Skip to main content

Basistechnologien der Mikrosystemtechnik

  • Chapter
Praxiswissen Mikrosystemtechnik
  • 6872 Accesses

Auszug

Die typische Umgebung für die Entwicklung und Fertigung von mikrotechnischen Produkten ist der Reinraum. Er gewährleistet saubere Umgebungsbedingungen in Form von gefilterter Luft in dem Bereich, in dem Substrate partikelarm mit geeigneten Prozessmedien und -anlagen prozessiert und gehandhabt werden. Außerdem erfolgt in peripheren Einheiten die Bereitstellung aller erforderlichen Medien (z. B. Prozessgase, Druckluft, DI-Wasser, Kühlwasser, Stromversorgung, Vakuum) sowie die Entsorgung (toxische Abluft, Abwasserneutralisation). Der eigentliche Reinraum, die erforderliche Klimatechnik und die peripheren Einheiten bilden einen komplex organisierten, zusammenhängenden und mit Hilfe von Sensoren überwachten Bereich. Seine detaillierte Auslegung, geometrische Anordnung und Eigenschaften werden durch die Anwendung, d. h. die in dieser Fertigungsumgebung herzustellenden Produkte, definiert. Die Größe eines Reinraums kann dabei wenige Quadratmeter (z. B. für einen isolierten Mikromontageplatz) oder mehrere tausend Quadratmeter für eine komplette Prozesslinie (z. B. eine Speicherchipfertigung) betragen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. J. D. Andrade, Hydrogels for medical and Related Applications, Symposium of the 170th meeting of the American Chemical Society, 1975, American Chemical Society (1976)

    Google Scholar 

  2. Ph. Arquint, A. van den Berg, B. H. van der Schoot, N. F. de Rooij, H. Bühler, W. E. Morf, L. F. J. Dürselen, Sensors and Actuators B 13-14 (1993) 340–344

    Google Scholar 

  3. Ph. Arquint, M. Koudelka-Hep, D. J. Strike, P. D. van der Wal, B. H. van der Schoot, N. F. de Rooij, Materials for Microstructures: Polymers, in UETP-MEMS Course Materials for Microstructures, (1995)

    Google Scholar 

  4. P. Bachmann, D. Leers, H. Lydtin, Towards a general concept of diamond chemical vapor deposition, Diamond and Related Materials 1 (1991) 1–12

    Google Scholar 

  5. W. Benecke, Physikalische Effekte zur Signalwandlung, in A. Heuberger, Mikromechanik, Springer Verlag Berlin, Heidelberg (1991)

    Google Scholar 

  6. T. M. Benson, H.F. Arrand, P. Sewell, D. Niemeyer, A. Loni, R.J. Bozeat, M. Krüger, R. Arens-Fischer, M. Thönissen, H. Lüth, Progress towards achieving integrated circuit functionality using porous silicon optoelectronic components, Materials Science and Engineering B 69–70 (1999) 92

    Google Scholar 

  7. M. Bleicher, Halbleiter-Optoelektronik, Heidelberg, A. Hüthig Verlag (1986)

    Google Scholar 

  8. V. E. Bottom, Introduction to Quartz Crystal Unit Design, Van Nostrad Reinhold, New York (1982)

    Google Scholar 

  9. J. C. Brice, Crystals for quartz resonators, Review of Modern Physics 57 (1985) 105–146

    Google Scholar 

  10. W. G. Cady, Piezoelectricity, Vol. 1, Dover, New York (1964)

    Google Scholar 

  11. L. Canham, Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers, Appl. Phys. Lett. 57 (1990) 1046

    Google Scholar 

  12. S. C. Chang, J. R. Stetter, C. S. Cha, Amperometric Gas Sensors Talanta-Oxford 40 (1993) 461

    Google Scholar 

  13. C. C. Chang, L. C. Chen, A new process for the fabrication of silicon-on-insulator structures by using porous silicon, Materials Letters 32 (1997) 287–290

    MathSciNet  Google Scholar 

  14. J. S. Danel, F. Michel, G. Delapierre, Micromachining of Quartz and its Application to Acceleration Sensor, Sensors and Actuators A 21-23 (1990) 971–977

    Google Scholar 

  15. J. S. Danel und G. Delapierre, Quartz: a material for microdevices, J. Micromech. Microeng. (1991) 187–198

    Google Scholar 

  16. B. Diem, P. Rey, S. Renard, S. Viollet, H. Bono, F. Michel, M. T. Delaye, G. Delapierre, SOI „SIMOX“; from bulk to surface micromachining, a new age for silicon sensors and actuators, Sensors and Actuators A 46-47 (1995) 8

    Google Scholar 

  17. W. Ehrfeld, D. Münchmeyer, Threedimensional Microfabrication using Synchrotron Radiation, Nuclear Instr. and Methods in Physics Research A 303 (1991) 523–531

    Google Scholar 

  18. W. Ehrfeld, H. Lehr, Deep X-ray lithography for the production of threedimensional microstructures from metals, polymers and ceramics, Radiat. Phys. and Chem. 45 (1995) 394

    Google Scholar 

  19. F. Ericsson, S. Johansson, J.-A. Schweitz, Hardness and Fracture Toughness of Semiconducting Materials Studied by Indentation and Erosion Techniques, Mater. Sci. Eng. A 105/106 (1988) 131–141

    Google Scholar 

  20. F. Ericsson und J.-A. Schweitz, Micromechanical Fracture Strength of Silicon, J. Appl. Physics 68 (1990)5840–5844

    Google Scholar 

  21. J. E. Field, The Properties of Diamond, Academic Press, London (1979)

    Google Scholar 

  22. S. Gernet, M. Koudelka, N.F. de Rooij, Sensors and Actuators 18 (1989) 59–70

    Google Scholar 

  23. W. R. Gombotz, A.S. Hoffmann, Gas-Discharge Techniques for Biomaterial Modification, CRC Critical Reviews in Biocompatibility 4 (1987) 1–42

    Google Scholar 

  24. U. Gösele, V. Lehmann, Leuchtendes poröses Silizium, Phys. Bl. 50 (1994) 241–243

    Google Scholar 

  25. S. Green, P. Kathirgamanathan, The quenching of porous silicon photoluminescence by gaseous oxygen, Thin Solid Films 374 (2000) 98

    Google Scholar 

  26. H. J. Griesser, R. C. Chatelier, T.R. Gengenbach, Z. R. Vasic, G. Johnson, J.G. Steele, Plasma Surface Modifications for Improved Biocompatibility of Commercial Polymers, Polymer Internat. 27 (1992)109–117

    Google Scholar 

  27. U. Grüning, V. Lehmann, Appl. Phys. Lett. 66 (1995) 3254–3256

    Google Scholar 

  28. Th. Haase, Keramik, 2. Auflage, Leipzig: Deutscher Verlag für Grundstoffindustrie, (1968)

    Google Scholar 

  29. F. Hedrich, S. Billat, W. Lang, Structuring of membrane sensors using sacrificial porous silicon, Sensors and Actuators 84 (2000) 315

    Google Scholar 

  30. C. Hedlund, U. Bucht, J. Söderkvist, Two-dimensional etching diagrams for Z-cut quartz, J. Micromech. Microeng. 2 (1992) 215–127

    Google Scholar 

  31. C. Hedlund, U. Lindberg, U. Bucht und J. Söderkvist, Anisotropie etching of Z-cut quartz, J. Micromech. Microeng. 3 (1993) 65–73

    Google Scholar 

  32. H. W. Hennike, Zum Begriff Keramik und zur Einteilung keramischer Werkstoffe. Ber. Dtsch. Keram. Ges. 44 (1967) 209–211

    Google Scholar 

  33. K. Hjort, J. Söderqvist, J.-A. Schweitz, Gallium arsenide as a mechanical material, J. Micromech. Microeng. 4(1994) 1–13

    Google Scholar 

  34. A. S. Hoffmann, Biomeedical Applications of Plasma Gas Discharge Processes, J. Appl. Poly. Sci.: Appl. Poly. Sci. Symposium 251 (1988)

    Google Scholar 

  35. Produktinformation Fa. Holm Siliziumbearbeitung, Rosenheim

    Google Scholar 

  36. J. A. Hubbell, Chemical Modification of Polymer Surfaces to Improve Biocompatibility, Trends in Polymer Science 2 (1994) 20–25

    Google Scholar 

  37. N. Inagaki, S. Tasaka, H. Kawai, Improved Adhesion of poly(tetrafluorethylene) by NH3-plasma treatment, J. Adhes. Sci. Technol. 3(8) (1989) 637–649

    Google Scholar 

  38. C. Kittel, Einführung in die Festkörperphysik, R. Oldenbourg Verlag, München, Wien (1971)

    Google Scholar 

  39. W. Kleber, Einführung in die Kristallographie, Verlag Technik, Berlin (1990)

    Google Scholar 

  40. N. Koshida, X. Sheng, T. Komoda, Quasiballistic electron emission from porous silicon diodes, Appl. Surf. Sci. 661 (1999) 371–376

    Google Scholar 

  41. M. Koudelka, S. Gernet, N. F. de Rooij, Sensors and Actuators 18 (1989) 157–165

    Google Scholar 

  42. G. Lammel, Ph. Renaud, Free-standing, mobile 3D porous silicon microstructures, Sensors and Actuators 85 (2000) 356

    Google Scholar 

  43. W. Lang, P. Steiner, H. Sandmaier, Porous silicon: a novel material for microsystems, Sensors and Actuators A 51 (1995)31

    Google Scholar 

  44. V. Lehmann, U. Gösele, Porous Silicon Formation: A Quantum Wire Effect, Appl. Phys. Lett. 58 (1991)856

    Google Scholar 

  45. V. Lehmann, The Physics of Macropore Formation in Low Doped n-Type Silicon, J. Electrochem. Soc. 140(1993)2836

    Google Scholar 

  46. V. Lehmann, Porous Silicon-A New Material for MEMS, The 9th Annual Internat. Workshop on Micro Electro Mechanical Systems, MEMS 96, San Diego, USA (1996) 1

    Google Scholar 

  47. C. Levy-Clement, A. Lagoubi, R. Tenne, M. Neumann-Spallart, Photoelectrochemical Etching of Silicon, Electrochim. Acta 37 (1992) 877

    Google Scholar 

  48. Entwurf und Planung M.Lacher (IMM), Planungskontor A. Strickler, Oberrimsingen

    Google Scholar 

  49. R. Memming, G. Schwandt, Surf. Sci. 4 (1966) 109

    Google Scholar 

  50. G. J. Moody, R.B. Oke, J. D. R. Thomas, Analyst 95 (1970) 910

    Google Scholar 

  51. MRS Symp. Proc. 256, Light Emission from Silicon, (1992) u. 283, Microcrystalline Semiconductors, Mat. Sci. & Devices (1993)

    Google Scholar 

  52. mst news, Materials for Microsystems, No. 21, Sept. (1997)

    Google Scholar 

  53. J. Nieratschker, Fluorkunststoffe, Kunststoffe 86 (1996) 1524–1528

    Google Scholar 

  54. A. V. Nurmikko und R. L. Gunshor, Semiconductor Lasers with Wide-Gap II-VI Materials, in G. P. Agrawal (Ed.), Semiconductor Lasers, AIP Press, Woodbury, New York (1995)

    Google Scholar 

  55. G. Pfaender, Schott Glaslexikon, mvg Verlag, München, Landsberg am Lech, (1989)

    Google Scholar 

  56. Properties of Silicon, EMIS Datareviews Series No. 4, INSPEC (1988)

    Google Scholar 

  57. P. Rangsten, Microstructure Technology in Quartz and Silicon, Thesis, Uppsala University, (1998)

    Google Scholar 

  58. P. Rangsten, Etch rates of crystallographic planes in Z-cut quartz-experiments and simulation, J. Micromech. Microeng. 8 (1998) 1–6

    Google Scholar 

  59. H. Salmang, H. Scholze, Keramik, Teil 1 Allgemeine Grundlagen und wichtige Eigenschaften, 6. Auflage, Springer Verlag, Berlin, Heidelberg, New York (1982)

    Google Scholar 

  60. R. Sauer, Diamant als Elektronikmaterial, Phys. Bl. 51 (1995) 399–404

    Google Scholar 

  61. B. H. van der Schoot, S. Jeanneret, A. van den Berg, N.F. de Rooij, Sensors and Actuators B 15-16 (1993) 211–213; B.H. van der Schoot, S. Jeanneret, A. van den Berg, N.F. de Rooij, Analytical Methods and Instrumentation 1 (1993) 38–42

    Google Scholar 

  62. T. R. Dietrich, B. Speit, Schott Information 70 (1994) 6

    Google Scholar 

  63. Produktinformation der Fa. SICO Meiningen Wafer GmbH, Meiningen

    Google Scholar 

  64. R. L. Smith, S. D. Collins, Thick Films of Silicon Nitride, Sensors and Actuators A 23 (1990) 830

    Google Scholar 

  65. A. Splinter, J. Stürmann, W. Benecke, Novel porous silicon formation technology using internal current generation, Mat. Sci. and Engineering C 15 (2001) 109

    Google Scholar 

  66. A. Splinter, O. Bartels, W. Benecke, Thick porous silicon formation using implanted mask technology, Sensors and Actuators B 76 (2001) 354

    Google Scholar 

  67. A. Splinter, J. Stürmann, O. Bartels, W. Benecke, Micro membrane reactor: a flow-through membrane for gas pre-combustion, Sensors and Actuators B 83 (2002) 169–174

    Google Scholar 

  68. P. Steiner, W. Lang, Micromachining applications of porous silicon, Thin Solid Films 255 (1995) 52

    Google Scholar 

  69. EJ.R. Sudhölter, P. D. van der Wal, M. Skowronska-Ptasinska, A. van den Berg, P. Bergveld, D. N. Reinhoudt, Analytica Chimica Acta 230 (1990) 59–65

    Google Scholar 

  70. D. R. Turner, J. Electrochem. Soc. 105 (1958) 402

    Google Scholar 

  71. A. Uhlir, Bell Sys. Techn. Jour. 35 (1956) 333

    Google Scholar 

  72. T. Unagami, Formation Mechanism of Porous Silicon Layer by Anodization in HP Solution, J. Electrochem. Soc. 127 (1980) 476

    Google Scholar 

  73. W. Vogel, Glaschemie (4. Aufl.), Springer Verlag, Berlin, Heidelberg (1992)

    Google Scholar 

  74. Y. Watanabe, Y. Arita, T. Yokoyama, Y. Igarashi, Formation and Properties of Porous Silicon and Its Applications, J. Electrochem. Soc. 122 (1975) 1351

    Google Scholar 

  75. R. Williams, Modern GaAs processing techniques, Artech House, Boston, London (1990)

    Google Scholar 

  76. Produktinformation Fa. Wafer Technology, UK

    Google Scholar 

  77. A. Zeitschel, A. Friedberger, W. Weiser, G. Müller, Breaking the isotropy of porous silicon formation by means of current focusing, Sensors and Actuators 74 (1999) 113

    Google Scholar 

  78. X. G. Zhang, J. Electrochem. Soc. 138 (1991) 3750

    Google Scholar 

  79. Produktinformationen der Fa. Albis Plastic GmbH, Hamburg

    Google Scholar 

  80. Produktinformation der Fa. BASF, Ludwigshafen, Produktname TERLURAN

    Google Scholar 

  81. Produktinformation der Fa. Nippon Zeon Co., Tokyo, Japan, Produktname ZEONEX 280/250

    Google Scholar 

  82. Produktinformation der Fa. Du Pont de Nemours Int. S. A., Genf, Schweiz, Produktname Teflon PFA

    Google Scholar 

  83. Produktinformation der Fa. Hoechst, Frankfurt, Produktname TOPAS

    Google Scholar 

  84. Produktinformation der Fa. Hoechst, Frankfurt, Produktname VECTRA

    Google Scholar 

  85. Produktinformation der Fa. ICI, Hertfordshire, England, Produktname VICTREX

    Google Scholar 

Literatur

  1. R. L. Abber, Photochemical Vapor Deposition, in K. K. Schuegraf (Ed.), Handbook of Thin Film Deposition Processes and Techniques, Noyes Publications, Park Ridge, New Jersey (1988) 270–290

    Google Scholar 

  2. Thin Film Stress Monitoring, Aerospace Engineering-Warrendale, Vol. 16 (1996) 36

    Google Scholar 

  3. J. E. E. Baglin, G. J. lark, Nucl. Instr. and Meth. in Phys. Res. B 7/8 (1985) 881

    Google Scholar 

  4. N. Basta, Firmeninformation High Technology, Febr. (1985)

    Google Scholar 

  5. H. Biedermann, Y. Osada, Plasma Chemistry of Polymers, Advances in Polymer Science 95, Springer Verlag Berlin, Heidelberg (1990)

    Google Scholar 

  6. J. Bloehm, W. A. P. Claassen, Nucleation and Growth of silicon film by chemical vapour deposition, Philips Techn. Rev. 41 (1983/84) 60–69

    Google Scholar 

  7. A. N. Broers, Photolithography, in: CEI-Course 136, Silicon Semiconductor Materials and Process Technology, CEI-Europe/Elsevier, (1991)

    Google Scholar 

  8. W. Brockmann (Hrsg.), Haftung als Basis für Stoffverbunde und Verbund-werkstoffe, Symp. Dt. Ges. Metallkunde, Bremen, Oberursel (1983)

    Google Scholar 

  9. J. D. Buckley, C. Karatzas, Proc. SPIE 1088 (1989) 424

    Google Scholar 

  10. B. N. Chapman, Thin-film adhesion, J. Vac. Sci. Technol. 11 (1974) 106–113

    Google Scholar 

  11. R. Dammel, C. R. Lindley, W. Meier, G. Pawlowski, J. Their, W. Henke, Proc. SPIE 1264 (1990) 26

    Google Scholar 

  12. R. Dammel, Diazonaphthoquinone-based Resists, Tutorial Texts in optical Eng., Vol. TT 11, SPIE Opt. Eng. Press, Washington, (1993)

    Google Scholar 

  13. R. Dammel, Applications of Thick Photoresists, AZ Electronic Materials, Clariant Corporation, Presentation at the K. Suss Advanced Packaging Seminar, Denver, CO (2000)

    Google Scholar 

  14. B. E. Deal, A.S. Grove, General Relationship for the Thermal Oxidation of Silicon, J. Appl. Phys. 36 (1965) 3770

    Google Scholar 

  15. G. Dearnaley, Nucl. Instr. and Meth. in Phys. Res. B 7 (1985) 158

    Google Scholar 

  16. d ′Heurle, Diffusion-Reaction: The Oxidation of Silicides in Elektronics and Elswhere, J. Phys. III France 5 (1995) 1707–1728

    Google Scholar 

  17. DIN 4774: Messung der Wellentiefe mit elektrischen Tastschnittgeräten, Hrsg. Deutscher Normenausschuß

    Google Scholar 

  18. J. C. Dyment, J. C. North, L. A. Dásaro, J. Appl. Phys. 44 (1973) 207

    Google Scholar 

  19. M. Esselborn, Charakterisierung und Simulation eines DUV-Prozesses, Diplomarbeit FH Köln/IBM Speichersysteme Deutschland GmbH Mainz, (2002)

    Google Scholar 

  20. H. Frey, G. Kienel (Hrsg.), Dünnschichttechnologie, VDI-Verlag Düsseldorf (1987)

    Google Scholar 

  21. E. Garmire, H. Stoll, A. Yariv, R. Hunsperger, Appl. Phys. Lett. 21 (1972) 87

    Google Scholar 

  22. C. M. Garza, C. R. Szmanda, R. L. Fischer, Proc. SPIE 920 (1988) 321

    Google Scholar 

  23. N. Goldsmith, J. Olmstead, J. Scott, Boron Nitride as a Diffusion Source for Silicon, RCA Review, 28 (1967) 344

    Google Scholar 

  24. W. Görgen, Prozessentwicklung zur Herstellung teilbeweglicher MikroStrukturen mit dem LIGA-Verfahren, Diplomarbeit, FH Wiesbaden (1995)

    Google Scholar 

  25. M. Hatzakis, K. J. Stewart, J. M. Shaw, S. A. Rishton, J. Electrochem. Soc. 138 (1991) 1076

    Google Scholar 

  26. T. Hattori, Silicon Native Oxide, J. Surface Finishing Soc. of Jap., Vol.45 (1994) 12

    MathSciNet  Google Scholar 

  27. K. Hjort, G. Thornell, J.A. Schweitz, R. Spohr, Quartz micromachining by lithographic control of ion track etching, Appl. Phys. Lett. 69 (1996) 3435–3436

    Google Scholar 

  28. G. H. Hubler, F.A. Smidt, Nucl. Instr. and Meth. in Phys. Res. B 7/8 (1985) 151

    Google Scholar 

  29. S. F. Hung, L.J. Chen, The Oxidation behaviors of MoSi2 on (111) Si, Applied Surface Science 113/114(1997)600–604

    Google Scholar 

  30. R. Hurditch, I. Daraktchiev, Positive Photoresist Solvents, Semicon Europe, Zurich, (1994)

    Google Scholar 

  31. S. Jacobsen, B. Jönsson, B. Sundqvist, Thin Solid Films 107 (1983) 89

    Google Scholar 

  32. R. Jacobsson, Measurement of the adhesion of thin films, Thin Solid Films 34 (1976) 191–199

    Google Scholar 

  33. K. Jain, Eximer Laser Lithography, SPIE Opt. Eng. Press, Bellingham, (1990)

    Google Scholar 

  34. K. Jinno et al., Photogr. Sci. Eng. 21 (1977) 290

    Google Scholar 

  35. W. Karthe, R. Müller, Integrierte Optik, Akademische Verlagsgesellschaft Geest & Portig KG, Leipzig, (1991)

    Google Scholar 

  36. L.E. Katz in S.M. Sze, VLSI Technology, McGraw-Hill Book Company, New York, (1988)

    Google Scholar 

  37. V. C. Kempson et al., Microelectron. Eng. 13 (1991) 287

    Google Scholar 

  38. C. T. Kemmerer, R.H. Mills, Adhesion of thin films of evaporated titanium-copper after electroplating, J. Vac. Sci. Technol. 16 (1979) 352–355

    Google Scholar 

  39. D. Kissinger, Experimente zur Simulation von DUV-Lithographieprozessen, Diplomarbeit FH Wiesbaden/IBM Speichersysteme Deutschland GmbH Mainz, (2002)

    Google Scholar 

  40. T. T. Kodas. M.J. Hampden-Smith. The Chemistry of Metal CVD, VCH Verlagsgesellschaft, Weinheim (1994)

    Google Scholar 

  41. M. Kogure, Native Oxide Growth and Organic Impurity Removal on Si Surface with Ozone Injected Ultrapure Water, J. Electrochem. Soc, Vol. 140 (1993) 804

    Google Scholar 

  42. M. Köhler, Ätzverfahren für die Mikrotechnik, Wiley-VCH, Weinheim (1998)

    Google Scholar 

  43. K. Komvopoulos, B. Wie, Nanoscale indentation Hardness and Wear Characterization of Hydrogenated Carbon Thin Films, Transactions American Soc. of Mech. Eng. J. of Tribology, Vol. 117 (1995) 594

    Google Scholar 

  44. M. Kraus, M. Leghissa, G. Saemann-Ischenko, Wechselspiel linienhafter Objekte in der Nanowelt, Phys. Bl. 50(1994)333–338

    Google Scholar 

  45. J. R. Kruest, The characterization of Boron Nitride Using Hydrogen Injection, Thesis, Dep. Electrical Engineering Pennsylvania State University (1976)

    Google Scholar 

  46. O. Lehmann, R.A. Fischer, M. Stuke, Laser Direct Writing of ß-Co/Ga and Mo/Ga Alloy Microstructures from Organometallic Single Source Precursors, Advanced Materials for Optics and Electronics, Vol.6 (1996)27

    Google Scholar 

  47. R. Leuschner, G. Pawlowski, in: R.W. Cahn, P. Haasen, E. J. Kramer (eds.), Materials Science and Technology, Vol. 16, Processing of Semiconductors, VCH Verlagsgesellschaft mbH, Weinheim, (1996)

    Google Scholar 

  48. M. D. Levenson, Microlith. World 1(1) (1992) 7

    Google Scholar 

  49. B. J. Lin, Proc. SPIE 1264 (1990) 2

    Google Scholar 

  50. J. Linhard, M. Scharff, H. E. Schiott, Mat. Fys. Medd. Dan. Vid. Selsk. 33 (1963)

    Google Scholar 

  51. C. Koch, T. Rinke, Lithographie-Prozesse, MicroChemicals GmbH, Ulm (2004)

    Google Scholar 

  52. C. A. Mack, Inside Prolith-A Comprehensive Guide to Optical Lithography Simulation, FINLE Technologies Inc., (1997)

    Google Scholar 

  53. C. A. Mack, M. Ercken, M. Moelants, Matching Simulation and Experiment for Chemically Amplified Resists, FINLE Technologies Inc., (1999)

    Google Scholar 

  54. L. I. Maissel, R. Glang, Handbook of Thin Film Technology, New York, McGraw-Hill, (1970)

    Google Scholar 

  55. Mask Aligner MA6, Technical Description, Karl Süss KG GmbH&Co., München, (1996)

    Google Scholar 

  56. Yoji Mashiko, Akihiko Ashaki, Tatsuo Akamoto, Koji Fukumoto, Hirosi Koyama, Formation Mechanisms of the Deformed Oxide Layer in a Tungsten Polycide Structure, Jap. J. Appl. Phys., Vol. 35 (1996) 584–588

    Google Scholar 

  57. S. Matsuo, Microwave Electron Cyclotron Resonance Plasma Chemical Vapor Deposition, in K. K. Schuegraf (Ed.), Handbook of Thin Film Deposition Processes and Techniques, Noyes Publications, Park Ridge, New Jersey (1988)147–169

    Google Scholar 

  58. K. Mayr, Herstellung eines Nanowerkzeuges in Form einer dreidimensional beweglichen Feldemissionsspitze auf der Basis eines streßoptimierten Mehrschichtsystems, Diplomarbeit, Fachhochschule Wiesbaden (1994)

    Google Scholar 

  59. D. Meyerhofer, IEEE Trans. Electr. Dev. ED-27 (1980) 921

    Google Scholar 

  60. M. C. B. A. Michielsen et al., Microelectronic Eng. 11 (1990) 475

    Google Scholar 

  61. Microsystem Technology, Technical Description, Karl SUss KG GmbH & Co., München, (1996)

    Google Scholar 

  62. W. A. Moreau, Semiconductor Lithography-Principles, Practices, and Materials, Plenum Press, New York, (1988)

    Google Scholar 

  63. B. A. Movchan, A. V. Demchishin, Study of the structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide, Fiz. Metal. Metalloved 28 (1969) 653–660

    Google Scholar 

  64. V. S. Nguyen, Plasma-Assisted Chemical Vapor Deposition, in K. K. Schuegraf (Ed.), Handbook of Thin Film Deposition Processes and Techniques, Noyes Publications, Park Ridge, New Jersey (1988)112–146

    Google Scholar 

  65. M.-A. Nicolet, S.S. Lau, in VLSI Electronics, Microstructure Science, N.G. Einspruch and G.B. Larrabee, Eds., Academic Press, New York, (1983)

    Google Scholar 

  66. G. Oerlein, Reactive Ion Etching, in S.M. Rossnagel, J.J. Cuomo, W.D. Westwood (Eds.), Handbook of Plasma Processing Technology, Noyes Publications, Park Ridge, New Jersey, (1990)

    Google Scholar 

  67. A. Offenhäuser, J. Rühe, W. Knoll, Neural cells cultured on modified microelectronic device surfaces, J. Vac. Sci. Technol. A 13(5) (1995) 2606–2612

    Google Scholar 

  68. T. Oguwa et al., Proc. SPIE 1924 (1993) 273

    Google Scholar 

  69. A. C. Ouano, in: T. Davidson (ed.), Polymers in Microelectronics, ACS Symp. Ser. 242, Washington, (1984)

    Google Scholar 

  70. G. Pawlowski et al., Proc. SPIE 1262 (1990) 391

    Google Scholar 

  71. G. Petzow, ätzen, Materialkundlich-Technische Reihe 1, Gebr. Bornträger, Berlin, Stuttgart (1994)

    Google Scholar 

  72. C. Pierrat et al., Microelectr. Eng. 11 (1990) 507

    Google Scholar 

  73. J. F. Rabek, Mechanisms of Photophysical and Photochemical Reactions in Polymers: Theory and Practical Applications, Wiley, New York, (1987)

    Google Scholar 

  74. P. Rai-Choudhury, Handbook of Microlithography, Micromachining and Microfabrication (Volume 1: Microlithography), SPIE-The International Society for Optical Engineering, (1997)

    Google Scholar 

  75. A. Reiser, Photoreactive Polymers: The Science and Technology of Resists, Wiley, New York, (1989)

    Google Scholar 

  76. B. Roland, R. Lombaerts, J. Vandendrissche, F. Godts, Proc. SPIE 1262 (1990) 151

    Google Scholar 

  77. R. C. Rossi, Low Pressure Chemical Vapor Deposition, in K. K. Schuegraf (Ed.), Handbook of Thin Film Deposition Processes and Techniques, Noyes Publications, Park Ridge, New Jersey (1988) 80

    Google Scholar 

  78. S.M. Rossnagel, J.J. Cuomo, W.D. Westwood, Handbook of Plasma Processing Technology, Noyes Publications, Park Ridge, New Jersey, (1990)

    Google Scholar 

  79. E. W. Rutter et al., Proc. Int. Conf. Multichip Modules, Denver USA, (1992)

    Google Scholar 

  80. H. Ryssel, I. Rüge, Ionenimplantation, Teubner Verlag, Stuttgart, (1978)

    Google Scholar 

  81. T. Sato, K. Ohata, N. Asahi, Y. Ono, Y. Oka, I. Hashimoto, J. Vac. Sci. Technol. A 4(3) (1986)

    Google Scholar 

  82. M. Sebald, R. Leuschner, R. Sezi, H. Ahne, S. Birkle, Proc. SPIE 1262 (1990) 528

    Google Scholar 

  83. J. Segner, Plasma impulse chemical vapour deposition-a novel technique for the production of high power laser mirrors, Materials Science and Engineering, A 140 (1991) 733–740

    Google Scholar 

  84. R. Sezi et al., Techn. Paper at the SPIE Reg. Conf. On Photopolymers, Ellenville USA, (1994) TF4

    Google Scholar 

  85. J. R. Sheats, B. W. Smith, Microlithography-Science and Technology, Marcel Dekker Inc., New York, (1998)

    Google Scholar 

  86. S. Shimizu, Res. Dev. Rev. Mitsubishi Kasei Corp. 2(2) (1988) 85

    Google Scholar 

  87. F. A. Smidt, B. D. Sartwell, Nucl. Instr. and Meth. in Phys. Res. B 6 (1985)

    Google Scholar 

  88. S. M. Spitzer, J. C. North, J. Appl. Phys. 44 (1973) 214

    Google Scholar 

  89. R. D. Standley, W. M. Gibson, J. W. Rodgers, Applied Optics 11 (1972) 1313

    Google Scholar 

  90. M. Stuke, Laser applications in CVD, J. de Physique 4, Vol. 3 (1993) C3–501

    Google Scholar 

  91. M. Stuke, O. Lehmann, Threedimensional laser direct writing of electrical conducting and isolating microstructures, Materials Letters, Vol. 21 (1994) 131

    Google Scholar 

  92. M. Stuke, O. Lehmann, Laser-CVD 3D Rapid Prototyping of Laser Driven Movable Micro-Objects, J. de Physique 4, Vol. 5 (1995) C5–601

    Google Scholar 

  93. T. Sugita, K. Awazu, M. Nishi, Evaluation of Hardness of Superhard Thin Films by Analysis of Indentation Behavior with a Vickers Indentor, J. Jap. Soc. Prec. Eng., Vol. 61 (1995) 1290

    Google Scholar 

  94. L. F. Thompson, C. G. Willson, M. J. Bowden, Introduction to Microlithography, ACS Symp. Ser. 219, Washington, (1983)

    Google Scholar 

  95. G. Thornell, K. Hjort, B. Studer, J.-A. Schweitz, Anisotropy-Independent Through Micromachining of Quartz Resonators by Ion Track Etching, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 44 (1997) 829–838

    Google Scholar 

  96. J. A. Thornton, Influence of apparatur geometry and deposition conditions on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol. 11 (1974) 666–670

    Google Scholar 

  97. J. A. Thornton, Influence of substrate temperature and deposition rate on structure of thick sputtered coatings, J. Vac. Sci. Technol. 12 (1975) 830–835

    Google Scholar 

  98. H. J. Timpe, H. Baumann, Photopolymere: Prinzipien und Anwendungen, Deutscher Verlag für Grundstoffindustrie, Leipzig, (1988)

    Google Scholar 

  99. T. A. Tombrello, Mat Sci. and Eng. 69 (1985) 443

    Google Scholar 

  100. M. A. Toukhy, T. R. Sarubbi, D. J. Brzozowy, Proc. SPIE 1466(1991) 497

    Google Scholar 

  101. P. Trefonas et al., Proc. SPIE 920 (1988) 203

    Google Scholar 

  102. T. Tsurushima, H. Tanoue, J. Phys. Soc. Jap. 31 (1971) 1965

    Google Scholar 

  103. Plasma polymerization of silicon organic membranes for gas separation, Surface and Coatings Technology 59 (1993) 342–344

    Google Scholar 

  104. C. Wohlrab, M. Hofer, Plasmapolymerisation für Hartbeschichtung von Kunststofflinsen, Vakuum in Forschung und Praxis Nr. 2 (1995) 97–105

    Google Scholar 

  105. S. M. Yalisove, Z. U. Rek, J. C. Bilello, Analysis of thin film stress measurement techniques, Thin Solid Films, Vol. 301 (1997) 45

    Google Scholar 

  106. M. Yanagisawa, Hardness and Elasticity Measurement of Thin Films with Nanoindenter, Jap. J. of Tribology, Vol. 40 (1995) 139

    Google Scholar 

  107. J. F. Ziegler, J. P. Biersack, U. Littmark: The Stopping And Range of Ions in Solids, Pergamon Press (1985)

    Google Scholar 

  108. J. F. Ziegler, Nucl. Instr. and Meth. in Phys. Res. B 6 (1985) 270

    Google Scholar 

  109. J. L. Zilko, Metal-Organic Chemical Vapor Deposition: Technology and Equipment, in K. K. Schuegraf (Ed.), Handbook of Thin Film Deposition Processes and Techniques, Noyes Publications, Park Ridge, New Jersey (1988) 234

    Google Scholar 

Literatur

  1. S. Abel, Charakterisierung von Materialien zur Fertigung elektromagnetischer Mikroaktoren in LIGA-Technik, Dissertation, Universität Kaiserslautern (1996)

    Google Scholar 

  2. M. S. Antelmann, The Encyclopedia of Chemical Electrode Potentials, Plenum Press, New York, (1982)

    Google Scholar 

  3. J. Arnold, U. Dasbach, W. Ehrfeld, K. Hesch, H. Löwe, Combination of Excimer Laser Micromachining and Replication Processes Suited for Large Scale Production (Laser-LIGA), Applied Surface Science 86 (1995) 251–258

    Google Scholar 

  4. D. Bäuerle, Laser Processing and Chemistry, Springer, Berlin (2000)

    Google Scholar 

  5. H.-D. Bauer, D. Sabbert, Mikromaterialbearbeitung mit Ultraviolett-und Infrarotlasern, Laser in der Anwendung, Spektrum der Wissenschaft 2 (1998) 45–49

    Google Scholar 

  6. U. Becher, Untersuchungen zur teilautomatisierten Abscheidung von Nickel-Phosphor-Legierungen in MikroStrukturen, Dissertation, TU Ilmenau (1994)

    Google Scholar 

  7. E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Münchmeyer, Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA process), Microelectronic Engineering 4 (1986) 35–56

    Google Scholar 

  8. J. K. Bhardwaj und H. Ashraf, Advanced Silicon Etching Using High Density Plasmas, Proc. SPIE Micromachining and Microfabrication Process Technology, Vol. 2639 (1995) 224–233

    Google Scholar 

  9. J. Bhardwaj, H. Ashraf, A. McQarrie, Dry Silicon Etching for MEMS, Presented at the Symposium on Microstructures and Microfabricated Systems at the Annual Meeting of the Electrochemical Society, Montreal, Quebec, Canada, May 4-9 (1997)

    Google Scholar 

  10. I. Brodie, J. J. Muray, The Physics of Microfabrication, Plenum Press, New York (1982)

    Google Scholar 

  11. R. Brück, N. Rizvi, A. Schmidt, Angewandte Mikrotechnik, Hanser, München (2001)

    Google Scholar 

  12. R. Brugger, Die galvanische Vernickelung, Eugen Leutze Verlag, Saulgau, 2. Auflage (1984)

    Google Scholar 

  13. J. Bühler, F.-P. Steiner, H. Baltes, Silicon dioxide sacrificial layer etching in surface micro-machining, J. Micromech. Microeng. 7 (1997) R1–R13.

    Google Scholar 

  14. D. R. Ciarlo, A latching accelerometer fabricated by the anisotropic etching of (110) oriented silicon wafers, J. Micromech. Microeng. 2 (1992) 10–13

    Google Scholar 

  15. M. Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud und P. Vettiger, High-Aspect-Ratio, Ultrathick, Negative-Tone Near-UV Photoresist for MEMS Applications, Proc. 10th IEEE Workshop on MEMS, Nagoya, Japan (1997) 518–522

    Google Scholar 

  16. T. Diehl, M. Lacher, T. Zetterer, Abschlußbericht zum BMBF-Verbundvorhaben „Mikrooptische Spektrale Meßgeräte als Komponenten für Satelliten und terrestrische Anwendungen“, Teilprojekt „Design und dUnnschichttechnologische Herstellung der HADAMARD-Spiegelzeile“, FKZ 50 TT 9521(1997)

    Google Scholar 

  17. B. Diem, P. Rey, S. Renard, S. Viollet Bosson, H. Bono, F. Michel, M. T. Delaye, G. Delapierre, SOI’ sIMOX’:from bulk to surface micromachining, a new age for silicon sensors and actuators, Sensors and Actuators A 46-47 (1995) 8–16

    Google Scholar 

  18. T.R. Dietrich, Photostructurable glass, in UETP-MEMS-Course: Photostructuring of glass, organized by FSRM, Neuchatel (1998)

    Google Scholar 

  19. P. N. Dunn, Solid State Technology (1993)32

    Google Scholar 

  20. W. Ehrfeld, D. Münchmeyer, Three-dimensional microfabrication using synchrotron radiation, Nuclear Instr. and Methods in Physics Research A 303 (1991) 523–531

    Google Scholar 

  21. W. Ehrfeld, H. Lehr, Deep X-ray Lithography for the Production of Three-dimensional Microstructures from Metals, Polymers and Ceramics, Radiation Physics and Chemistry, Vol. 45 (1995), 349–365

    Google Scholar 

  22. W. Ehrfeld, H. Lehr, F. Michel, A. Wolf, Micro Electro Discharge Machining as a Technology in Micromachining and Microfabrication, Proc. SPIE 2879, Bellingham (1996) 332–337

    Google Scholar 

  23. W. Ehrfeld (Hrsg.), Handbuch Mikrotechnik, Hanser, München (2002)

    Google Scholar 

  24. H. G. A. Elderstig, L. Rosengren, Y. Baecklund, Fabrication of 45° Mirrors Together with Well-Defined V-Grooves Using Wet Anisotropic Etching of Silicon, J. Microelectromechanical Systems, Vol. 4 (1995) 213

    Google Scholar 

  25. M. Elwenspoek, Physical Chemistry of wet chemical anisotropic etching of silicon, Proc. ASME Dynamic Systems and Control Division, DSC-Vol. 57-2 (1995) 901–908

    Google Scholar 

  26. P. Enoksson, New structure for corner compensation in anisotropic KOH etching, J. Micromech. Microeng. 7 (1997) 141–144

    Google Scholar 

  27. G. Feiertag, Röntgentiefenlithographische Mikrostrukturfertigung: Genauigkeit der Abbildung und Strukturierung durch Schrägbelichtung, Dissertation, Univ. Bonn (1996)

    Google Scholar 

  28. G. Feiertag, W. Ehrfeld, H. Freimuth, H. Kölle, H. Lehr, M. Schmidt, Fabrication of photonic crystals by deep x-ray lithography, Applied Physics Letters 71 (1997) 1441–1443

    Google Scholar 

  29. M. Gerner, Realisierung nichtlinear-mikrooptischer Demonstratoren unter Verwendung der LIGA-Technik und deren Charakterisierung, Dissertation, TH Darmstadt (1995)

    Google Scholar 

  30. G. Goet, Metallische MikroStrukturen durch UV-Lithographie und elektrolytische Legierungsabscheidung, Diplomarbeit, FH Wiesbaden (2001)

    Google Scholar 

  31. M. C. Gower, P.T. Rumbsby und D.T. Thomas, Proc. SPIE 1835 (1992) 133

    Google Scholar 

  32. W. Görgen, Prozessentwicklung zur Herstellung teilbeweglicher MikroStrukturen mit dem LIGA-Verfahren, Diplomarbeit, FH Wiesbaden (1995)

    Google Scholar 

  33. V. Hessel, W. Ehrfeld, H. Freimuth, V. Haverkamp, H. Löwe, Th. Richter, M. Stadel, A. Wolf, Fabrication and Interconnection of Ceramic Microreaction Systems for High Temperature Applications, in W. Ehrfeld (Ed.) Microreaction Technology, Springer Verlag, Berlin, Heidelberg (1998)

    Google Scholar 

  34. V. P. Jaecklin, Surface micromachined electrostatic actuators, Dissertation, Universität Neuchatel, Schweiz, (1994)

    Google Scholar 

  35. H. Jansen, M. de Boer, R. Legtenberg, M. Elwenspoek, The black silicon method: A universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control, Proc. Micro Mechanics Europe (MME’ 94) Pisa, (1994) 60–64

    Google Scholar 

  36. H. Jansen, M. de Boer, J. Burger, R. Legtenberg, M. Elwenspoek, The black silicon method II: the effect of mask material and loading on the reactive ion etching of deep silicon trenches, Microelectronic Engineering, Vol. 27 (1995) 475–480

    Google Scholar 

  37. J. Kaiser, Entwicklung eines Verfahrens zur Herstellung von Filtern mittels Photolithographie und Galvanik unter Verwendung eines Wafersteppers, Diplomarbeit, FH Köln (1995)

    Google Scholar 

  38. R. P. van Kampen, R. F. Wolffenbuttel, Effects of 110-oriented corner compensation structures on membrane quality and convex corner integrity in (100)-silicon using aqueous KOH, J. Micromech. Microeng. 5 (1995) 91–94

    Google Scholar 

  39. J.-M. Kim et al., Continuous anti-stiction coatings using self-assembled monolayers for gold microstructures, Jour. Micromech. Microeng. 12 (2002) 688–695

    Google Scholar 

  40. B. Kloeck, S. D. Collins, N.F. de Rooij, R.L. Smith, Study of the electrochemical etch stop for high precision thickness control of silicon membranes, Transaction on Electron devices, Vol. 36 (1989)

    Google Scholar 

  41. B. Kloeck, Design, fabrication and characterization of piezoresistive pressure sensors, including the study of electrochemical etch stop, Dissertation, Universität Neuchatel, (1989)

    Google Scholar 

  42. F. K. Kneubühl, M. W. Sigrist, Laser, Teubner Studienbuch Physik, Stuttgart (1989)

    Google Scholar 

  43. M. Köhler, Ätzverfahren für die Mikrotechnik, Wiley-VCH, Weinheim (1998)

    Google Scholar 

  44. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H. P. Chang, J. Vac. Sci. Technol. B 13(6) (1995) 3012–3016

    Google Scholar 

  45. R. Legtenberg, H. Jansen, M. de Boer, und M. Elwenspoek, Anisotropic RIE of Si using SF6/O2/CHF3 Gasmixtures, J. Electrochem. Soc. Vol. 142 (1995) 2020

    Google Scholar 

  46. C.-H. Lin et al., A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist, Jour. Micromech. Microeng. 12 (2002) 590–597

    Google Scholar 

  47. Y. Linden, L. Tenerz, J. Tiren, B. Hök, Sensors and Actuators 16 (1989) 67

    Google Scholar 

  48. H. Lorenz, M. Despont, N. Farni, J. Brugger, P. Vettiger, P. Renaud, High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS, Sensors and Actuators A 64 (1998) 33–39

    Google Scholar 

  49. H. Lorenz, M. Laudon, P. Renaud, Mechanical Characterization of a New High-Aspect-Ratio Near UV-Photoresist, Microelectronic Engineering 41/42 (1998) 371–374

    Google Scholar 

  50. H. Löwe, H. Mensinger, W. Ehrfeld, Galvanoformung in der LIGA-Technik, Jahrbuch Oberflächentechnik, Metall Verlag Heidelberg, Band 50 (1994) 77–95

    Google Scholar 

  51. S. M. Metev, V. P. Veiko, Laser Assisted Microtechnology, Springer, Berlin (1994)

    Google Scholar 

  52. F. Michel, W. Ehrfeld, H. Lehr, A. Wolf, H.-P. Gruber, A. Bertholds, Tagungsband Internat, wiss. Kolloquium der TU Ilmenau (1996)41

    Google Scholar 

  53. B. Nikpour, L.M. Landsberger, T.J. Hubbard, M. Kahrizi, A. Iftimie, Concave corner compensation between vertical (010)-(001) planes anisotropically etched in Si (100), Sensors and Actuators A 66 (1998) 299–307

    Google Scholar 

  54. G. Oerlein, Reactive Ion Etching, in S.M. Rossnagel, J.J. Cuomo, W.D. Westwood (Eds.), Handbook of Plasma Processing Technology, Noyes Pu blications, Park Ridge, New Jersey, (1990)

    Google Scholar 

  55. H. L. Offereins, H. Sandmaier, K. Marusczyk, K. Kühl, A. Plettner, Compensating corner undercutting of (100) silicon in KOH, Sens. Mater. 3 (1992) 127–144

    Google Scholar 

  56. G. Petzow, Ätzen, Materialkundlich-Technische Reihe 1, Gebr. Bornträger, Berlin,Stuttgart (1994)

    Google Scholar 

  57. H. M. Phillips, D. L. Callahan, S. P. LeBlanc, Z. Ball und R. Sauerbrey, Mater. Res. Soc. Symp. Proc. 285 (1993) 169

    Google Scholar 

  58. N. F. Raley, Y. Sugiyama, T. van Duzer, J. Electrochem. Soc. 131 (1984) 161

    Google Scholar 

  59. I. W. Rangelow, R. Kassing, Silicon Microreactors made by reactive Ion Etching, in W. Ehrfeld (Ed.) Microreaction Technology, Springer Verlag, Berlin, Heidelberg (1998)

    Google Scholar 

  60. A. Reismann, M. Berkenblit, S.A. Chan, F.B. Kaufman, D.C. Green, The controlled etching of silicon in catalyzed ethylendiamine-pyrocatechol-water solutions, J. Electrochem. Soc. 126 (1979) 1406

    Google Scholar 

  61. R. Schenk, O. Halle, K. Müllen, W. Ehrfeld, M. Schmidt, Highly Sensitive Resist Material for Deep-X-ray Lithography, Microelectronic Engineering 35 (1997) 105–108

    Google Scholar 

  62. A. Schmidt, Röntgentiefenlithographische Mikrostrukturfertigung: Elektroneninduzierte Sekundäreffekte und MehrfachbelichtungsProzess, Dissertation, Univ. Bonn (1996)

    Google Scholar 

  63. T. R. Dietrich, B. Speit, Schott Information 70 (1994) 6

    Google Scholar 

  64. H. Seidel, L. Csepregi, Three-dimensional Structuring of Silicon for Sensor Applications, Sensors and Actuators 4 (1983) 455–463

    Google Scholar 

  65. H. Seidel, L. Csepregi, A. Heuberger, H. Baumgärtel, Anisotropic etching of crystalline silicon in alkaline solutions, J. Electrochem. Soc. 137 (1990) 3612–3625

    Google Scholar 

  66. H. Seidel, Naßchemische Tiefenätztechnik. in A. Heuberger (Hrsg.), Mikromechanik, Springer Verlag, Berlin, Heidelberg (1991)

    Google Scholar 

  67. W. M. van Spengen, R. Puers, I. De Wolf, A physical model to predict suction in MEMS, Jour. Micromech. Microeng. 12 (2002) 702–713

    Google Scholar 

  68. M. Stadel, H. Freimuth, V. Hessel und M. Lacher, Abformung keramischer MikroStrukturen, Keram. Z. 48 (1996) 12

    Google Scholar 

  69. M. Stepputat, F. Schmitz, M. Abraham, Abschlußbericht „Miniaturisierter Sonnensensor“, Teilbe-richt: „Mikrosystemtechnische Komponenten für miniaturisierte Sonnensensoren“, FKZ 50TT 9529 (1997)

    Google Scholar 

  70. C. Strandman, L. Rosengren, Y. Bäcklund, Fabrication of 45° optical Mirrors on (100) Si using wet anisotropic etching, IEEE (1995) 244

    Google Scholar 

  71. H.-B. Sun, Nature 412 (2001) 697

    Google Scholar 

  72. N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, M. Elwenspoek, Suction in surface micromachining, J. Micromech. Microeng. 6 (1996) 385–397

    Google Scholar 

  73. M. Teubert, Anwendungstechnische Untersuchungen photostrukturierbarer Resists mit Schichtdicken über 100 (μ m für die LIGA-Technik, Diplomarbeit, FH Köln (1996)

    Google Scholar 

  74. J. T. L. Thong, W. K. Choi, C.W. Chong, TMAH etching of silicon and the interaction of etching parameters, Sensors and Actuators A 63 (1997) 243–249

    Google Scholar 

  75. Y. Uenishi, M. Tsugai, M. Mehregany, Micro-opto-mechanical devices fabricated by anisotropic etching of (110) silicon., J. Micromech. Microeng. 5 (1995) 305–312

    Google Scholar 

  76. M. Vangbo, Y. Bäcklund, Precise mask alignment to the crystallographic orientation of silicon wafers using wet anisotropic etching, J. Micromech. Microeng. 6 (1996) 279–284

    Google Scholar 

  77. K. D. Wise, Silicon Micromachining and Its Application to High Performance Integrated Sensors, in C. D. Fung, P. W. Cheung, H. W. Ko, D. G. Fleming (Eds.), Micromachining and Micropackaging of Transducers, Elsevier, New York (1985)

    Google Scholar 

  78. A. Wolf, W. Ehrfeld, H. Lehr, F. Michel, M. Nienhaus, H.-P. Gruber, Combining LIGA and Electro Discharge Machining for the generation of complex micro structures in hard materials, Proceedings of 9-IPES/UME 4 Conference, Braunschweig (1997)

    Google Scholar 

  79. A. Wolf, W. Ehrfeld, H. Lehr, F. Michel, T. Richter, H. P. Gruber, O. Wörz, Mikroreaktorfertigung mittels Funkenerosion, F&M Feinwerktechnik, Mikrotechnik, Meßtechnik 105 (1997) 436–439

    Google Scholar 

  80. T. Zetterer, LIGA-Technology: Mask Requirements and Fabrication, UETP-MEMS Course LIGA-Technique (1998)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH, Wiesbaden

About this chapter

Cite this chapter

(2006). Basistechnologien der Mikrosystemtechnik. In: Praxiswissen Mikrosystemtechnik. Vieweg+Teubner. https://doi.org/10.1007/978-3-8348-9105-1_2

Download citation

Publish with us

Policies and ethics