
MDSD to abstract from infrastructure code; in the case of MTCC, test code and
code used to interface with the testee.

2.2.3 Generative Programming

With Generative Programming, Czarnecki [CE00] introduced an approach that
aims at creating complete implementations of software systems, optimized for
specific requirements, based on a library of implementation artifacts and a for-
mal representation of available configurations. Czarnecki describes the approach
as follows: "Generative software development is a system-family approach, which

Development

2.2 Model-Driven Software Development 23

focuses on automating the creation of system-family members: a given system can
be automatically generated from a specification written in one or more textual or
graphical domain-specific languages" [Cza05]. Like Generative Programming,
MTCC considers families of systems, more specific families of tests.

2.2.4 Generation of Implementations

In order to facilitate the creation of implementation artifacts from models, a trans-
formation step is necessary [CLW06]. With the execution of one or more trans-
formation steps, implementation details and models are integrated and succes-
sively more detailed models are created. A transformation step can either be a
Model2Code transformation or a Model2Model transformation [SV06]. While a
Model2Model transformation generally starts with an input model and generates
another more detailed, model, Model2Code transformations generate an imple-
mentation artifact, usually program code. A number of different model transforma-
tion approaches exist that address different goals [CH03] and vary in the complex-
ity and suitability for complex transformation scenarios. The test cases generated
in the MTCC exhibit only minimal complexity. Accordingly, we limit our con-
sideration of possible transformation strategies to template-based [Her03, Voe03]
code generation.

2.2.5 Models and Programming Languages

Model-driven development shares a significant number of concepts with program-
ming languages and compiler technology. Considerable parallels exist between
model transformation and compilation — both processes create implementations
from abstract representations. The concepts used by programming languages to
describe both data and control flow [Sco05] and the rules that govern their use and
possible combinations in a program correspond to a meta model.

Domain specific languages [vDKV00, TK04] exist for a wide variety of ap-
plication domains [MHS05, Hud96]. Such languages have the same purpose as
models in MTCC expressing the concepts of a specific application domain — they
implement problem-specific abstractions [GKR+06]. Implementation techniques
for DSLs are similar to those used in model-driven development [Völ07, Völ06c],
especially for approaches that use code generation.

Another approach that serves to illustrate the close relation between model-
driven development and programming languages is Languages Oriented Pro-
gramming. Fowler gives an overview of one such approach [Fow05c, Fow05b,
Fow05a], the MPS environment [Dmi04]. MPS aims to facilitate the inte-

24 2 Use of Models in Software Engineering

grated development of a meta model, an editor for modeling, and transforma-
tions for implementing DSLs. The intentional software approach is similar in its
goals [Sim95, SCC06].

MTCC uses a graphical editor to present models to domain experts. The XML-
based representation of MTCC models can be considered a domain specific lan-
guage for system and test description.

2.3 Model-Driven Testing

Testing is always Model-Driven in the sense that it is based on a fault model.
A fault model considers a system with regards to its likely faults. Binder gives
the following definition of a fault model"(A Fault Model) identifies relationships
and components of the system under test that are most likely to have faults.
It may be based on common sense, experience, suspicion, analysis, or experi-
ment..." [Bin99].

Similar to models used in the construction of systems, a fault model does not
have to be formal to be useful for testing, it may take the form of a list containing
the functionality of a system to be tested. Formal models that are suitable as a
basis for automatic testing are called testable [Bin99]. The use of testable models
for the automatic verification of software is the subject of model-driven testing.

Figure 2.3 displays an example of a model-driven testing process and the con-
cepts that are relevant during the phases of the process.

• In a first step, a model that can be utilized for the automatic generation of
tests is realized based on the requirements of the examined system. The
model represents those aspects of the behavior and state of the testee that
are relevant for testing. For any possible input to the system, it provides the
outputs expected from the system. The models serve as an oracle.

• In the Test Case Specification phase, criteria for the selection of tests are de-
fined and formalized. Criteria include the test coverage by different metrics
as well as random selection of tests and the use of previously recorded user
interactions with the system. The Test Case Specification is a formalization
of this criteria that facilitates the automatic selection of tests cases.

• Tests are generated and executed on the SUT. The adaptor in Figure 2.3
corresponds to the concept of the test runner in MTCC. The results of all
executed tests are recorded.

2.3 Model-Driven Testing 25

Figure 2.3: A process for model-driven testing [UPL05]

2.3.1 Types of Model-Driven Testing

As in model-driven development, many approaches to model-driven testing exist.
A criterion by which different approaches can be differentiated from MTCC is
Redundancy [UPL05]. Redundancy differentiates between approaches that reuse
models created for the construction of a system from those that use special-
ized models created only for testing. Bertolino uses the term test-based model-
ing [Ber07] for the latter group.

Approaches that aim at reusing or extending models or modeling tools created
for the construction of software are limited by the modeling languages used in

26 2 Use of Models in Software Engineering

this process, often the UML. As a consequence, there is a great number of ap-
proaches to model-driven testing that are based on the UML [CCD04, BLC05,
SS08, LJX+04, KWD05, HVR04].

One application of the UML for testing is the UML2 Testing profile [SDGR03,
BDG+03, Dai04]. The purpose of the U2TP is to provide an UML profile that
adds test-relevant concepts to the UML2 core language and thus allows the mod-
eling of tests using UML specific tooling. The U2TP can be regarded as model-
driven development applied to the testing domain. By envisioning intellectual test
specification, the U2TP bears similarities to MTCC, but differs in the modeling
language and the support for modeling by domain experts.

Test-based modeling approaches are not limited to any particular modeling lan-
guage. Utting [UPL05] present an overview over approaches to model-driven test-
ing and the models used in these approaches. Finite State Machines [EFW01,
AOA05], decision trees and decision tables are frequently used as models for test-
ing purposes [Bin99].

2.3.2 Relation to MTCC

Figure 2.4 displays a taxonomy of model-driven testing that classifies approaches
to model-driven testing along seven dimensions. Not all dimensions defined by the
taxonomy can be applied to MTCC, in the following we only discuss the relevant
classification criteria.

MTCC models represent a testee from a system family of testees. The
test-relevant of a testee as well as the that exercise and
verify these are modeled.

The models constructed for the MTCC are only used for testing.

MTCC generates and executes test cases offline.

MTCC envision test case construction by domain ex-
perts. Domain experts select and implement those test that they consider
relevant based on their knowledge of the requirements of the system.

2.4 Chapter Summary

A number of different meanings exist for the term model. In this work, a model is
a formal abstraction that serves a specific purpose. A model is considered formal
if its structure and semantics conform to an implicit or explicit meta-model.

2.4 Chapter Summary 27

Figure 2.4: A taxonomy of model-driven testing [UPL05]

Model-Driven Software Development attempts to solve the Problem Implemen-
tation Gap by using formal models that represent concept of the application do-
main. Applications are modeled and the resulting models are used, optionally after
further refinements, to generate implementation artifacts. MTCC is a model-driven
approach that uses models to represent SUTs and tests that exercise a SUT.

Model-Driven Testing uses formal models of a SUT and optionally the envi-
ronment of the SUT to generate tests and to assess the success or failure of these
tests. MTCC is closely related to model-driven testing approaches but differs in
that tests are not generated but constructed by domain experts.

	2 Use of Models in Software Engineering
	2.1 Roles and Properties of Models
	2.1.1 Attributes of Models
	2.1.2 Types of Models
	2.1.2.1 Meta Model

	2.2 Model-Driven Software Development
	2.2.1 Model Driven Architecture
	2.2.2 Architecture-Centric Model-Driven Software Development
	2.2.3 Generative Programming
	2.2.4 Generation of Implementations
	2.2.5 Models and Programming Languages

	2.3 Model-Driven Testing
	2.3.1 Types of Model-Driven Testing
	2.3.2 Relation to MTCC

	2.4 Chapter Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

